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1 Introduction

What is this course about?

• Formal methods: mathematical tools for the specification, development, analy-
sis and verification of software and hardware systems.

• Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

Why?

• Insight: exposes the mathematical “essence” of programming language ideas.
• Documentation: precise but intuitive, machine-independent specification.
• Language design: feedback from semantics (functional programming, monads

& handlers, linearity…).
• Rigour: powerful way to justify formal methods.

Styles of formal semantics

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic: meaning of a program in terms of a program logic to reason about
it (see Part II Hoare Logic & Model Checking).

• Denotational: meaning of a program defined abstractly as object of some suit-
able mathematical structure (see this course).

Denotational semantics in a nutshell

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Arithmetic expression ↦ Number

Boolean circuit ↦ Boolean function
Recursive program ↦ Partial recursive function

…
Type ↦ Domain

Program ↦ Continuous functions between domains
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Properties of denotational semantics

Abstraction:
• mathematical object, implementation/machine independent;
• captures the concept of a programming language construct;
• should relate to practical implementations, though…

Compositionality:
• The denotation of a whole is defined using the denotation of its parts;
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 ;
• More flexible and expressive than whole-program semantics.

1.1 A basic example

Consider the basic programming language Imp over arithmetic and boolean expres-
sionswith control structures given by assignment, sequencing, conditionals, and loops,
as follows.

Imp syntax

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= 𝚝𝚛𝚞𝚎 ∣ 𝚏𝚊𝚕𝚜𝚎 ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …
Programs

𝐶 ∈ 𝐏𝐫𝐨𝐠 ::= 𝚜𝚔𝚒𝚙 ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ 𝚒𝚏 𝐵 𝚝𝚑𝚎𝚗 𝐶 𝚎𝚕𝚜𝚎 𝐶 ∣ 𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶
ranges over a set 𝕃 of locations

A denotational semantics for this programming language is constructed by giving a
domain of interpretation to each of the syntactic categories, together with semantic
functions that compositionally describe the meaning of the syntactic constructions.

Here we have three kinds of expressions, and so three semantic functions, mapping
each expression to their denotation:

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)
C : 𝐏𝐫𝐨𝐠 → (State → State)
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where

State = (𝕃 → ℤ)
ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

Semantics of arithmetic and boolean expressions

The requirement of denotational semantics is quite a tough one. It means that the
collection of mathematical objects we use to give denotations has to be sufficiently
rich that it supports operations for modelling all the constructs of the programming
language. For instance, the fact that our expressions contain variables means than the
plain ℤ and 𝔹 are inadequate for the semantics of 𝐀𝐞𝐱𝐩 and 𝐁𝐞𝐱𝐩. Instead, we must
have a more complex semantics, and interpret expressions as functions from the set
of states.

A
q𝑛y = 𝜆𝑠 ∈ State. 𝑛

AJ𝐴1 + 𝐴2K = 𝜆𝑠 ∈ State. AJ𝐴1K (𝑠) +AJ𝐴2K (𝑠)
AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)

BJ𝚝𝚛𝚞𝚎K = 𝜆𝑠 ∈ State. true

BJ𝚏𝚊𝚕𝚜𝚎K = 𝜆𝑠 ∈ State. false

BJ𝐴1 = 𝐴2K = 𝜆𝑠 ∈ State. eq (AJ𝐴1K (𝑠),AJ𝐴2K (𝑠))
where eq(𝑎, 𝑎′) = { true if 𝑎 = 𝑎′

false if 𝑎 ≠ 𝑎′

Semantics of programs

Some programs are straightforward to deal with. For example, conditional expressions
can be given a denotational semantics in terms of a semantic branching function ap-
plied to the denotations of the immediate sub-expressions. Similarly, the denotational
semantics of the sequential composition of programs can be given by the operation
of composition of partial functions from states to states. In a sense, we are lucky:
our choice of semantics already supports semantic operations corresponding to these
programs.
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CJ𝚜𝚔𝚒𝚙K = 𝜆𝑠 ∈ State. 𝑠

CJ𝚒𝚏 𝐵 𝚝𝚑𝚎𝚗 𝐶 𝚎𝚕𝚜𝚎 𝐶′K = 𝜆𝑠 ∈ State. if (BJ𝐵K (𝑠), CJ𝐶K (𝑠), CJ𝐶′K (𝑠))
where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true

𝑥′ if 𝑏 = false

This is compositionality!

