
1
Introduction to Computer Graphics

✦ Background
✦ Rendering
✦ Graphics pipeline (real-time rendering pipeline)
◆ Polygonal mesh models
◆ Transformations using matrices in 2D and 3D
◆ Homogeneous coordinates
◆ Projection: orthographic and perspective

✦ Rasterization
✦ Graphics hardware and modern OpenGL
✦ Human vision, colour and tone mapping

Unfortunately…
✦ Ray tracing is computationally expensive

◆ used for super-high visual quality
✦ Video games and user interfaces need something faster
✦ Most real-time applications rely on rasterization

◆ Model surfaces as polyhedra – meshes of polygons
◆ Use composition to build scenes
◆ Apply perspective transformation

and project into plane of screen
◆ Work out which surface was closest
◆ Fill pixels with colour of nearest visible polygon

✦ Graphics cards have hardware to support this
✦ Ray tracing starts to appear in real-time rendering

◆ The new generations of GPUs offer accelerated ray-tracing
◆ But it still not as efficient as rasterization

2

Three-dimensional objects
◆ Polyhedral surfaces are made up from

meshes of multiple connected polygons

◆ Polygonal meshes
■ open or closed

◆ Curved surfaces
■ must be converted to polygons to be drawn

3

4
Surfaces in 3D: polygons

✦ Easier to consider planar polygons
◆ 3 vertices (triangle) must be planar
◆ > 3 vertices, not necessarily planar

this vertex is in front
of the other three,

which are all in the
same plane

a non-planar
“polygon” rotate the polygon about

the vertical axis

should the result be this
or this?

A
A

A

B B

B
C

C

C

D
D

D

5
Splitting polygons into triangles

◆ Most Graphics Processing Units (GPUs) are optimised to draw
triangles

◆ Split polygons with more than three vertices into triangles

which is preferable?

?

6
2D transformations

✦ scale

✦ rotate

✦ translate

✦ (shear)

✦ why?
◆ it is extremely useful to be able

to transform predefined objects
to an arbitrary location,
orientation, and size

◆ any reasonable graphics package
will include transforms

■ 2D 🡺 Postscript
■ 3D 🡺 OpenGL

[FCG 6/7]

7
Basic 2D transformations

◆ scale
■ about origin
■ by factor m

◆ rotate
■ about origin
■ by angle θ

◆ translate
■ along vector (xo,yo)

◆ shear
■ parallel to x axis
■ by factor a

8
Matrix representation of transformations
✦ scale

◆ about origin, factor m

✦ do nothing
◆ identity

✦ rotate
◆ about origin, angle θ

✦ shear
◆ parallel to x axis, factor a

9
Homogeneous 2D coordinates

✦

[FCG 6.3/7.3]

normalised form

10
Matrices in homogeneous coordinates
✦ scale

◆ about origin, factor m

✦ do nothing
◆ identity

✦ rotate
◆ about origin, angle θ

✦ shear
◆ parallel to x axis, factor a

11
Translation by matrix algebra

In conventional coordinates

In homogeneous coordinates

Okay, math checks out, but what is the intuition?
How come the additional coordinate linearizes the 2D translation

Translation by matrix algebra

● Shearing in 2D
○ Tilt x by a factor of a
○ Translation by a constant

along x when y=1

● Shearing in 3D
○ Tilt x,y by a factor of x0,y0
○ Translation by a constant

along x,y when w=1

x

y

x
w

13
Concatenating transformations

◆ often necessary to perform more than one transformation on the
same object

◆ can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

shearscale

shearscale both

14
Transformation are not commutative

✦ be careful of the order in which you concatenate
transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

scale

rotate

scale then rotate

rotate then scale

15
Scaling about an arbitrary point

◆ scale by a factor m about point (xo,yo)
(1) translate point (xo,yo) to the origin
(2) scale by a factor m about the origin
(3) translate the origin to (xo,yo)

(xo,yo)

(0,0)

