Economics, Law and Ethics Part IB CST 2023-24

Lecture 4: Auction theory and game theory

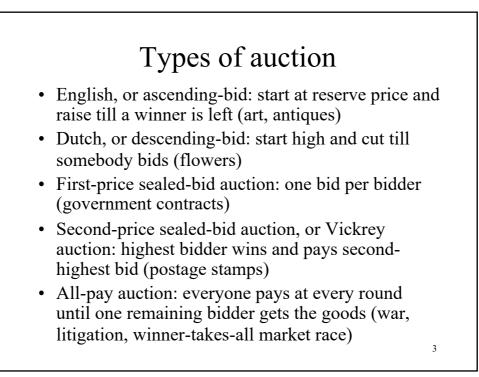
Konstantinos Ioannidis, Jennifer Cobbe, Richard Clayton, Claire Benn, Alan Blackwell

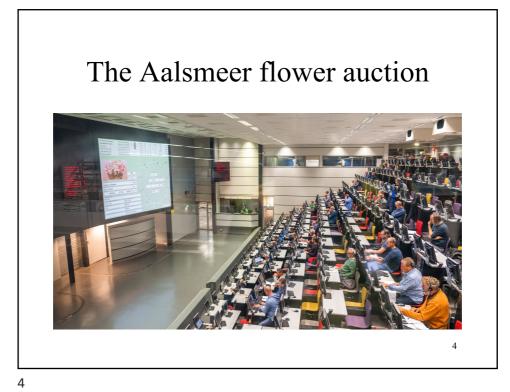
<section-header>
Overview
Auctions:

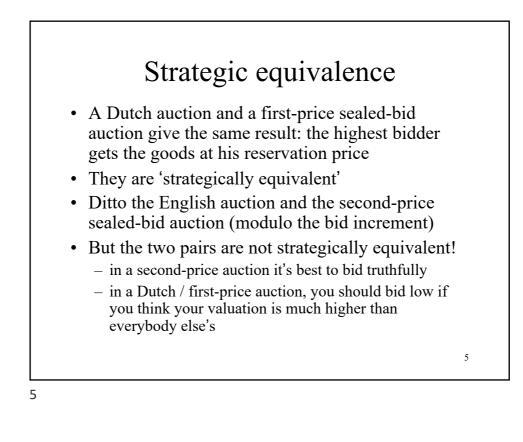
Types of auctions
Equivalence
What goes wrong
Advertising auctions

Game theory:

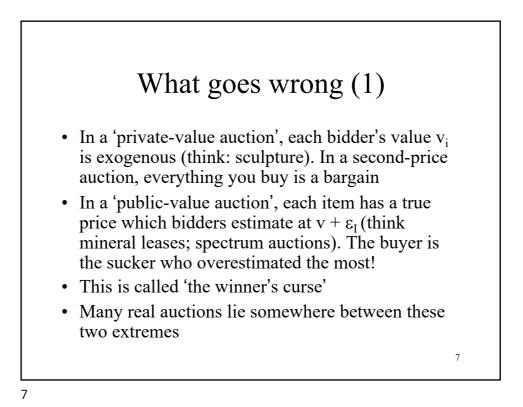
Cooperation or conflict
Strategies
Types of games
Broader implications


Auctions

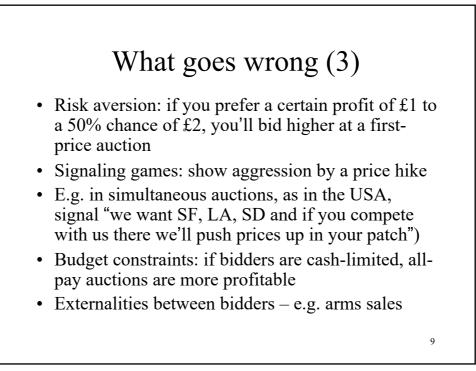

- Around for millennia; standard way of selling livestock, fine art, mineral rights, bonds...
- Many other sales from corporate takeovers to house sales are also really auctions
- Auctions are a big success of the Internet, from eBay to Google
- Some unpleasant side-effects
- Rapidly growing interest in theoretical computer science: auction resources in distributed systems