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

CJ𝐶; 𝐶′K = CJ𝐶′K ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. CJ𝐶′K (CJ𝐶K (𝑠))

From now on, we keep only J−K and drop the names of the semantic functions,
which should be clear from the context.

1.2 A semantics for loops

We now proceed to consider the last missing piece for our denotational semantics of
the basic programming language Imp: 𝚠𝚑𝚒𝚕𝚎-loops. However, this looping construct
is not so easy to explain compositionally! The transition semantics of a 𝚠𝚑𝚒𝚕𝚎-loop

⟨𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶, 𝑠⟩ ⇝ ⟨𝚒𝚏 𝐵 𝚝𝚑𝚎𝚗 (𝐶; 𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶) 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝑠⟩
suggests that these two should have the same denotation. Using the denotational
semantics of sequential composition, 𝚒𝚏 and 𝚜𝚔𝚒𝚙, we obtain the following:

J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K = J𝚒𝚏 𝐵 𝚝𝚑𝚎𝚗 (𝐶; 𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶) 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙K
= 𝜆𝑠 ∈ State. if(J𝐵K , J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K ∘ J𝐶K (𝑠), 𝑠)

This cannot be used directly to define J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K, since the right-hand side
contains the left-hand side Rather, J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K should be a solution of the fol-
lowing fixed point equation

J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K = 𝐹J𝐵K,J𝐶K(J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K)
where 𝐹𝑏,𝑐 : (State → State) → (State → State)

𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏(𝑠), 𝑤 ∘ 𝑐(𝑠), 𝑠).
The requirement is now clear, but this raises more questions:

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K?
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1.3 A taste of domain theory

Beyond sets and functions

Before trying to solve the equation from the previous section, let us turn to a simpler
example. Consider the following equations, where 𝑓 ∈ ℤ → ℤ:

𝑓 (𝑥) = 𝑓 (𝑥) + 1 (1)

𝑓 (𝑥) = 𝑓 (𝑥) (2)

What about their fixed points?
• No function satisfies Eq. (1)!
• All functions satisfy Eq. (2)!

Thus, sets and (total) functions are not a good setting to solve the sort of fixed point
equations we are after.

Moreover, if we view the above equations as defining a function 𝑓 , we would ex-
pect 𝑓 to diverge. Thus, it is natural to introduce partiality into the picture, and work
instead with partial functions ℤ ⇀ ℤ. Such a partial function satisfies the above equa-
tions if one side is defined if and only if the other is, and moreover the two expressions
agree on their value whenever defined. In that setting, Eq. (1) has a unique solution!
This is the nowhere-defined function, that we write ⊥:

⊥ = totally undefined partial function
= partial function with an empty graph

An order on partial functions

However, Eq. (2) has even more solutions. Which one should we pick?
Thanks to partiality, we have added structure to our function types. In particular,

we can consider the following “information order”, which intuitively expresses the fact
that a function is approximated by, or carries more information than, or is more defined
than another one below it:

𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ ℤ, if 𝑤 is defined at 𝑠 so is 𝑤 ′, and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

If 𝑤 ⊑ 𝑤 ′, then 𝑤 ′ agrees with 𝑤 wherever the latter is defined, but it may be defined
at some other arguments as well. Note that this is a partial order: if two functions
are both defined at a given argument 𝑥 but have different values, then they are not
comparable.

In this order, ⊥ – the function that is nowhere defined – is a minimal element, that
is, the function with the least information possible. In particular, it is the least solution
of Eq. (2). This makes it in some sense canonical, as it contains no arbitrary choices,
only information that is shared by all solutions.
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Back to loops

Let us get back to Imp with what we have learned. First, we need to change our se-
mantics: programs should be denoted by partial functions from states to states

C : 𝐏𝐫𝐨𝐠 → (State ⇀ State)
The previously given semantic for 𝚜𝚔𝚒𝚙, branching, composition, and assignment ex-
tend easily to this new setting. However, now we are in a better position to give a
semantic to 𝚠𝚑𝚒𝚕𝚎 loops!

