
Introduction to Computer Graphics Dr Fangcheng Zhong www.cst.cam.ac.uk/people/fz261

Eight lectures & two practical tasks (one optional) Part IA CST Two supervisions suggested Two exam questions on Paper 3

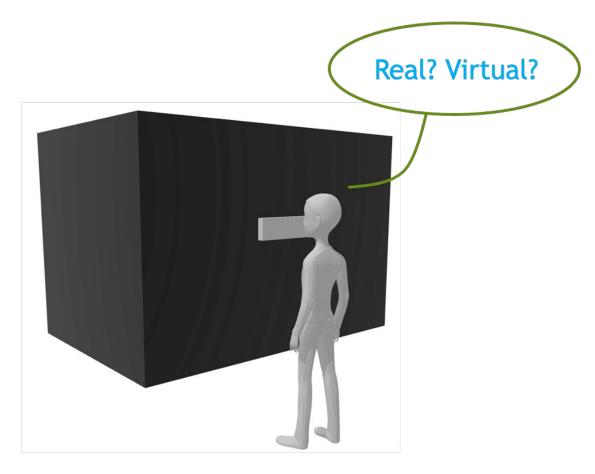
What are Computer Graphics & Visual Computing?

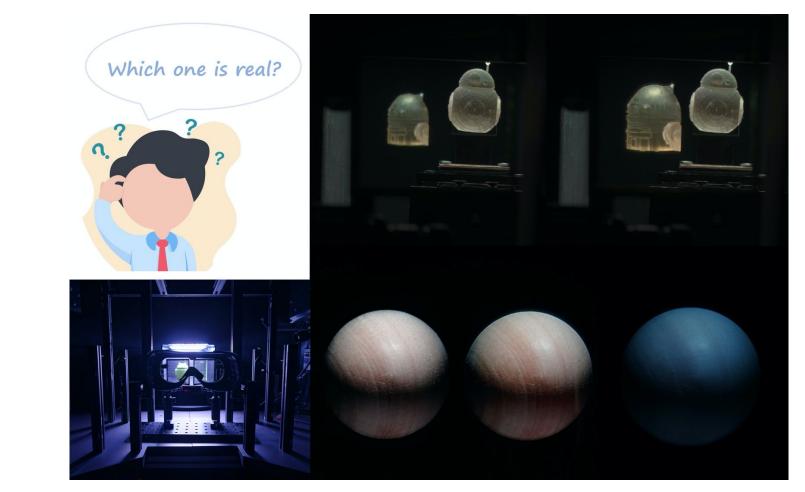
Computing without graphics

PS C:\> Get-Childlten 'MediaCenter:\Nusic' =rec { >> where (=not \$PSisContainer =and \$Extension =match 'umaimp3' } { >> Measure-Object =property length =sun =min =max =ave >>>	•	
Count : 1347 Newrag : 64706,89563887 San ma : 717387387 Pathama : 25878627 Property : Length		
PS C:\> Get-WniObject CIM_BIOSElement select biosv*, man*, ser* Format-List		
BIOSUersion : (TOSCPL – 6440000, Ver 1.00FARTTBL) Tanufacture : TOSHIBA SerialNumber : F8211164		
PS C1:>> (funisearchar)B/ >> SELECT = Refort C1M_Job >> WHERE Priority > 1 S-U9.JetC: i Format-Custon		
class ManagementObject#root\cinv2\Win32_PrintJob		
C Document = Monad Manifesto - Public Jobid = 6 JohStatus = Quaer = User Priority.mr42 Priority.mr42		
Under - User Friority 2 Name - Epson Stylus COLOR 740 ESC/P 2, 6		
PS C:\> \$rssUrl = 'http://blogs.nsdn.com/powershell/rss.aspx' PS C:\> \$plog = [xnl](new-object System.Net.Webclient).DownloadString(\$rssUrl) PS C:\> \$hlog.rss.channel.item i select title -first 3		
title		
MMS: What's Consing In PowerShell U2 PowerShell Presence at MMS MMS Talk: System Center Foundation Technologies Into Talk: System Center Foundation Technologies		
MMS Talk: System Center Foundation Technologies [root@localhost ~]# ping ~g fa.wikipedia.org		
PS C:>> Pino text.pmtpa.wikimedia.org (200.00.152.2) 56(04) bytes of data.		
Unnduer C PS Ct: text.partpa.wikimedia.org ping statistics i packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/wy/nar/ndw = 66.528/540.528/540.528/0.000 ms (root0localhost -]# pwd (root		
[root@localhost ~]# cd /var [root@localhost var]# ls -la		
total 72 drwxr-xr-x. 18 noot root 4096 Jul 30 22:43 . drwxr-xr-x. 23 root root 4096 Sep 14 20:42		
drwxr-xr-x. 2 root root 4896 May 14 00:15 account		
drwxr-xr-x. 11 root root 4096 Jul 31 22:26 cache drwxr-xr-x. 3 root root 4096 May 18 16:03 db		
chwartarta, iiroot root 4995 May 18 16:03 db dhwartartarta, 3 root root 4995 May 18 16:03 db dhwartartarta, 3 root root 4996 May 18 16:03 empty dhwartartarta, 3 root root 4996 May 18 16:03 games		