Exercise: show how to
perform rotation about
an arbitrary point

(1) (2) (3)

16
3D transformations

◆ 3D homogeneous co-ordinates

◆ 3D transformation matrices
translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis

17
3D transformations are not commutative

x

y
z

x

xz

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces
↔
↔
↔

18
Model transformation 1

■ the graphics package Open Inventor defines a cylinder to be:
● centre at the origin, (0,0,0)
● radius 1 unit
● height 2 units, aligned along the y-axis

■ this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

■ we want to draw a cylinder of:
● radius 2 units
● the centres of its two ends

located at (1,2,3) and (2,4,5)
❖ its length is thus 3 units

■ what transforms are required?
and in what order should they be applied?

x

y

2

2

Model transformation 2
✦ order is important:

◆ scale first
◆ rotate
◆ translate last

✦ scaling and translation are straightforward

19

x

y

2

2

x

y

3

4

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S

Model transformation 3
✦ rotation is a multi-step process

◆ break the rotation into steps, each of which is rotation about a
principal axis

◆ work these out by taking the desired orientation back to the
original axis-aligned position

● the centres of its two ends located at (1,2,3) and (2,4,5)

◆ desired axis: (2,4,5)–(1,2,3) = (1,2,2)

◆ original axis: y-axis = (0,1,0)

20

Model transformation 4
◆ desired axis: (2,4,5)–(1,2,3) = (1,2,2)
◆ original axis: y-axis = (0,1,0)

◆ zero the z-coordinate by rotating about the x-axis

21

y

z

θ

Model transformation 5

◆ then zero the x-coordinate by rotating about the z-axis
◆ we now have the object’s axis pointing along the y-axis

22

x

y

ϕ

Model transformation 6
✦ the overall transformation is:

◆ first scale
◆ then take the inverse of the rotation we just calculated
◆ finally translate to the correct position

23

Application: display multiple instances
◆ transformations allow you to define an object at one location

and then place multiple instances in your scene

24

25
3D ⇨ 2D projection

✦ to make a picture
◆ 3D world is projected to a 2D image

■ like a camera taking a photograph
■ the three dimensional world is projected onto a plane

The 3D world is described as a set of
(mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

26
Types of projection

✦ parallel
◆ e.g.
◆ useful in CAD, architecture, etc
◆ looks unrealistic

✦ perspective
◆ e.g.
◆ things get smaller as they get farther away
◆ looks realistic

■ this is how cameras work

27
Geometry of perspective projection

y

z

d

● Division of (x, y) by a scalar corresponds to the same ray — equivalent under
homogeneous coordinates

● Want to construct a projection matrix that converts w from 1 to z/d

Homogeneous
coordinate

28
Projection as a matrix operation

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values.

invertible

29Perspective projection
with an arbitrary camera

◆ we have assumed that:
■ screen centre at (0,0,d)
■ screen parallel to xy-plane
■ z-axis into screen
■ y-axis up and x-axis to the right
■ eye (camera) at origin (0,0,0)

◆ for an arbitrary camera we can either:
■ work out equations for projecting objects about an arbitrary point onto

an arbitrary plane
■ Change of co-ordinates — transform all objects into our standard

co-ordinate system (viewing co-ordinates) and use the above assumptions

30
A variety of transformations

■ the modelling transform and viewing transform can be multiplied together to produce a
single matrix taking an object directly from object co-ordinates into camera (viewing)
co-ordinates

■ either or both of the modelling transform and viewing transform matrices can be the
identity matrix

● e.g. objects can be specified directly in viewing co-ordinates, or directly in world
co-ordinates

■ this is a useful set of transforms, not a hard and fast model of how things should be
done

object in
world

co-ordinates

object in
camera

co-ordinatesviewing
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling
transform

Model, View, Projection matrices

Object coordinates

Object centred at the
origin

World coordinates

Model matrix

To position each
object in the scene.
Could be different for
each object.