For definiteness, let us consider a particular example:

𝚠𝚑𝚒𝚕𝚎 𝑋 > 0 𝚍𝚘 (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1) (3)

where 𝑋 and 𝑌 are two distinct locations and where the set of locations 𝕃 is simply
{𝑋 , 𝑌 }. In this case a state is an assignment [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] with 𝑥, 𝑦 ∈ ℤ, recording
the current contents of the locations 𝑋 and 𝑌 respectively.

We are trying to define the denotation of (3) as a partial function 𝑤 : State ⇀ State,
which should be a solution to the fixed point equation

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).
That is, we are looking for a fixed point of the following 𝐹 :

𝐹 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0

𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

Approximating the least fixed point

Operationally, the semantics of this loop is built incrementally:
• if 𝑋 initially stores a non-positive value, then the loop exits immediately;
• otherwise, the loop decreases the value of 𝑋 by one, and we start again.

We can emulate this behaviour in the denotational world as well.

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

. By definition, we have

𝑤1[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(⊥)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
undefined if 𝑥 ≥ 1

𝑤2[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(𝑤1)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 𝑦] if 𝑥 = 1
undefined if 𝑥 ≥ 2
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𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

That is, we obtain an increasing sequence of partial functions

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …
defined on larger and larger sets of states (𝑥, 𝑦) and agreeing where they are defined.
The union of all these partial functions is the element 𝑤∞ ∈ 𝐷 given by

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

Luckily, 𝑤∞ is a fixed point of the function 𝐹 . Indeed, for all 𝑥 and 𝑦 we have

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]
In fact, 𝑤∞ is the least fixed point of 𝐹 , in the sense that for all 𝑤 ∈ 𝐷

𝑤 = 𝐹(𝑤) ⇒ 𝑤∞ ⊑ 𝑤.
As we argued above, this least fixed point is a good choice for the denotation of

𝚠𝚑𝚒𝚕𝚎 𝑋 > 0 𝚍𝚘 (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1).
Moreover, 𝑤∞ is indeed the function from states to states that we get from the oper-
ational semantics of the program, as given in the Part IB course.

This incremental construction of the least fixed point is not a coincidence. Rather,
it is an instance of Kleene’s fixed point theorem (Theorem 6), that we will prove in the
next section.
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Domain theory

Fixed point equations such as the ones we considered arise very often in giving deno-
tational semantics to languages with recursive features. Beginning with Dana Scott’s
pioneering work in the late 60s, a mathematical theory called domain theory has been
developed to provide a setting in which not only can we always find solutions for the
fixed point equations arising from denotational semantics, but also we can pick out
solutions that are minimal in a suitable sense. Our order on partial functions is a
particularly simple case of such a domain.

As we saw, the key idea is to consider a partial order between the mathematical
objects used as denotations, expressing the fact that one object is approximated by,
or carries more information than, or is more defined than another one below it in the
ordering. Then the minimal solution of a fixed point equation can be constructed as
the limit of an increasing chain of approximations to the solution, and this turns out
to ensure a good match between denotational and operational semantics.

The first part of this course is devoted to develop some of this mathematical back-
ground of domain theory. The second will then use it setup to provide denotational
semantics to a simple but representative functional language: Pcf.

11



Part I

Domain Theory

2 Least Fixed Points
This section introduces a mathematical theory, domain theory, which amongst other
things provides a general framework for constructing the least fixed points used in the
denotational semantics of various programming language features. The theory was
introduced by Dana Scott in the 70s.

2.1 Posets and monotone functions

Domain theory makes use of partially ordered sets satisfying certain completeness
properties.

