The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number \mathfrak{m} and positive natural number \mathfrak{n} , there exists a unique pair of integers \mathfrak{q} and \mathfrak{r} such that $\mathfrak{q} \geq 0$, $0 \leq \mathfrak{r} < \mathfrak{n}$, and $\mathfrak{m} = \mathfrak{q} \cdot \mathfrak{n} + \mathfrak{r}$.

Let m be a not. and n be a pos. not.

For uniqueness, assume 920 and 0 \(\) r < n int. s.t.

Om = 9.n+r and also 9'20 and 0 \(\) r'< n int. s.t.

Om = 9'.n+r'. We show 9=9' and r=r'. By O, m=r(modn)

and 1/2, m=r'(modn). Then, r=r'(modn). From 3 ad O,

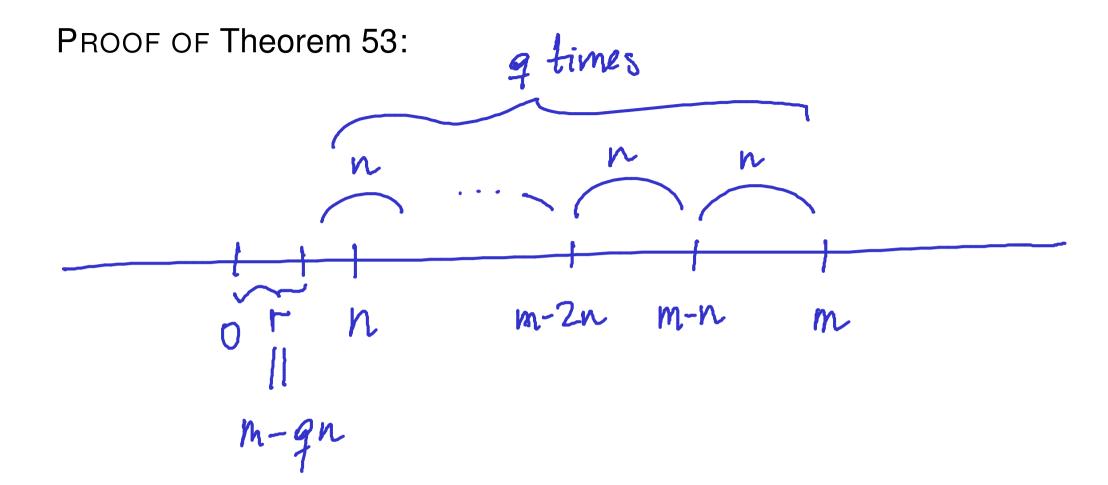
by a previous result r=r'. More over (9-9').n=r'-r=0 and

-174-

The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number \mathfrak{m} and positive natural number \mathfrak{n} , there exists a unique pair of integers \mathfrak{q} and \mathfrak{r} such that $\mathfrak{q} \geq 0$, $0 \leq \mathfrak{r} < \mathfrak{n}$, and $\mathfrak{m} = \mathfrak{q} \cdot \mathfrak{n} + \mathfrak{r}$.

Definition 54 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).



```
The Division Algorithm in ML: divalg (m,n) = (q,r)

s \cdot t. m = q \cdot n + r with 0 \le r < n
                                           m 20, n21 ml
  fun divalg( m , n )
     = let
         fun diviter( q , r )
              if r < n then (q, r)

else diviter(q+1, r-n)

else diviter(q+1, r-n)

output(q,r)

diviter(q,r)
            = if r < n then (q, r)
       in
         diviter( 0 , m )
       end
                 In divolg (m,n) = diviter (0,m)
  fun quo(m, n) = #1(divalg(m, n))
  fun rem(m, n) = #2(divalg(m, n))
```

Termination argument: divolg (m,n) NB. The second orgument diviter (0,m) 21 ways deer ases Claim: output(0,m) diviter (1, m-n) remaining natural. In each call of directly (9,1°)
we have that m=q.n+r diviter (q,r) ren/ rin is satisfied Indeed: (1) in divitor (0, m) we on mut (g,r) diviter (g+1,r-n) have m=0.n+m; and (2) if This holds for diriter (qH,r-n).

Theorem 56 For every natural number m and positive natural number n, the evaluation of divalg(m,n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

PROOF:

Proposition 57 Let m be a positive integer. For all natural numbers k and l,

$$k \equiv l \pmod{m} \iff \operatorname{rem}(k, m) = \operatorname{rem}(l, m)$$
.

Proof:

Corollary 58 Let m be a positive integer.

1. For every natural number n,

$$n \equiv \text{rem}(n, m) \pmod{m}$$
.

2. For every integer k there exists a unique integer $[k]_m$ such that

$$0 \le [k]_{\mathfrak{m}} < \mathfrak{m}$$
 and $k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

PROOF:

PROOF:
(2) If k is not. Then
$$[k]_m = rem(k,m)$$

If k neg. int. Then
 $k = R + i \cdot m \pmod{m}$
 $k = R + (k) \cdot m \pmod{m}$
 $k = [k + (k) \cdot m]_m - 183-a -$

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

$$\mathbb{Z}_{\mathfrak{m}}$$
: 0, 1, ..., $\mathfrak{m}-1$.

with arithmetic operations of addition $+_m$ and multiplication \cdot_m defined as follows

$$k +_{m} l = [k + l]_{m} = rem(k + l, m),$$

 $k \cdot_{m} l = [k \cdot l]_{m} = rem(k \cdot l, m)$

for all $0 \le k, l < m$.

For k and l in \mathbb{Z}_m ,

$$k +_{m} l$$
 and $k \cdot_{m} l$

are the unique modular integers in \mathbb{Z}_m such that

$$k +_{\mathfrak{m}} \mathfrak{l} \equiv k + \mathfrak{l} \pmod{\mathfrak{m}}$$

$$k \cdot_{\mathfrak{m}} l \equiv k \cdot l \pmod{\mathfrak{m}}$$

Example 60 The addition and multiplication tables for \mathbb{Z}_4 are:

+4	0	1	2	3	•4	0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	2	3	0	1	0	1) 2	3
2	2	3	0	1	2	0	2	0	2
3	3	0	1	2	3	0	3	2	\bigcirc

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	3	1	1
2	2	2	_
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 61 The addition and multiplication tables for \mathbb{Z}_5 are:

+5	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4		3
3	3	4	0	1	2			3 (
4	4	0	1	2	3	4	0	4	3	2	

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 62 For all natural numbers m > 1, the modular-arithmetic structure

$$(\mathbb{Z}_{\mathrm{m}},0,+_{\mathrm{m}},1,\cdot_{\mathrm{m}})$$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

.

Proposition 63 Let m be a positive integer. A modular integer k in \mathbb{Z}_m has a reciprocal if, and only if, there exist integers i and j such that $k \cdot i + m \cdot j = 1$.

PROOF: I is an int. linear combination.

of k and m Cf. (km) (i) = ki + mj