
Animation II
Prof Cengiz Öztireli

1

• Rigging
– Attaching a skeleton to a model
– Skeleton is key-framed to animate the model

+ =

2

Character Animation
A rotation and a translation is stored on each bone or joint. We can assume they are stored on bones.
As the user rotates and translates bones via e.g. the mouse, these stored transformations are updated.
As an example, we can store the rotations as 3x3 matrices Ri and translations as vectors ti.
Note: matrices are always represented with boldface upper case letters.

• Rigging
– Attach the bones

to the model
– Weights indicate

how much a vertex
is affected by a bone

3

Character Animation
The second step of rigging is attaching each bone to a 3D model.
This means computing a weighting function for each bone that determines how much the transformation on a
bone is affecting a given point on the model surface.
The function is plotted with color coding here with more red indicating higher values.

• Rigging
– Attach the bones to the model

Mesh Bones Joints

4

Character Animation
To see what is going on better, let’s focus on a simple case: we have a simple mesh with two bones/ three joints.

• Rigging
– Attach the bones to the model

x
w1 w2

T1 T2

T (x) = avg(T1, T2, w1, w2)

5

Character Animation
As we change the transformation Ti, i.e. rotations and translations, the mesh should deform accordingly.
Let’s say we want to compute the new position of a given point x on the mesh.
We first blend the transformations with the stored weights wi. This is denoted with the avg function here.
We then apply the transformation to the point x to get the new corresponding point on the deformed model.

• Rigging
– How to blend (average) transformations

Linear Blend Skinning

x
w1 w2

T1 T2

T (x) = avg(T1, T2, w1, w2)

Represent with Ti Ti

in homogenous coordinates
T(x) = w1T1 + w2T2T(x) = w1T1 + w2T2

x0 = Tx

T(x) = w1T1 + w2T2T(x) = w1T1 + w2T2T(x) = w1T1 + w2T2

T(x) = w1T1 + w2T2x0 = Tx

6

Character Animation
The question is: how do we represent the transformations and compute the blending of transformations?
One way is representation via 4x4 transformation matrices Ti, and blending via a linear combination of those.
Each matrix stores both the rotation and translation.
The final blended transformation is then applied to the point x in homogenous coordinates, i.e. x = [x, y, z, 1]T

• How to blend (average) transformations

Linear Blend Skinning
T(x) = w1T1 + w2T2

w1t1 + w2t2
Translation

w1R1 + w2R2
Rotation

Not a valid rotation matrix!

7

Blended Rigid Transformations
The main problem with linear blend skinning is that it assumes no structure for rotation matrices.
In general, linear combinations of rotation matrices are not valid rotation matrices.

• How to blend (average) transformations

RT = R�1

det(R) = 1

Valid rotation matrix
(w1R1 + w2R2)

T

= (w1R
T
1 + w2R

T
2)

6= (w1R+ w2R)�1

Linear blending

8

Blended Rigid Transformations
A valid rotation matrix should satisfy two properties: its transpose is equal to its inverse and its determinant is 1.
The first property ensures it is not scaling vectors and only rotating. The second avoids introducing flips.
It is easy to see that the first property is not satisfied for linear combinations of rotation matrices.

• How to blend (average) transformations

Linear Blend Skinning: problems

9

Blended Rigid Transformations
In practice, invalid rotation matrices lead to volume loss, especially around the joints where the blending is
strongest. Left: candy-wrapper artefact, right: elbow collapse artefact.

• How to blend transformations

Manifold of rigid transformations

R1

R2

Manifold of rigid transformations

R1

R2

Shortest path on the manifold

w1R1 + w2R2

10

Blended Rigid Transformations
We can visualize what is going wrong by considering the subspace (it is a manifold) of rotation matrices in the 9
dimensional space of all 3x3 matrices.
A linear combination of rotation matrices will not necessarily lie on this manifold.
Instead, what we want is the shortest path that respects the manifold of rotation matrices.

• Manifold of rotations – SO (3)

• Manifold of rigid transformations – SE (3)

RT = R�1

det(R) = 1

Valid rotation matrix

RT = R�1

det(R) = 1
T = R t

0 0 0 1

11

Blended Rigid Transformations
This manifold is called SO(3) and is given by the two conditions on valid rotation matrices we have seen.
Similarly, we can define SE(3), the manifold of valid rigid transformations.

