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Introduction to Computer Graphics

✦ Background
✦ Rendering
✦ Graphics pipeline (real-time rendering pipeline) 
◆ Polygonal mesh models
◆ Transformations using matrices in 2D and 3D
◆ Homogeneous coordinates
◆ Projection: orthographic and perspective

✦ Rasterization
✦ Graphics hardware and modern OpenGL
✦ Human vision, colour and tone mapping



Unfortunately…
✦ Ray tracing is computationally expensive

◆ used for super-high visual quality
✦ Video games and user interfaces need something faster
✦ Most real-time applications rely on rasterization

◆ Model surfaces as polyhedra – meshes of polygons
◆ Use composition to build scenes
◆ Apply perspective transformation

and project into plane of screen
◆ Work out which surface was closest
◆ Fill pixels with colour of nearest visible polygon

✦ Graphics cards have hardware to support this
✦ Ray tracing starts to appear in real-time rendering

◆ The new generations of GPUs offer accelerated ray-tracing
◆ But it still not as efficient as rasterization 

2



Three-dimensional objects
◆ Polyhedral surfaces are made up from 

meshes of multiple connected polygons

◆ Polygonal meshes
■ open or closed

◆ Curved surfaces
■ must be converted to polygons to be drawn
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Surfaces in 3D: polygons

✦ Easier to consider planar polygons
◆ 3 vertices (triangle) must be planar
◆ > 3 vertices, not necessarily planar

this vertex is in front 
of the other three, 

which are all in the 
same plane

a non-planar 
“polygon” rotate the polygon about 

the vertical axis

should the result be this
or this?
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Splitting polygons into triangles

◆ Most Graphics Processing Units (GPUs) are optimised to draw 
triangles

◆ Split polygons with more than three vertices into triangles

which is preferable?

?
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2D transformations

✦ scale

✦ rotate

✦ translate

✦ (shear)

✦ why?
◆ it is extremely useful to be able 

to transform predefined objects 
to an arbitrary location, 
orientation, and size

◆ any reasonable graphics package 
will include transforms

■ 2D 🡺 Postscript
■ 3D 🡺 OpenGL

[FCG 6/7]
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Basic 2D transformations

◆ scale
■ about origin
■ by factor m

◆ rotate 
■ about origin
■ by angle θ

◆ translate
■ along vector (xo,yo)

◆ shear
■ parallel to x axis
■ by factor a
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Matrix representation of transformations
✦ scale

◆ about origin, factor m

✦ do nothing
◆ identity

✦ rotate
◆ about origin, angle θ

✦ shear
◆ parallel to x axis, factor a 
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Homogeneous 2D coordinates

✦  

[FCG 6.3/7.3]

normalised form
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Matrices in homogeneous coordinates
✦ scale

◆ about origin, factor m

✦ do nothing
◆ identity

✦ rotate
◆ about origin, angle θ

✦ shear
◆ parallel to x axis, factor a 
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Translation by matrix algebra

In conventional coordinates

In homogeneous coordinates

Okay, math checks out, but what is the intuition?
How come the additional coordinate linearizes the 2D translation



Translation by matrix algebra

 

● Shearing in 2D
○ Tilt x by a factor of a
○ Translation by a constant 

along x when y=1

● Shearing in 3D
○ Tilt x,y by a factor of x0,y0
○ Translation by a constant 

along x,y when w=1

x

y

x
w
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Concatenating transformations

◆ often necessary to perform more than one transformation on the 
same object

◆ can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

shearscale

shearscale both
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Transformation are not commutative

✦ be careful of the order in which you concatenate 
transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

scale

rotate

scale then rotate

rotate then scale
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Scaling about an arbitrary point

◆ scale by a factor m about point (xo,yo)
(1) translate point (xo,yo) to the origin
(2) scale by a factor m about the origin
(3) translate the origin to (xo,yo)

(xo,yo)

(0,0)

Exercise: show how to 
perform rotation about 
an arbitrary point

(1) (2) (3)
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3D transformations

