Introduction to Computer Graphics

Background

Rendering

- Graphics pipeline (real-time rendering pipeline)
 - Polygonal mesh models
 - Transformations using matrices in 2D and 3D
 - Homogeneous coordinates
 - Projection: orthographic and perspective

Rasterization

- Graphics hardware and modern OpenGL
- + Human vision, colour and tone mapping

Unfortunately...

- Ray tracing is computationally expensive
 - used for super-high visual quality
- Video games and user interfaces need something faster
- Most real-time applications rely on rasterization
 - Model surfaces as polyhedra meshes of polygons
 - Use composition to build scenes
 - Apply perspective transformation and project into plane of screen
 - Work out which surface was closest
 - Fill pixels with colour of nearest visible polygon
- Graphics cards have hardware to support this
- + Ray tracing starts to appear in real-time rendering
 - The new generations of GPUs offer accelerated ray-tracing
 - But it still not as efficient as rasterization

Three-dimensional objects

 Polyhedral surfaces are made up from meshes of multiple connected polygons

Polygonal meshes
 open or closed

- Curved surfaces
 - must be converted to polygons to be drawn

Surfaces in 3D: polygons

+ Easier to consider planar polygons

- 3 vertices (triangle) must be planar
- > 3 vertices, not necessarily planar

Splitting polygons into triangles

- Most Graphics Processing Units (GPUs) are optimised to draw triangles
- Split polygons with more than three vertices into triangles

which is preferable?

2D transformations

why?

- it is extremely useful to be able to transform predefined objects to an arbitrary location, orientation, and size
- any reasonable graphics package will include transforms
 - 2D D Postscript
 - 3D D OpenGL

6

Basic 2D transformations

- scale
 - about origin
 - by factor *m*
- rotate
 - about origin
 - by angle θ
- translate
 - along vector (x_o, y_o)

- $\begin{array}{l} x' = mx \\ y' = my \end{array}$
- $x' = x \cos \theta y \sin \theta$ $y' = x \sin \theta + y \cos \theta$

$$x' = x + x_0$$
$$y' = y + y_0$$

- shear
 - parallel to x axis
 - by factor *a*

 $\begin{aligned} x' &= x + ay \\ y' &= y \end{aligned}$

Matrix representation of transformations

🔶 scale

- about origin, factor *m*
 - $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

rotate

• about origin, angle θ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• parallel to x axis, factor a $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Homogeneous 2D coordinates

 translations cannot be represented using simple 2D matrix multiplication on 2D vectors, so we switch to homogeneous co-ordinates

$$(x, y, w) \equiv \left(\frac{x}{w}, \frac{y}{w}\right)$$

- an infinite number of homogeneous co-ordinates map to every 2D point
- w=0 represents a point at infinity
- usually take the inverse transform to be:

 $(x, y) \equiv (x, y, 1)$ normalised form

• The symbol \equiv means equivalent

[FCG 6.3/7.3]

Matrices in homogeneous coordinates

scale

• about origin, factor m

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

🔶 do nothing

identity

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

rotate

• about origin, angle θ $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

• parallel to x axis, factor a

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Translation by matrix algebra

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

In homogeneous coordinates

$$x' = x + wx_o \qquad \qquad y' = y + wy_o \qquad \qquad w' = w$$

In conventional coordinates

$$\frac{x'}{w'} = \frac{x}{w} + x_0 \qquad \qquad \frac{y'}{w'} = \frac{y}{w} + y_0$$

Okay, math checks out, but what is the intuition? How come the additional coordinate linearizes the 2D translation

Translation by matrix algebra

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$x' = x + ay$$
$$y' = y$$

- \circ Tilt x by a factor of a
- Translation by a constant along x when y=l

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$x' = x + wx_o$$

$$y' = y + wy_o$$

$$w' = w$$

• Shearing in 3D

- Tilt x,y by a factor of x0,y0
- Translation by a constant along x,y when w=l

Concatenating transformations

- often necessary to perform more than one transformation on the same object
- can concatenate transformations by multiplying their matrices
 e.g. a shear followed by a scaling:

Transformation are not commutative

 be careful of the order in which you concatenate transformations

Scaling about an arbitrary point

• scale by a factor *m* about point (x_a, y_a) (1) translate point (x_a, y_a) to the origin (2) scale by a factor m about the origin (3) translate the origin to (x_a, y_a) $(1) \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & -x_o \\ 0 & 1 & -y_o \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'' \\ y \\ w' \end{bmatrix} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_o \\ w'' \end{bmatrix} \begin{bmatrix} 1 & 0 & x_o \\ 0 & 1 & y_o \\ w'' \end{bmatrix}$