Definition 1 (Partially ordered set) A partial order on a set 𝐷 is a binary relation
⊑ that is
reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″
antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

Such a pair (𝐷, ⊑) is called a partially ordered set, or poset. 𝐷 is called the underlying
set of the poset (𝐷, ⊑). ∗

Most of the time we will refer to posets just by naming their underlying sets and
use the same symbol ⊑ to denote the partial order in a variety of different posets.

Example 1 (Domain of partial functions, 𝑋 ⇀ 𝑌 ) The set (𝑋 ⇀ 𝑌) of all partial
functions from a set 𝑋 to a set 𝑌 can be made into a poset, as follows:
Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and tak-

ing values in 𝑌 ;
Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if

graph(𝑓 ) ⊆ graph(𝑔).
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It was this domain for the case 𝑋 = 𝑌 = State that we used for the denotation of
commands in Section 1.1. ∗
Definition 2 (Monotone function) A function 𝑓 : 𝐷 → 𝐸 between posets is mono-
tone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′). ∗

Example 2 Given posets 𝐷 and 𝐸, for each 𝑒 ∈ 𝐸 it is easy to see that the constant
function 𝐷 → 𝐸 with value 𝑒, 𝜆𝑑 ∈ 𝐷 . 𝑒, is monotone. ∗
Example 3 When 𝐷 is the domain of partial functions (State ⇀ State) (Example 1),
the function 𝐹𝑏,𝑐 : 𝐷 → 𝐷 defined in Section 1.2 in connection with the denotational
semantics of 𝚠𝚑𝚒𝚕𝚎-loops is a monotone function. ∗

We leave the verification of this as an exercise.

2.2 Least elements and pre-fixed points

Definition 3 (Least element) Suppose that 𝐷 is a poset and that 𝑆 is a subset of 𝐷.
An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.
If it exists, it is unique (by antisymmetry), and is written ⊥𝑆 , or simply ⊥. ∗
Beware: a poset may not have a least element! For example, ℤ with its usual partial

order does not have a least element.

Definition 4 (Fixed point) A fixed point for a function 𝑓 : 𝐷 → 𝐷 is an element
𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .

However, when 𝐷 is a poset, we can consider the weaker notion of pre-fixed point.

Definition 5 ((Least) pre-fixed point) Let 𝐷 be a poset and 𝑓 : 𝐷 → 𝐷 be a func-
tion. An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 . The least
pre-fixed point of 𝑓 , if it exists, will be written

fix(𝑓 )
It is thus (uniquely) specified by the two properties:

𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) (lfp-fix)

∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓 ) ⊑ 𝑑 (lfp-least)

∗
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Proposition 1 (Least pre-fixed points are least fixed points) Suppose𝐷 is a poset
and 𝑓 : 𝐷 → 𝐷 is a function possessing a least pre-fixed point, fix(𝑓 ). Provided 𝑓 is
monotone, fix(𝑓 ) is in particular a fixed point for 𝑓 , and hence is the least element of
the set of fixed points for 𝑓 , since every fixed point is a pre-fixed point. ∗
Proof By definition, fix(𝑓 ) is a pre-fixed point. Thus, by monotony of 𝑓 , we can
apply 𝑓 to both sides of (lfp1) to conclude that

𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 )).
Then applying property (lfp2) with 𝑑 = 𝑓 (fix(𝑓 )), we get that

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 )).
Combining this with (lfp1) and the anti-symmetry property of the partial order ⊑, we
get 𝑓 (fix(𝑓 )) = fix(𝑓 ), as required. □

Thus, while being a pre-fixed point is a weaker notion, being the least pre-fixed point
is stronger than being the least fixed point.