drwxrwx1. 2 root gdm 4096 Jun 2 18:39 gdm drwxr-xr-x. 38 root root 4096 May 18 16:03 lib		
drwxr-xr-x. 2 root root 4096 May 18 16:03 local		
drwxr-xr-x. 14 root root 4096 Sep 14 20:42 log lrwxrwxrwx. 1 root root 10 Jul 30 22:43 mail -> spool/mail		
drwxr-xr-x. 2 root root 4096 May 18 16:03 nis drwxr-xr-x. 2 root root 4096 May 18 16:03 opt		
drwxr-xr-x. 2 root root 4096 May 18 16:03 preserve drwxr-xr-x. 2 root root 4096 Jul 1 22:11 report		
Invertieve 1 root mot 6 May 14 00:12 run ->/run		
drwxr-xr-x, 14 root root 4096 May 18 16:03 speel drwxrwxrwt, 4 root root 4096 Sep 12 23:50 the drwxrwrrwt-xr-x, 2 root root 4096 May 18 16:03 yp		
(root@localhost var)# yum search wiki Lood@localhost var)# yum search wiki Looded plugins: langpacks, presto, refresh-packagekit, remove-with-leaves		
rpmfusion-free-updates/primary_db		2.7 kB 206 kB
rpmfusion-nenfree-updates/primery_db rpmfusion-nonfree-updates updates/metalink		2.7 kB
updates) 62 kB/s	
pdates/primary_db 73% [************************************	J OZ KD/S	210 10

Computing with graphics

Photorealistic Graphics




Powering Advanced AI

WUKONG

Perceptually Realistic Graphics

Visual Turing Test

World's first mixed-reality system that passed a visual Turing test at Cambridge

CARLA Release 0.9.15

Course Structure

Background

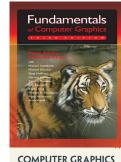
What is an image? Resolution and quantisation. Storage of images in memory. [I lecture]

Rendering

Perspective. Reflection of light from surfaces and shading. Geometric models.
Ray tracing. [2 lectures]

Graphics pipeline (real-time rendering pipeline)

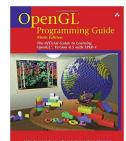
 Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]


Graphics hardware and OpenGL

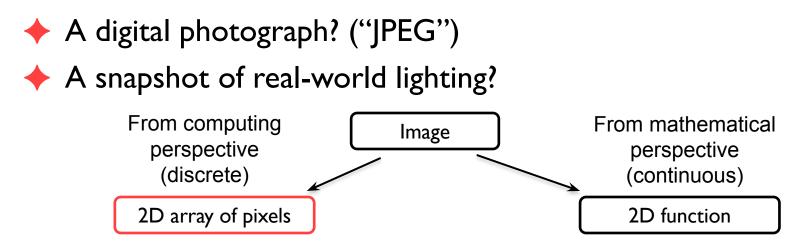
- GPU APIs.Vertex processing. Fragment processing. Working with meshes and textures. [1 lectures]
- Human vision, colour and tone mapping
 - Colour perception. Colour spaces. Tone mapping [2 lectures]

Course books

Fundamentals of Computer Graphics


- Shirley & Marschner CRC Press 2015 (4th or 5th edition)
- [FCG 8.1/9.1] reference to section 3.1 in the 4th edition, 9.1 in the 5th edition
- Computer Graphics: Principles & Practice
 - Hughes, van Dam, McGuire, Sklar et al. Addison-Wesley 2013 (3rd edition)
- OpenGL Programming Guide: The Official Guide to Learning OpenGL Version 4.5 with SPIR-V
 - Kessenich, Sellers & Shreiner Addison Wesley 2016 (7th edition and later)