Exercise: show how to perform rotation about an arbitrary point

3D transformations

- ◆ 3D homogeneous co-ordinates
 (x, y, z, w) → (^x/_w, ^y/_w, ^z/_w)
- 3D transformation matrices

translation					identity					
[1	0	0	t_x		[1	0	0	0	
0	1	0	t_y			0	1	0	0	
0	0	1	t_z			0	0	1	0	
0	0	0	1			0	0	0	1	

rotation about *x*-axis

1	0	0	0	
0	$\cos\theta$	$-\sin\theta$	0	
0	$\sin \theta$	$\cos\theta$	0	
0	0	0	1	

_	S	cale	_	rotation about <i>z</i> -axis				
m_x	0	0	0	$\cos\theta$	$-\sin\theta$	0	0	
0	m_y	0	0	sinθ	$\cos\theta$	0	0	
0	0	m_z	0	0	0	1	0	
0	0	0	1	0	0	0	1	

rotatic	\sum_{0}^{n}	about sinθ	<i>K</i> =	axis
0	1	0	0	
$-\sin\theta$	0	$\cos\theta$	0	
0	0	0	1	

3D transformations are not commutative

- the graphics package Open Inventor defines a cylinder to be:
 - centre at the origin, (0,0,0)
 - radius I unit
 - height 2 units, aligned along the y-axis
- this is the only cylinder that can be drawn, but the package has a complete set of 3D transformations
- we want to draw a cylinder of:
 - radius 2 units
 - the centres of its two ends located at (1,2,3) and (2,4,5)
 - its length is thus 3 units
- what transforms are required? and in what order should they be applied?

- order is important:
 - scale first
 - rotate
 - translate last

scaling and translation are straightforward 0 0 1.5 0 0 2 0 1.5 0 0 0 1 0 3 0 **T** = **S** = 0 2 0 0 1 0 4 0 3 0 0 0 0 0 0 translate centre of scale from cylinder from (0,0,0) to size (2,2,2) halfway between (1,2,3)to size (4,3,4)and (2,4,5)

19

- rotation is a multi-step process
 - break the rotation into steps, each of which is rotation about a principal axis
 - work these out by taking the desired orientation back to the original axis-aligned position

• the centres of its two ends located at (1,2,3) and (2,4,5)

- desired axis: (2,4,5)-(1,2,3) = (1,2,2)
- original axis: y-axis = (0,1,0)

desired axis: (2,4,5)–(1,2,3) = (1,2,2)

zero the z-coordinate by rotating about the x-axis

$$\mathbf{R}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\theta = -\arcsin\frac{2}{\sqrt{2^{2} + 2^{2}}}$$

- then zero the *x*-coordinate by rotating about the *z*-axis
- we now have the object's axis pointing along the y-axis

$$\mathbf{R}_{2} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 & 0\\ \sin \phi & \cos \phi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\phi = \arcsin \frac{1}{\sqrt{1^{2} + \sqrt{8}^{2}}}$$

$$\begin{pmatrix} 0, \sqrt{1^2 + \sqrt{8}^2}, 0 \\ = (0, 3, 0) \end{pmatrix} \longrightarrow (1, \sqrt{8}, 0)$$

- + the overall transformation is:
 - first scale
 - then take the inverse of the rotation we just calculated
 - finally translate to the correct position

$$\begin{bmatrix} x'\\y'\\z'\\w' \end{bmatrix} = \mathbf{T} \times \mathbf{R}_1^{-1} \times \mathbf{R}_2^{-1} \times \mathbf{S} \times \begin{bmatrix} x\\y\\z\\w \end{bmatrix}$$

Application: display multiple instances

 transformations allow you to define an object at one location and then place multiple instances in your scene

3D \Rightarrow **2D** projection

+ to make a picture

- 3D world is projected to a 2D image
 - like a camera taking a photograph
 - the three dimensional world is projected onto a plane

The 3D world is described as a set of (mathematical) objects

```
e.g. sphere radius (3.4)
centre (0,2,9)
```

e.g. box size (2,4,3) centre (7, 2, 9) orientation (27°, 156°)

Types of projection

- e.g. $(x, y, z) \rightarrow (x, y)$
- useful in CAD, architecture, etc
- looks unrealistic

perspective

- e.g. $(x, y, z) \rightarrow (\frac{x}{z}, \frac{y}{z})$
- things get smaller as they get farther away
- looks realistic
 - this is how cameras work

Cabinet projection

Parallel to X axis

Parallel to Y axis

Parallel to Z axis

26

Geometry of perspective projection

- Division of (x, y) by a scalar corresponds to the same ray equivalent under homogeneous coordinates
- Want to construct a projection matrix that converts w from I to z/d

Projection as a matrix operation

remember $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \rightarrow \begin{bmatrix} x/w \\ y/w \\ z/w \end{bmatrix}$

This is useful in the *z*-buffer algorithm where we need to interpolate 1/z values rather than *z* values.