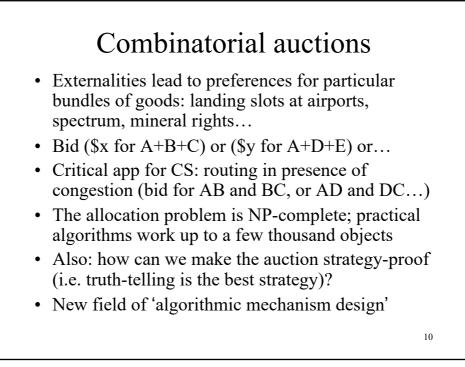

2

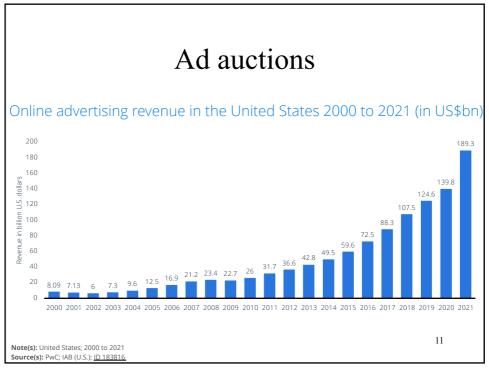
• Many issues of asymmetric info, signaling, strategic play... – plus some solid theory!

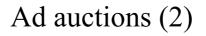


- This is weaker not 'who will win' but 'how much money on average'
- According to the revenue equivalence theorem, you get the same revenue from any well-behaved auction under ideal conditions
- These include risk-neutral bidders, no collusion, Pareto efficiency (highest value bidder gets goods), reserve price, independent valuations, ...
- Then bidders adjust their strategies and the English, Dutch and all-pay auction yield the same
- So when you design an auction, you must focus on any ways the conditions aren't ideal

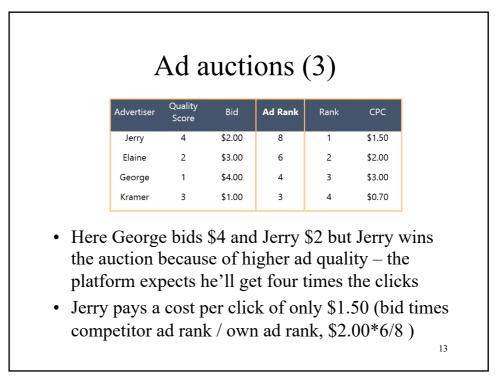


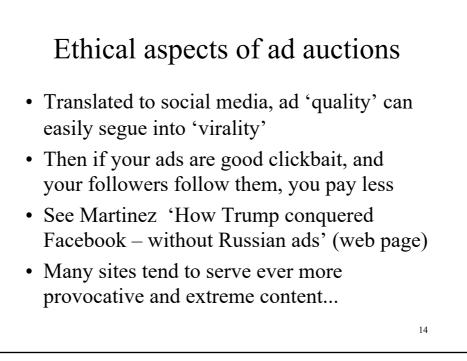

What goes wrong (2)

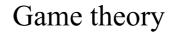

- Bidding rings bidders collude to buy low, have a private auction later, split the proceeds
- First-price auctions are harder to rig; with secondprice, New Zealand bids of \$7m and \$5000
- Entry detection / deterrence: an early (1991) ITV franchise auction required bidders to draw up a detailed programming plan. In Midlands & Central Scotland, industry knew there was no competition; bids under 1p per head (vs £9–16 elsewhere)


8

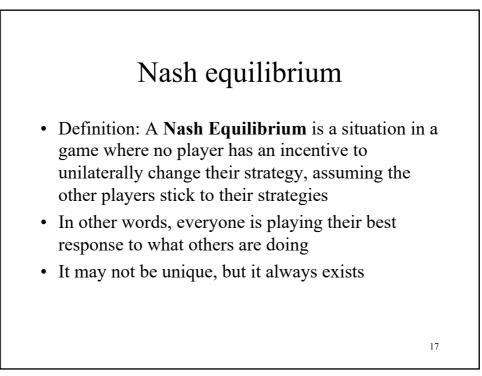
- Predation: 'we'll top any other bid' in takeovers
- · Sniping and other boundary effects

