IA – Digital Electronics

Examples Paper 3 – FSMs, Electronics and Processor Architecture

1. Eliminate the redundant states from the following state table using the Row Matching approach

Current State	Ne Sta X=0	ext ate X=1	Outp X=0	out (Z) <u>X=1</u>
Α	А	В	0	0
B C	C A	D D	0	0 0
D	Ē	E	0	1
E	A	F		1
F G	A	F	0	1

2. Eliminate the redundant states from the following state table using the State Equivalence/Implication Table approach

	Ne	ext		
Current	Sta	ate	Outp	out (Z)
State	X=0	X=1	X=Ö	X=1
S ₀	S ₃	S_3	1	1
S_1	S_2	S_2	1	0
S_2	S_1	S_1	1	1
S_3	S ₀	S_2	1	0

3. Eliminate the redundant states from the following state table using the State Equivalence/Implication Table approach

Current		Output			
State	<u>x</u> v- 00	(Z)			
State	<u> </u>	01	10	11	(-)
S_0	S ₀	S₁	S_2	S_3	1
S₁	S	S	S₁	Š₅	0
S ₂	S₁	S	S_2	S₄	1
S_3^{\prime}	S ₁	S_0	S ₄	S_5	0
Š₄	S ₀	S₁	S_2	S ₅	1
S_5	S ₁	S_4	S_0^{-}	$\tilde{S_5}$	0
S_6	S ₄	S_1	S_2	S_3	1
					1

4. For the following circuit:

- (a) What is the current through the 1Ω resistor?
- (b) What is voltage V_1 ?
- (c) What power is dissipated in each of the 4Ω resistors?
- 5. For the following circuit:

- (a) What is the current flowing through the 20Ω resistor?
- (b) Find the voltage at nodes B, C, and D with respect to node A, i.e., $V_{AB},\,V_{AC}$ and V_{AD} .

6. The n-MOS FET with the characteristics shown in Fig. 1(b) is used to implement the inverter circuit shown in Fig. 1(a).

- (a) Draw a load line (i.e., resistor characteristic) on Fig. 1(b) and determine the output voltage V_0 , corresponding to input voltages V_i , of 0V and 10V.
- (b) Calculate the power dissipated in the 500Ω resistor and the transistor for each input voltage.

7. (a) Explain the terms architecture and microarchitecture when applied to a processor.

(b) Show how the microarchitecture of a simple single cycle processor can be modified to permit data memory access.

(c) Show how the microarchitecture of a simple cycle processor can be modified to permit branching.

(d) What are the main advantages of a multicycle processor over a single cycle processor?

(e) How does a pipelined processor improve performance compared to a multicycle processor?

Relevant IA Paper 2 Tripos questions include: Q2-2023, Q2-2021, Q2-2019, Q2-2015, Q2-2012 (excluding rise and fall time calculations).

I. J. Wassell

May 2024