JOHN F. HUGHES - ANDRIES VAN DAM - MORGAN MCGUIRE DAVID F. SKLAR - JAMES D. FOLEY - STEVEN K. FEINER - KURT AKELEY

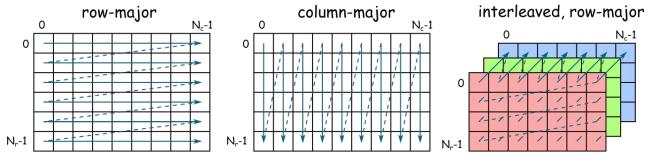


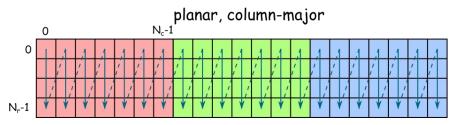
Introduction to Computer Graphics

Background

- What is an image?
- Resolution and quantisation
- Storage of images in memory
- Rendering
- Graphics pipeline
- Rasterization
- Graphics hardware and OpenGL
- + Human vision and colour & tone mapping

What is a (digital) image?




Image

2D array of pixels

In most cases, each pixel takes 3 bytes: one for each red, green and blue

But how to store a 2D array in memory?

Pixel (Plcture ELement)

| 7

Each pixel (usually) consist of three values describing the colour

```
(red, green, blue)
```

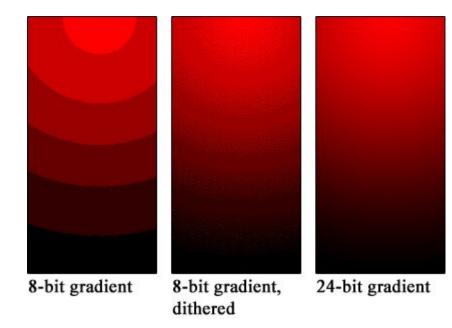
+ For example

- (255, 255, 255) for white
- (0, 0, 0) for black
- (255, 0, 0) for red

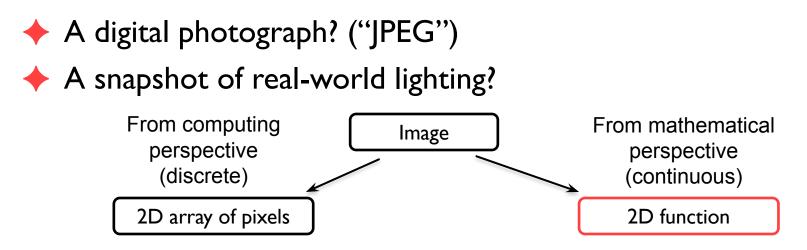
Pixel formats, bits per pixel, bit-depth Grayscale – single color channel, 8 bits (1 byte) Highcolor – 2¹⁶=65,536 colors (2 bytes) Sample Length: 5 6 5 Red Green Blue

5.6.5.0.0

+ Truecolor $-2^{24} = 16,8$ million colors (3 bytes)


Deepcolor – even more colors (>= 4 bytes)

Sample Length Notation:



Color banding

- If there are not enough bits to represent color
- Dithering (added noise) can reduce banding

What is a (computer) image?

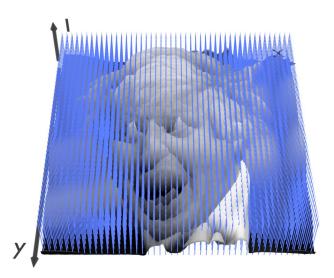
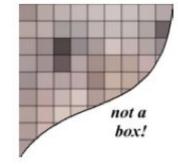
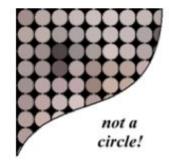

Image – 2D function

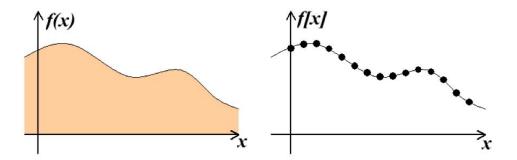
 Image can be seen as a function I(x,y), that gives intensity value for any given coordinate (x,y)


Sampling an image


 The image can be sampled on a rectangular sampling grid to yield a set of samples. These samples are pixels.

What is a pixel? (math)

- A pixel is not
 - a box
 - 🔹 a disk
 - a teeny light
- A pixel is a point
 - it has no dimension
 - it occupies no area
 - it cannot be seen
 - it has coordinates
- + A pixel is a **sample**



From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf

Sampling and quantization

- Physical world is described in terms of continuous quantities
- But computers work only with discrete numbers
- Sampling process of mapping continuous function to a discrete one
- Quantization process of mapping continuous variable to a discrete one