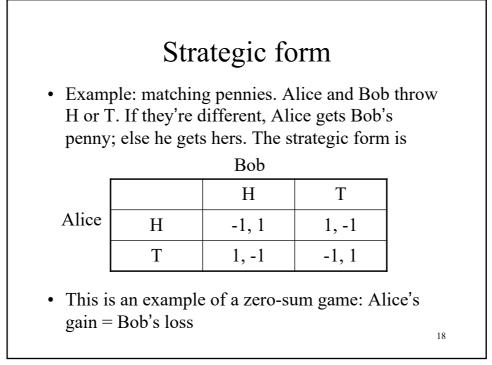


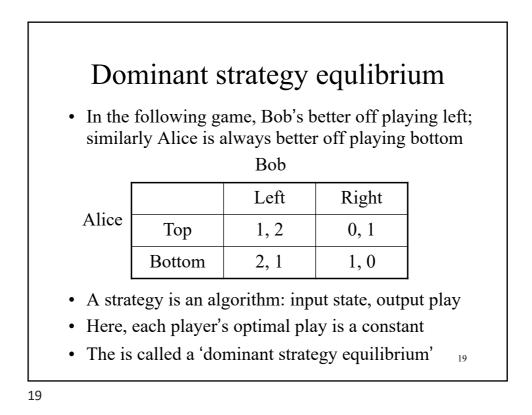




- Pioneered by Google
- Basic idea: second-price auction mechanism but tweaked to optimise platform revenue
- Bidders bid prices p_i, platform estimates ad quality e_i, and then ad rank a_i = p_i.e_i
- Ad quality e_i = relevance . clickthrough rate
- So how do we work out who wins the auction and how much they pay?







- The study of problems of cooperation and conflict among independent decision-makers
- We focus on games of strategy, rather than chance
- We abstract to players, choices, payoffs, strategies
- There are
 - games of perfect information (such as chess and go)
 - games of imperfect information (which are often more interesting to analyse)

Battle of the sexes

• Consider this game:

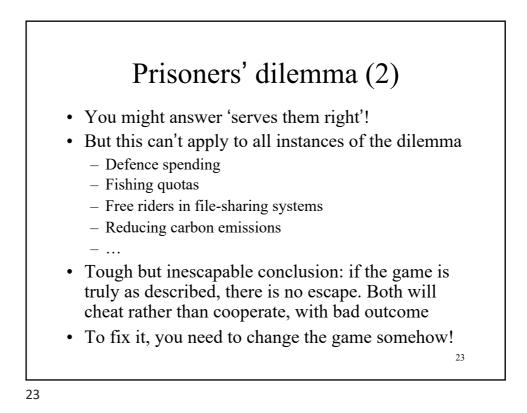
 Bob

		Left	Right
Alice	Тор	2, 1	0, 0
7 11100	Bottom	0, 0	1, 2

• Each player's optimal strategy depends on what they think the other will do

20

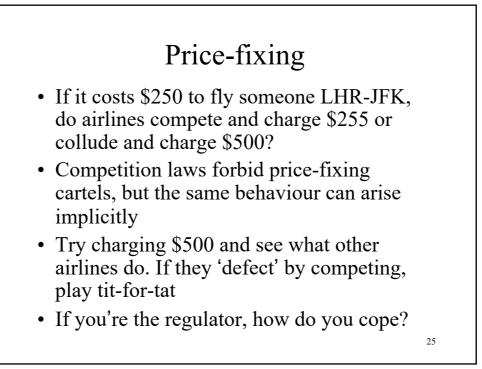
- Two strategies are in Nash equilibrium when A's choice is optimal given B's, and vice versa
- Here there are two: top left and bottom right


	Pure v	^v mixed	strateg	gies	
• With d equilib		algorithms, so Bob	ome games h	ave no Nash	
		scissors	paper	stone	
	scissors	0,0	1, -1	-1, 1	
Alice	paper	-1, 1	0,0	1, -1	
	stone	1, -1	-1, 1	0,0	
Alice scissors $0,0$ $1, -1$ $-1, 1$ $paper$ $-1, 1$ $0,0$ $1, -1$					

Prisoners' dilemma

• Two prisoners are arrested on suspicion of planning a robbery. The police tell them separately: if neither confesses, one year each for gun possession; if one confesses he goes free and the other gets 6 years; if both confess then each will get 3 years

		Benjy	
Alfie		confess	deny
Ame	confess	-3, -3	0, -6
	deny	-6, 0	-1, -1


- (confess, confess) is the dominant strategy equilibrium
- It's obviously not optimal for the villains!
- Is this a problem? If so, what's the solution?