◆ 3D homogeneous co-ordinates

◆ 3D transformation matrices
translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis
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3D transformations are not commutative

x

y
z

x

xz

z

x

y
z

90° rotation 
about z-axis

90° rotation 
about x-axis

90° rotation 
about z-axis

90° rotation 
about x-axis

opposite 
faces
↔
↔
↔
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Model transformation 1

■ the graphics package Open Inventor defines a cylinder to be:
● centre at the origin, (0,0,0)
● radius 1 unit
● height 2 units, aligned along the y-axis

■ this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

■ we want to draw a cylinder of:
● radius 2 units
● the centres of its two ends 

located at (1,2,3) and (2,4,5)
❖ its length is thus 3 units

■ what transforms are required?
and in what order should they be applied?

x

y

2

2



Model transformation 2
✦ order is important:

◆ scale first
◆ rotate 
◆ translate last

✦ scaling and translation are straightforward
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x

y

2

2

x

y

3

4

translate centre of 
cylinder from (0,0,0) to 
halfway between (1,2,3) 

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S



Model transformation 3
✦ rotation is a multi-step process

◆ break the rotation into steps, each of which is rotation about a 
principal axis

◆ work these out by taking the desired orientation back to the 
original axis-aligned position

● the centres of its two ends located at (1,2,3) and (2,4,5)

◆ desired axis: (2,4,5)–(1,2,3) = (1,2,2)

◆ original axis: y-axis = (0,1,0)
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Model transformation 4
◆ desired axis: (2,4,5)–(1,2,3) = (1,2,2)
◆ original axis: y-axis = (0,1,0)

◆ zero the z-coordinate by rotating about the x-axis
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Model transformation 5

◆ then zero the x-coordinate by rotating about the z-axis
◆ we now have the object’s axis pointing along the y-axis
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Model transformation 6
✦ the overall transformation is:

◆ first scale
◆ then take the inverse of the rotation we just calculated
◆ finally translate to the correct position
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Application: display multiple instances
◆ transformations allow you to define an object at one location 

and then place multiple instances in your scene
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3D ⇨ 2D projection

✦ to make a picture
◆ 3D world is projected to a 2D image

■ like a camera taking a photograph
■ the three dimensional world is projected onto a plane

The 3D world is described as a set of 
(mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)
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Types of projection

✦ parallel
◆ e.g.
◆ useful in CAD, architecture, etc
◆ looks unrealistic

✦ perspective
◆ e.g.
◆ things get smaller as they get farther away
◆ looks realistic

■ this is how cameras work
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Geometry of perspective projection

y

z

d

● Division of (x, y) by a scalar corresponds to the same ray — equivalent under 
homogeneous coordinates

● Want to construct a projection matrix that converts w from 1 to z/d

Homogeneous 
coordinate
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Projection as a matrix operation

This is useful in the z-buffer 
algorithm where we need to 
interpolate 1/z values rather 
than z values.

invertible



29Perspective projection
with an arbitrary camera

◆ we have assumed that:
■ screen centre at (0,0,d)
■ screen parallel to xy-plane
■ z-axis into screen
■ y-axis up and x-axis to the right
■ eye (camera) at origin (0,0,0)

◆ for an arbitrary camera we can either:
■ work out equations for projecting objects about an arbitrary point onto 

an arbitrary plane
■ Change of co-ordinates — transform all objects into our standard 

co-ordinate system (viewing co-ordinates) and use the above assumptions
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A variety of transformations

■ the modelling transform and viewing transform can be multiplied together to produce a 
single matrix taking an object directly from object co-ordinates into camera (viewing) 
co-ordinates

■ either or both of the modelling transform and viewing transform matrices can be the 
identity matrix

● e.g. objects can be specified directly in viewing co-ordinates, or directly in world 
co-ordinates

■ this is a useful set of transforms, not a hard and fast model of how things should be 
done

object in
world

co-ordinates

object in
camera

co-ordinatesviewing 
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling 
transform



Model, View, Projection matrices

Object coordinates

Object centred at the 
origin

World coordinates

Model matrix

To position each 
object in the scene. 
Could be different for 
each object.
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Model, View, Projection matrices

World coordinates

View matrix

View (camera) 
coordinates

Camera at the origin, 
pointing at -z

To position all objects 
relative to the camera
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Model, View, Projection matrices

Projection 
matrix

View (camera) coordinates Screen coordinates

x and y must be in the range
-1 and 1

To project 3D 
coordinates to a 2D 
plane. Note that z 
coordinate is retained 
for depth testing.