2.3 Least upper bounds

Definition 6 (Least upper bound of a chain) A countable, increasing chain in a poset
𝐷 is a sequence (𝑑𝑖)𝑖∈ℕ of elements of 𝐷 satisfying

𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …
An upper bound for the chain is any 𝑑 ∈ 𝐷 satisfying ∀𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑑 . If it exists, the
least upper bound, or lub, of the chain will be written as ⨆𝑛≥0 𝑑𝑛. Thus, by definition:

• ∀𝑚 ∈ ℕ. 𝑑𝑚 ⊑ ⨆𝑛≥0 𝑑𝑛.
• For any 𝑑 ∈ 𝐷, if ∀𝑚 ∈ ℕ. 𝑑𝑚 ⊑ 𝑑 , then ⨆𝑛≥0 𝑑𝑛 ⊑ 𝑑 . ∗

Remark 1
(i) We will not need to consider uncountable, or decreasing chains in a poset: so a

‘chain’ will always mean a countable, increasing chain.
(ii) We will also not need to consider least upper bounds of general sets rather than

chains – but most of what we do here generalizes smoothly.
(iii) While the least element of 𝑆 is an element of 𝑆, the lub of a chain is not nec-

essarily an element of the chain (and, in fact, the interesting case is when it is
not).

(iv) Like the least element of a set, the lub of a chain is unique if it exists. (It does
not have to exist: for example the chain 0 ≤ 1 ≤ 2 ≤ … in ℕ has no upper
bound, hence no lub.)
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(v) A least upper bound is sometimes called a supremum. Some other common
notations for ⨆𝑛≥0 𝑑𝑛 are:

∞
⨆
𝑛=0

𝑑𝑛 and ⨆{𝑑𝑛 ∣ 𝑛 ≥ 0} .

The latter can be used more generally with any set: ⨆𝑆 is the lub of 𝑆. ∗
We can already spell out some easy properties of lubs.

Proposition 2 (Monotonicity of lubs) For every pair of chains

𝑑0 ⊑ 𝑑1 ⊑ … ⊑ 𝑑𝑛 ⊑ … and 𝑒0 ⊑ 𝑒1 ⊑ … ⊑ 𝑒𝑛 ⊑ …
if 𝑑𝑛 ⊑ 𝑒𝑛 for all 𝑛 ∈ ℕ then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛, provided they exist. ∗
Proposition 3 (Discarding elements) If we discard any finite number of elements at
the beginning of a chain, we do not affect its set of upper bounds and hence do not change
its lub. That is, for any 𝑁 ∈ ℕ we have (provided any of the two exists):

⨆
𝑛≥0

𝑑𝑛 = ⨆
𝑛≥0

𝑑𝑁+𝑛.
∗

Proposition 4 (Eventually constant chain) The elements of a chain do not necessar-
ily have to be distinct. In particular, we say that a chain 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … is eventually
constant if for some 𝑁 ∈ ℕ it is the case that ∀𝑛 ≥ 𝑁 . 𝑑𝑛 = 𝑑𝑁 . For such a chain, we
have ⨆𝑛≥0 𝑑𝑛 = 𝑑𝑁 . ∗
Proposition 5 (Diagonalisation) Let 𝐷 be a poset. Suppose that the doubly-indexed
family of elements 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies

𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

and
⨆
𝑚≥0

𝑑𝑚,0 ⊑ ⨆
𝑚≥0

𝑑𝑚,1 ⊑ ⨆
𝑚≥0

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚≥0

(⨆
𝑛≥0

𝑑𝑚,𝑛) = ⨆
𝑘≥0

𝑑𝑘,𝑘 = ⨆
𝑛≥0

(⨆
𝑚≥0

𝑑𝑚,𝑛) .

∗
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Proof First note that if 𝑚 ≤ 𝑚′ then

𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 by property (†) of the 𝑑𝑚,𝑛
⊑ ⨆

𝑛′≥0
𝑑𝑚′,𝑛′ because the lub is an upper bound

for all 𝑛 ≥ 0, hence, by minimality of the lub, ⨆𝑛≥0 𝑑𝑚,𝑛 ⊑ ⨆𝑛′≥0 𝑑𝑚′,𝑛′ . Thus, we do
indeed get a chain of lubs

