
The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in

turn: (i) assume P1 to establish Q, and (ii) assume P2 to

establish Q.
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Scratch work:

Before using the strategy

Assumptions Goal

Q
...

P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal

Q Q
...

...

P1 P2
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Proof pattern:

In order to prove Q from some assumptions amongst which there

is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-

sumptions. Case (ii): Assume P2. and provide a proof of Q from

it and the other assumptions.
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A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if

m = 0 or m = p then
�

p
m

�

≡ 1 (mod p).

PROOF:
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
�

p
m

�

≡ 0 (mod p).

PROOF:
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Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,

either
�

p
m

�

≡ 0 (mod p) or
�

p
m

�

≡ 1 (mod p).

PROOF:
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Binomial Theorem

(m+ n)p =
Pp

k=0

�

p
k

�

·mp−k · nk
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,

n and primes p,

(m+ n)p ≡ mp + np (mod p) .

PROOF:
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Corollary 34 (The Dropout Lemma) For all natural numbers m and

primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-

bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

PROOF:
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Fermat ′s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on .
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Every natural number i not a multiple of a

prime number p has a reciprocal modulo p,

namely ip−2, as i · (ip−2) ≡ 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
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Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
�

P =⇒ Q
�

⇐⇒ P ∧ ¬Q

¬
�

P ⇐⇒ Q
�

⇐⇒ P ⇐⇒ ¬Q

¬
�

∀x. P(x)
�

⇐⇒ ∃x.¬P(x)
¬
�

P ∧ Q
�

⇐⇒ (¬P) ∨ (¬Q)

¬
�

∃x. P(x)
�

⇐⇒ ∀x.¬P(x)
¬
�

P ∨ Q
�

⇐⇒ (¬P) ∧ (¬Q)

¬
�

¬P
�

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)
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Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the

somewhat controversial:

¬¬P ⇐⇒ P

which is classically accepted.

In this light,

to prove P

one may equivalently

prove ¬P =⇒ false ;

that is,

assuming ¬P leads to contradiction .

This technique is known as proof by contradiction.

— 139-a —



The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P
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Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:
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