The default OpenGL 
coordinate system is 

right-handed
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All together
3D world/object 

vertex 
coordinates

Screen 
coordinates

xs/ws and 
ys/ws must be 

between 
-1 and 1

Projection, view and 
model matrices
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Transforming normal vectors
✦ Transformation by

a nonorthogonal matrix
does not preserve angles

✦ Since:

✦ We can find that: 
◆ Derivation shown in the lecture

 

 

Normal transform

Vertex position 
transformTransformed normal 

and tangent vector
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Scene construction
✦  
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Body

Arm1
Arm2
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Object 
coordinates

World 
coordinates



Scene construction
✦  
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Body

Arm1
Arm2



Scene Graph
✦ A scene can be drawn by 

traversing a scene graph:

traverse( node, T_parent ) {
    M = T_parent * node.T * node.E
    node.draw(M)
    for each child {

traverse( child, T_parent * node.T ) 
    }
}
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Introduction to Computer Graphics
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✦ Background
✦ Rendering
✦ Graphics pipeline
✦ Rasterization
✦ Graphics hardware and OpenGL
✦ Human vision and colour & tone mapping



Rasterization algorithm(*)
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Set model, view and projection (MVP) transformations

FOR every triangle in the scene
transform its vertices using MVP matrices
IF the triangle is within a view frustum

clip the triangle to the screen border
FOR each fragment in the triangle

interpolate fragment position and attributes between vertices
compute fragment colour
IF the fragment is closer to the camera than any pixel drawn so far

update the screen pixel with the fragment colour
END IF ;

END FOR ;
END IF ;

END FOR ;

(*) simplified

fragment – a candidate 
pixel in the triangle



Illumination & shading
✦ Drawing polygons with uniform colours gives poor results
✦ Interpolate colours across polygons
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Rasterization
🡺 Efficiently draw (thousands of) triangles
🡺 Interpolate vertex attributes inside the triangle
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🡺 Homogenous 
barycentric 
coordinates are 
used to interpolate 
colours, normals, 
texture coordinates 
and other attributes 
inside the triangle

[FCG 2.7/2.9]



Homogeneous barycentric coordinates
🡺 Find barycentric coordinates 

of the point (x,y)
🡺 Given the coordinates of the 

vertices
🡺 Derivation in the lecture
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Distance between point (x,y) and edge ab 



Triangle rasterization

🡺  
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Surface normal vector interpolation
🡺 for a polygonal model, interpolate normal vector between the 

vertices
🡺 Calculate colour (Phong reflection model) for each pixel
🡺 Diffuse component can be either interpolated or computed for each 

pixel
🡺 Specular component must be computed per pixel
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Vertex 
attributes



Occlusions (hidden surfaces)
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Simple case

More difficult cases

[FCG 8.2.3/9.2.3]



Z-Buffer - algorithm

🡺 Initialize the depth buffer and image buffer for all pixels
colour(x, y) = Background_colour,
depth(x, y) = zmax      //  position of the far clipping plane 

🡺 For every triangle in a scene do
🡺 For every fragment (x, y) in this triangle do

🡺 Calculate z for current (x, y)
🡺 if  (z < depth(x, y)) and (z > z

min
) then

◻ depth(x, y) = z

◻ colour(x, y) = fragment_colour(x, y)
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Colour
buffer

Depth
buffer



View frustum and Z-buffer
🡺  

Far-clipping plane

Near-clipping plane
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Range of values 
mapped to the Z-Buffer

Z-fighting 


