Proposition 63 Let m be a positive integer. A modular integer k in

Z. has a reciprocal if, and only If, there exist integers i andj such
thatk -i4+m-j=1.
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Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a
pair of integers m and n whenever there are integers s andt such
thats - m+t-n=r.

Proposition 65 Let m be a positive integer. A modular integer k in
Zw has a reciprocal if, and only if, 1 is an integer linear combination
of m and k.
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Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘€’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]

— 200 —

IS

{2}

{true, false }

{_2>_1>O>1>2>3}




Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

o & 2zeA [?@)ké——; (aé‘ﬂ‘c A 'P@»))

Notations:

{IxeA|P(x)} , {xe A:P(x)}
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Set equality

Two sets are equal precisely when they have the same elements
Examples:
» {(xe N : 2|x A xisprime} = {2}

» For a positive integer m,
{(xeZ : m|x}={x€eZ : x=0(modm)}

» {deN:d[0} =N
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Equivalent predicates specify equal sets:

{x e A|P(x)}={xe A|Q(x)}
Iff
Vx. P(x) &= Q(x)

Example: For a positive integer m,

{x € Z, | x has a reciprocal in Z,, }

{x € Zy,|1is an integer linear combination of m and x }
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
Example 67
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136, 153, 204, 306, 408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)

— 205-a —



Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.

Example 68
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 71 (Key Lemma) Let m and m'’ be natural numbers and
let n be a positive integer such that m = m’ (mod n). Then,

CD(m,n) =CD(m’,n) .
PROOF: Mz rem(mn) <m>
CD(wm n)
= ¢ rem (mm) )

M= Mm+in Ww}
- ODCW”’”’IM

= CD CW\—'VL, n’)
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Lemma 73 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = A«

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
in
if r = 0 then n
else gcd(n , r )

end
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Example 74 (¢gcd(13,34) = 1)
ocd(13,34) = gcd

NB If gcd terminates on input (m,n) with output gcd(m,n) then
CD(m,n) = D(gcd(m,n)).
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Proposition 75 For all natural numbers m,n and a, b,
ifCD(m,n) =D(a) and CD(m,n) = D(b) thena = b.

Proposition 76 For all natural numbers m,n and k, the
following statements are equivalent:

1. CD(m,n) = D(k). /?}odl;v
2. » klm A k|n, and ~

» for all natural numbersd,d| m N\ d|n — d| k.
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Definition 77 For natural numbers m,n the unique natural number
k such that

» k|m /A k|n, and
» for all natural numbersd,d| m N\ d|n — d|k.

Is called the greatest common divisor of m and n, and denoted
gcd(m,n).
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Theorem 78 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m andn, the positive integer
gcd(m,n) is the greatest common divisor of m andn in the
sense that the following two properties hold:

(1) both gcd(m,n) | m and gcd(m,n) | n, and

(i1) for all positive integers d such thatd | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF:

— 218 —



m:ql-n—l—r
O<m<n
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gcd(n, m)

n= @f"-" iy ghelertalge) 2
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