The evolution of cooperation

- If PD played repeatedly, there's a fix!
- 'Tit-for tat': cooperate at round 1, then at round n do what the other guy did at n-1
- Simulation competitions run by Bob Axelrod played off many iterated-game strategies; tit-for-tat did consistently well
- In the presence of noise, tit-for-tat gets locked into (defect, defect). So: forgive the other guy occasionally
- People have realised in the last 30 years or so that strategy evolution explains a lot of behaviour

Stag hunt

• People can hunt rabbits on their own, but have to work together to hunt a stag. If your buddy runs off after a rabbit, the stag will escape

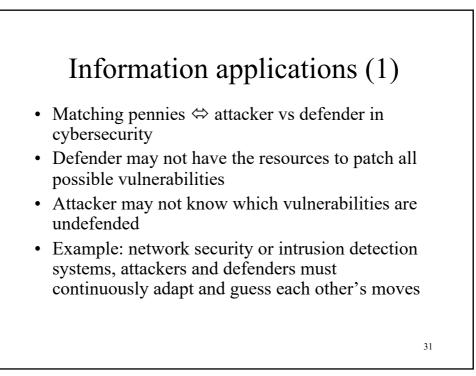
	Frank		
Domond		chase hare	hunt stag
Bernard	chase hare	2, 2	5, 0
	hunt stag	0, 5	10, 10

- Difference from PD: (stag, stag) is now a Nash equilibrium
- You'll only chase a rabbit if you believe your buddy will defect
- Thus while PD is payoff-dominant, stag hunt is risk-dominant

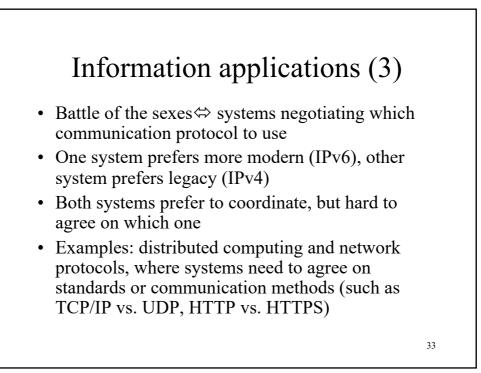
26

Chicken				
• In 'Footloose', Ren (Kevin Bacon) and Chuck (Jim Youngs) drive cars against each other to see who will "chicken" first				
Chuck				
Den		jump	drive on	
Ren	jump	2, 2	1, 3	
	drive on	3, 1	0, 0	
• Bertrand	3) and (3,1) are Russell sugges ation in the Col	ted this as a n d War		

Game theory and evolution				
simpl	• 1	roposed the 'Hawl l behaviour. Cons e individuals:	•	
		Hawk	Dove	
	Hawk	(v-c)/2, (v-c)/2	v, 0	
	Dove	0, v	v/2, v/2	
 Food v at each round; doves share; hawks take food from doves; hawks fight (with risk of death c) If v > c, whole population becomes hawk (dominant strategy) What happens if c > v? 29 				


Game theory and evolution (2)

• If c > v, a small number of hawks will prosper as most interactions will be with doves. Equilibrium reached at hawk probability p setting hawk payoff = dove payoff


	Hawk	Dove
Hawk	(v-c)/2, (v-c)/2	v, 0
Dove	0, v	v/2, v/2

30

• I.e. p(v-c)/2 + (1-p)v = (1-p)v/2 $\Leftrightarrow pv - pc + 2v - 2pv = v - pv$ $\Leftrightarrow -pc = -v$ $\Leftrightarrow p = v/c$