⨆
𝑛≥0

𝑑0,𝑛 ⊑ ⨆
𝑛≥0

𝑑1,𝑛 ⊑ ⨆
𝑛≥0

𝑑2,𝑛 ⊑ …

Using the bound property twice we have

𝑑𝑘,𝑘 ⊑ ⨆
𝑛≥0

𝑑𝑘,𝑛 ⊑ ⨆
𝑚≥0

⨆
𝑛≥0

𝑑𝑚,𝑛

for each 𝑘 ≥ 0, and so by minimality of the lub,

⨆
𝑘≥0

𝑑𝑘,𝑘 ⊑ ⨆
𝑚≥0

⨆
𝑛≥0

𝑑𝑚,𝑛. (4)

Conversely, for each 𝑚, 𝑛 ≥ 0, note that

𝑑𝑚,𝑛 ⊑ 𝑑max(𝑚,𝑛),max(𝑚,𝑛) by property (†)

⊑ ⨆
𝑘≥0

𝑑𝑘,𝑘 because the lub is an upper bound

and hence applying minimality of the lub twice we have

⨆
𝑚≥0

⨆
𝑛≥0

𝑑𝑚,𝑛 ⊑ ⨆
𝑘≥0

𝑑𝑘,𝑘 . (5)

Combining (4) and (5) with the anti-symmetry property of ⊑ yields the desired equal-
ity. We obtain the additional equality by the same argument but interchanging the
roles of 𝑚 and 𝑛. □

2.4 Complete partial orders and domains

In this course, we will be interested in certain posets, called chain complete posets and
domains, which enjoy completeness properties: every chain has a least upper bound.

Definition 7 (Cpos) A chain complete poset, or cpo, is a poset (𝐷, ⊑)where all chains
have a least upper bound. ∗
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In a cpo, we only need to verify that a sequence of elements forms a chain to know it
has a lub, so e.g. in Proposition 5 above we automatically know that all the lubs exist.

Definition 8 (Domain) A domain is a cpo that possesses a least element. ∗

It should be noted that the term ‘domain’ is used rather loosely in the literature
on denotational semantics: there are many kinds of domains, enjoying various extra
order-theoretic properties over and above the ratherminimal ones of chain-completeness
and possession of a least element that we need for this course. Still, most of what we
will do here carries over directly to these other settings.

Example 4 (Domain of partial functions) The poset (𝑋 ⇀ 𝑌) of partial functions
from a set 𝑋 to a set 𝑌 , as defined in Example 1 can be made into a domain.
Least element: ⊥ is the totally undefined function.
Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise ∗

Note that this definition of the lub is well-defined only if the 𝑓𝑛 form a chain. In-
deed, this implies that the 𝑓𝑛 agree where they are defined, and so the definition is
unambiguous. We leave it as an exercise to check that this 𝑓 is indeed the least upper
bound of 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … in the poset (𝑋 ⇀ 𝑌 , ⊑).

It was this domain for the case 𝑋 = 𝑌 = State that we used for the denotation of
commands in Section 1.1.

Example 5 (Finite cpos) Any poset (𝐷, ⊑) whose underlying set 𝐷 is finite is a cpo.
For in such a poset any chain is eventually constant, and we noted in Proposition 4
that such a chain always possesses a lub. Of course, a finite poset need not have a
least element, and hence need not be a domain—for example, consider the poset with
Hasse diagram

•

• •

← → ←

→

(A Hasse diagram for a poset (𝐷, ⊑) is a directed graph 𝐺 with𝐷 as vertices, such that
𝑥 ⊑ 𝑦 iff there is a path in 𝐺 from 𝑥 to 𝑦 . Equivalently, ⊑ is the reflexive, transitive
closure of the (oriented) adjacency relation of 𝐺 , where 𝑥 is adjacent to 𝑦 if there is
an edge from 𝑥 to 𝑦 .) ∗
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Example 6 (Flat natural numbers) The flat natural numbers ℕ⊥ is the poset given
by the following Hasse diagram:

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←

→

←

→

←

→ ⋯ ← →←

→
⋯

∗

A partial function𝑋 ⇀ ℕ is the same as a monotone function from the poset (𝑋 , =)
(equality is a trivial pre-order) to (ℕ⊥, ⊑). Thus, flat natural numbers give us a way to
express partiality, which we will use further in this course.

