The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q
andr suchthatq >0,0<r<n,andm=q-n+r.

Definition 54 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).
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The Division Algorithm in ML.:

”W‘*’Lj (m, n) :(q,% 4
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fun cjizalg( m, n) ML\.QMW W.')/O ) nya
= le

fun diviter( q , r ) \
Sirite dir Jir- (311

= if r < n then (q, r )

else diviter( gq+1 , r-n|) r”<m>//\\\
—

1I1diviter( O, m) W<%'r\ @(Q‘L{,PV?
end l/\,~ M(W,M) zéf&”(@/m}

fun quo( m , n ) = #1( divalg( m , n ) )

~

fun rem( m , n ) = #2( divalg( m , n ) )
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Theorem 56 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (qo, 1) such thatro < n andm = qo-n+ry.

PROOF:
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Proposition 57 Let m be a positive integer. For all natural
numbers k and 1,

k=1 (mod m) < rem(k,m) = rem(l, m)

PROOF:
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Corollary 58 Let m be a positive integer.
1. For every natural number n,

n =rem(n,m) (modm) .

2. For every integer k there exists a unique integer [kl., such that
0<[klp,<m and k= [kl, (modm) .
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Modular arithmetic

For every positive integer m, the integers modulo m are:

Ly = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k4+nl = k+1, = rem(k+1l,m) ,
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.
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Forkandlin Z,,,
k+,1 and k-, 1
are the unique modular integers in Z,, such that
k+ml=k+1(mod m)
k-ml=k-1(modm)
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Example 60 The addition and multiplication tables for 7., are:

+4]0 1 2 3 0123
00123 010 0 0 0
111230 110()2 3
2230 1 210 2 0 2
31301 2 310 3 241)

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0
| 3
2 2
3 |

mu{tiplicative
inverse
0 _
1 1
yi _
3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 61 The addition and multiplication tables for 7.5 are:

+5/0 1 2 3 4 510 123 4
001234 0[0 0000
11123 40 110(H2 3 4
212340 1 210 2 4(D3
3134071 2 310 3()4 2
414 01 2 3 410 4 3 2

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 62 For all natural numbers m > 1, the
modular-arithmetic structure

(an O) _I_m) 1 ) 'm)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Proposition 63 Let m be a positive integer. A modular integer k in

Z. has a reciprocal if, and only If, there exist integers i andj such
thatk -i4+m-j=1.
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