• Matrices not convenient for blending
• Alternative representation: dual quaternions

12

Rigid Transformations
In summary, it is hard to generate valid rigid transformations with linear combinations if we work with the matrix
representation of transformations.
Instead, we will utilize an alternative representation: dual quaternions.

• Representing rigid transformations

Rotations with quaternions Rigid motions with dual quaternions

13

Rigid Transformations
We will first learn about quaternions that represent rotations as a rotation of an angle around an axis.
We will then see how these generalize to rotations and translations with dual quaternions.
Intuitively, with dual quaternions, we have rotation around and translation along an axis.

• Representing rotations with quaternions

Rotations with quaternions

q = cos

✓
✓

2

◆
+ s sin

✓
✓

2

◆

Quaternion Rotation
angle

Rotation
axis

14

Rotations
In a quaternion, we have the axis in 3D around which to rotate, and a rotation angle.

• Quaternions

s = sii+ sjj + skk

q = cos

✓
✓

2

◆
+ s sin

✓
✓

2

◆

i2 = j2 = k2 = ijk = �1

s2i + s2j + s2k = 1

15

Rotations
The rotation axis s is represented with an extension of imaginary numbers, denoted with i, j, k.
Rotation axis is a unit vector and hence the sum of squares of its components si, sj, sk equals 1.
The algebra of these numbers can be defined with i2 = j2 = k2 = ijk = -1.

• Operations on quaternions
q = cos

✓
✓

2

◆
+ s sin

✓
✓

2

◆

Conjugate

q⇤ = cos

✓
✓

2

◆
� s sin

✓
✓

2

◆
= cos

✓
�✓

2

◆
+ s sin

✓
�✓

2

◆

q�1 = q⇤Inverse (for unit quaternions)

16

Rotations
There are a few important operations on quaternions that we will utilize.
The conjugate has the same meaning as for imaginary numbers, i.e. the non-real part, which is s, is negated.
Note that this can either be written as having –s, or the same s but –𝜃.
Both mean we invert the rotation (recall how quaternions represent rotations). Inverse is thus equal to conjugate.

• Operations on quaternions

||q||2 = qq⇤ = cos2
✓
✓

2

◆
+ ||s||2 sin2

✓
✓

2

◆
= 1

Norm

q1q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

Multiplication

i j k

17

Rotations
Composing rotations is done by multiplying quaternions.
Multiplication is carried out with the rules: ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j, i2 = j2 = k2 = -1.
Multiplying a quaternion with its conjugate gives us the norm of it, which is 1 for the case of quaternions
representing rotations. This is easy to derive, please do.

• Operations on quaternions

18

Rotations
The power of a quaternion is defined with the definitions of the exponential and log.
For the case of quaternions representing rotations, qt is the same as rotating with an angle t𝜃.

Power

qt = et log q

logq =
✓

2
s

q = cos

✓
✓

2

◆
+ s sin

✓
✓

2

◆

eq = cos ||q||+ q

||q|| sin ||q||
for quaternions with zero scalar part:

• Operations on quaternions

Applying to location vectors

q = cos

✓
✓

2

◆
+ s sin

✓
✓

2

◆

v = vii+ vjj + vkk

v0 = qvq⇤

19

Rotations
To apply a quaternion to a vector to rotate it, we first need to write the vector in the i, j, k space.
The v’ is then the rotated version of v.

• Blending quaternions

interpolate(q1,q2, t)
✓1

✓2

q(t) = cos

✓
✓(t)

2

◆
+ s sin

✓
✓(t)

2

◆

s = s1 = s2

✓(t) = (1� t)✓1 + t✓2

20

Rotations
For the special case that the axes of rotation are the same for both quaternions, their blending, i.e interpolation, is
the interpolation of the angle of rotation.

• Blending quaternions
– In general,
– Spherical blending

– More than two rotations?

s1 6= s2

(q2q
⇤
1)

tq1

21

Rotations
For the general case, we use the so-called spherical blending for two quaternions.
For t = 0, we get q1, and for t = 1, we get q2, as expected.

• Blending quaternions

– Good approximation:
q1 · · ·qn w1 · · ·wn

b =
nX

i=1

wiqi

22

Rotations
The case of more than two rotations is more challenging and we do not have a closed form solution.
A good approximation is a weighted sum of quaternions.
This equation is the reason why we care about quaternions. In contrast to matrix based representations,
quaternion linear blending does not lead to volume loss and other artifacts!