Perspective projection with an arbitrary camera

- we have assumed that:
 - screen centre at (0,0,d)
 - screen parallel to *xy*-plane
 - z-axis into screen
 - y-axis up and x-axis to the right
 - eye (camera) at origin (0,0,0)
- for an arbitrary camera we can either:
 - work out equations for projecting objects about an arbitrary point onto an arbitrary plane
 - Change of co-ordinates transform all objects into our standard co-ordinate system (viewing co-ordinates) and use the above assumptions

A variety of transformations

- the modelling transform and viewing transform can be multiplied together to produce a single matrix taking an object directly from object co-ordinates into camera (viewing) co-ordinates
- either or both of the modelling transform and viewing transform matrices can be the identity matrix
 - e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates
- this is a useful set of transforms, not a hard and fast model of how things should be done

Model, View, Projection matrices

Object centred at the origin

To position each object in the scene. Could be different for each object.

Model, View, Projection matrices

Model, View, Projection matrices

All together

Transforming normal vectors

- + We can find that: $G = (M^{-1})^T$
 - Derivation shown in the lecture

[FCG 6.2.2/7.2.2]

Scene construction

Scene construction

Scene Graph

A scene can be drawn by traversing a scene graph:

```
traverse( node, T_parent ) {
    M = T_parent * node.T * node.E
    node.draw(M)
    for each child {
        traverse( child, T_parent * node.T )
    }
}
```


[FCG 12.2/12.2]

Introduction to Computer Graphics

- Rendering
- Graphics pipeline
 - Rasterization
- Graphics hardware and OpenGL
- Human vision and colour & tone mapping

Rasterization algorithm(*)

Set model, view and projection (MVP) transformations

FOR every **triangle** in the scene fragment – a candidate transform its vertices using MVP matrices pixel in the triangle IF the **triangle** is within a view frustum clip the **triangle** to the screen border FOR each **fragment** in the triangle interpolate **fragment** position and attributes between vertices compute fragment colour IF the **fragment** is closer to the camera than any pixel drawn so far update the screen **pixel** with the **fragment** colour END IF; END FOR : END IF ;

END FOR ;

(*) simplified

Illumination & shading

Drawing polygons with uniform colours gives poor results

Interpolate colours across polygons

Rasterization

Efficiently draw (thousands of) triangles

Interpolate vertex attributes inside the triangle Homogenous barycentric $\alpha = 0; \beta = 0; \gamma = 1$ RGB = [1 0 0]**coordinates** are ,RGB=[???] used to interpolate $\alpha + \beta + \gamma = 1$ colours, normals, RGB=[1 0.5 0] texture coordinates $\alpha = 0; \beta = 1; \gamma = 0$ RGB=[1 1 0] and other attributes $\alpha = 1; \beta = 0; \gamma = 0$ inside the triangle

[FCG 2.7/2.9]

Homogeneous barycentric coordinates

- Find barycentric coordinates of the point (x,y)
 - Given the coordinates of the vertices
 - Derivation in the lecture

 $\alpha = \frac{f_{cb}(x,y)}{f_{cb}(x_a,y_a)} \quad \beta = \frac{f_{ac}(x,y)}{f_{ac}(x_b,y_b)}$ $f_{ab}(x,y) \text{ is the implicit line}$ equation: $f_{ab}(x,y) = (y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a$ Distance between point (x,y) and edge ab

Triangle rasterization

for
$$y=y_{min}$$
 to y_{max} do
for $x=x_{min}$ to x_{max} do
 $\alpha = f_{cb}(x, y)/f_{cb}(x_a, y_a)$
 $\beta = f_{ac}(x, y)/f_{ac}(x_b, y_b)$
 $\gamma = 1 - \alpha - \beta$
if $(\alpha > 0 \text{ and } \beta > 0 \text{ and } \gamma > 0$) then
 $c = \alpha c_a + \beta c_b + \gamma c_c$
draw pixels (x,y) with colour c

- Optimization: the barycentric coordinates will change by the same amount when moving one pixel right (or one pixel down) regardless of the position
 - Precompute increments $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$ and use them instead of computing barycentric coordinates when drawing pixels sequentially

Surface normal vector interpolation

- for a polygonal model, interpolate normal vector between the vertices
 - Calculate colour (Phong reflection model) for each pixel
 - Diffuse component can be either interpolated or computed for each pixel $[(x_1', y_1'), z_1, (r_1, g_1, b_1), N_1]$ Vertex
 - Specular component must be computed per pixel

attributes

 $[(x_2', y_2') (r_2, g_2)]$

[FCG 8.2.3/9.2.3]

- Initialize the depth buffer and image buffer for all pixels colour(x, y) = Background_colour, depth(x, y) = z_{max} // position of the far clipping plane
- **For** every triangle in a scene **do**
 - **For** every fragment (x, y) in this triangle **do**
 - Calculate z for current (x, y)

- depth(x, y) = z
- colour(x, y) = fragment_colour(x, y)

View frustum and Z-buffer

Z-buffer must store depth with sufficient precision

24 or 32 bit