31

Model, View, Projection matrices

World coordinates

View matrix

View (camera)
coordinates

Camera at the origin,
pointing at -z

To position all objects
relative to the camera

32

Model, View, Projection matrices

Projection
matrix

View (camera) coordinates Screen coordinates

x and y must be in the range
-1 and 1

To project 3D
coordinates to a 2D
plane. Note that z
coordinate is retained
for depth testing.

The default OpenGL
coordinate system is

right-handed

33

All together
3D world/object

vertex
coordinates

Screen
coordinates

xs/ws and
ys/ws must be

between
-1 and 1

Projection, view and
model matrices

34

Transforming normal vectors
✦ Transformation by

a nonorthogonal matrix
does not preserve angles

✦ Since:

✦ We can find that:
◆ Derivation shown in the lecture

Normal transform

Vertex position
transformTransformed normal

and tangent vector

35

[FCG 6.2.2/7.2.2]

Scene construction
✦

36

Body

Arm1
Arm2

Pa
rt

s

Fi
na

l
sc

en
e

Object
coordinates

World
coordinates

Scene construction
✦

37

Body

Arm1
Arm2

Scene Graph
✦ A scene can be drawn by

traversing a scene graph:

traverse(node, T_parent) {
 M = T_parent * node.T * node.E
 node.draw(M)
 for each child {

traverse(child, T_parent * node.T)
 }
}

38

[FCG 12.2/12.2]

Introduction to Computer Graphics

39

✦ Background
✦ Rendering
✦ Graphics pipeline
✦ Rasterization
✦ Graphics hardware and OpenGL
✦ Human vision and colour & tone mapping

Rasterization algorithm(*)

40

Set model, view and projection (MVP) transformations

FOR every triangle in the scene
transform its vertices using MVP matrices
IF the triangle is within a view frustum

clip the triangle to the screen border
FOR each fragment in the triangle

interpolate fragment position and attributes between vertices
compute fragment colour
IF the fragment is closer to the camera than any pixel drawn so far

update the screen pixel with the fragment colour
END IF ;

END FOR ;
END IF ;

END FOR ;

(*) simplified

fragment – a candidate
pixel in the triangle

Illumination & shading
✦ Drawing polygons with uniform colours gives poor results
✦ Interpolate colours across polygons

41

Rasterization
🡺 Efficiently draw (thousands of) triangles
🡺 Interpolate vertex attributes inside the triangle

42

🡺 Homogenous
barycentric
coordinates are
used to interpolate
colours, normals,
texture coordinates
and other attributes
inside the triangle

[FCG 2.7/2.9]

Homogeneous barycentric coordinates
🡺 Find barycentric coordinates

of the point (x,y)
🡺 Given the coordinates of the

vertices
🡺 Derivation in the lecture

43

Distance between point (x,y) and edge ab

Triangle rasterization

🡺

44

Surface normal vector interpolation
🡺 for a polygonal model, interpolate normal vector between the

vertices
🡺 Calculate colour (Phong reflection model) for each pixel
🡺 Diffuse component can be either interpolated or computed for each

pixel
🡺 Specular component must be computed per pixel

45

Vertex
attributes

Occlusions (hidden surfaces)

46

Simple case

More difficult cases

[FCG 8.2.3/9.2.3]

Z-Buffer - algorithm

🡺 Initialize the depth buffer and image buffer for all pixels
colour(x, y) = Background_colour,
depth(x, y) = zmax // position of the far clipping plane

🡺 For every triangle in a scene do
🡺 For every fragment (x, y) in this triangle do

🡺 Calculate z for current (x, y)
🡺 if (z < depth(x, y)) and (z > z

min
) then

◻ depth(x, y) = z

◻ colour(x, y) = fragment_colour(x, y)

47

Colour
buffer

Depth
buffer

View frustum and Z-buffer
🡺

Far-clipping plane

Near-clipping plane

48

Range of values
mapped to the Z-Buffer

Z-fighting