• Rotation & translation
• Dual numbers

x̂ = x0 + ✏x✏ ✏2 = 0

(a0 + ✏a✏)(b0 + ✏b✏)

= a0b0 + ✏(a0b✏ + a✏b0)

E.g. multiplication

23

Rigid Transformations
These ideas can easily be extended to the case of rigid transformations.
Instead of ordinary real numbers, we use dual numbers in this case in the definition of the quaternions.
Dual numbers have the real and dual part. The dual number 𝜖 has the property that its square is zero.
This leads to cancellation of higher order terms in multiplications.

• Dual quaternions
– Replace numbers in quaternions

with dual numbers

– Almost all operations & notations are the same
– In particular:

q̂ = cos

✓̂

2

!
+ ŝ sin

✓̂

2

!

b̂ =
nX

i=1

wiq̂i

24

Rigid Transformations
In this case, the angle and each component of the axis s become dual numbers.
All operations and expressions we are interested in stay the same.
In particular, we still have the linear combination as a good approximation of proper shortest path blending.

• Representing rigid transformations

Quaternions : 4 numbers Dual quaternions : 8 numbers

25

Rigid Transformations
In practice, this means we represent a rotation and translation with a rotation around the axis s and a translation
along the same axis.
We could prove that this covers all rigid transformations.

• Properties
b̂ =

nX

i=1

wiq̂i

1. Generates valid transformations
- Only if normalized!

b̂ =

Pn
i=1 wiq̂i

||
Pn

i=1 wiq̂i||

26

Blended Rigid Transformations
There is one thing we ignored so far: recall that only normalized quaternions/ dual quaternions represent valid
rotations/ rigid transformations.
With normalization, we always get dual quaternions representing valid rigid transformations.

• Properties

2. Coordinate invariance

b̂ =

Pn
i=1 wiq̂i

||
Pn

i=1 wiq̂i||

27

Blended Rigid Transformations
An important property of the approximate blending is that it is invariant to coordinate change: if we first
transform all dual quaternions with the same transformation and then blend the resulting quaternions, we get the
same result as first blending them and then applying the transformation.
This follows from:

<latexit sha1_base64="6pKvgwSP8w30+y8bHCbC0eEIDbA=">AAACRHicdVDLSsNAFJ3UV62vqEs3g0VwVRIp6kYounFZwT6gCWEynbRDZ5I4M1FKyMe58QPc+QVuXCjiVpy0WWhbDwwczjmXe+f4MaNSWdaLUVpaXlldK69XNja3tnfM3b22jBKBSQtHLBJdH0nCaEhaiipGurEgiPuMdPzRVe537omQNApv1TgmLkeDkAYUI6Ulz+w5MuHwwaPQGSKVOhypoR+kd1k2J+jMxYLUf/Me9cyqVbMmgPPELkgVFGh65rPTj3DCSagwQ1L2bCtWboqEopiRrOIkksQIj9CA9DQNESfSTSclZPBIK30YREK/UMGJ+nsiRVzKMfd1Mj9Sznq5uMjrJSo4d1MaxokiIZ4uChIGVQTzRmGfCoIVG2uCsKD6VoiHSCCsdO8VXYI9++V50j6p2ae1+k292rgs6iiDA3AIjoENzkADXIMmaAEMHsEreAcfxpPxZnwaX9NoyShm9sEfGN8/T/e0Dw==</latexit>X
wiq̂q̂i = q̂

X
wiq̂i

• Properties

3. Shortest path on SE (3)

b̂ =

Pn
i=1 wiq̂i

||
Pn

i=1 wiq̂i||

Shortest path on the manifold

q̂1

q̂2b̂

28

Blended Rigid Transformations
This simple linear blending stays very close to the shortest path blending on SE (3), the manifold of valid rigid
transformations.

• Challenges
– Blending transformations – dual quaternions
– Weights

• Shape adaptive
• Intuitive deformations
• Smooth deformations

wi(x)

29

Blended Rigid Transformations
Apart from transformation representation, there are challenges with how we compute the weights for blending.
There are several intuitive properties that we briefly summarize.

• Weights – desired properties
– Partition of unity

– Smoothness

nX

i=1

wi(x) = 1

30

Blended Rigid Transformations
The first property is partition of unity. This is important for volume preservation.
Second property, smoothness of weights, ensures we get smooth deformations without artifacts.

• Weights – desired properties
– Shape-awareness

Shape-aware weights Shape-unaware weights

31

Blended Rigid Transformations
Finally, shape-awareness leads to local influence with respect to the deformed shape and is important for intuitive
control.