Example 7 (Non-example: natural numbers) The set of natural numbersℕ equipped
with the usual partial order, ≤, is not a cpo. For the increasing chain 0 ≤ 1 ≤ 2 ≤ …
has no upper bound in ℕ. ∗

Example 8 (‘Vertical’ extended natural numbers) The set 𝜔 +1, given by the fol-
lowing Hasse diagram, is a domain.

𝜔

𝑛 + 1
𝑛

1
0

← →
←
→

← →
←

→

∗

Example 9 (Non-example: no least upper bound) Consider a modified version of
Example 8, in which we adjoin not one but two different upper bounds to ℕ, corre-
sponding to the following Hasse diagram:

18



𝜔1 𝜔2

⋮
𝑛 + 1
𝑛

1
0

←→←→

←
→

←

→
←

→

←
→

← →
←

→
Then the increasing chain 0 ⊑ 1 ⊑ 2 ⊑ … has two upper bounds (𝜔1 and 𝜔2), but no
least one (since 𝜔1 ⋢ 𝜔2 and 𝜔2 ⋢ 𝜔1). So this poset is not a cpo. ∗

2.5 Continuous functions

Definition 9 (Continuity) Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is contin-
uous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

𝑓 (⨆
𝑛≥0

𝑑𝑛) = ⨆
𝑛≥0

𝑓 (𝑑𝑛)
∗

Definition 10 (Strictness) Let 𝐷 and 𝐸 be two posets with least elements ⊥𝐷 and
⊥𝐸 . A function 𝑓 is strict if 𝑓 (⊥𝐷) = ⊥𝐸 . ∗

Remark 2 Note that if 𝑓 : 𝐷 → 𝐸 is monotone and 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … is a chain in 𝐷,
then applying 𝑓 we get a chain 𝑓 (𝑑0) ⊑ 𝑓 (𝑑1) ⊑ 𝑓 (𝑑2) ⊑ … in 𝐸. Moreover, if 𝑑 is an
upper bound of the first chain, then 𝑓 (𝑑) is an upper bound of the second and hence
is greater than its lub. Hence, if 𝑓 : 𝐷 → 𝐸 is a monotone function between cpos, we
always have

⨆
𝑛≥0

𝑓 (𝑑𝑛) ⊑ 𝑓 (⨆
𝑛≥0

𝑑𝑛)

Therefore (using the antisymmetry property of ⊑), to check that a monotone function
𝑓 between cpos is continuous, it suffices to check for each chain 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … in 𝐷
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that

𝑓 (⨆
𝑛≥0

𝑑𝑛) ⊑ ⨆
𝑛≥0

𝑓 (𝑑𝑛)

holds in 𝐸. ∗
Example 10 (Constant functions) Given cpos 𝐷 and 𝐸, for each 𝑒 ∈ 𝐸 the constant
function 𝐷 → 𝐸 with value 𝑒, 𝜆𝑑 ∈ 𝐷. 𝑒, is continuous. ∗
Example 11 When𝐷 is the domain of partial functions (State ⇀ State), the function
𝐹𝑏,𝑐 : 𝐷 → 𝐷 defined in Section 1.2 connection with the denotational semantics of
𝚠𝚑𝚒𝚕𝚎-loops is a continuous function. We leave the verification of this as an exercise.∗
Example 12 (Non-example) Let Ω be the domain of vertical natural numbers, as
defined in Example 8. Then the function 𝑓 : Ω → Ω defined by

{𝑓 (𝑛) = 0 (𝑛 ∈ ℕ)
𝑓 (𝜔) = 𝜔.

is monotone and strict, but it is not continuous because

𝑓 (⨆
𝑛≥0

𝑛) = 𝑓 (𝜔) = 𝜔 ≠ 0 = ⨆
𝑛≥0

0 = ⨆
𝑛≥0

𝑓 (𝑛).
∗

2.6 Kleene’s fixed point theorem

We now reach the key result about continuous functions on domains which permits
us to give denotational semantics of programs involving recursive features.

Define 𝑓 𝑛(𝑥) as follows:

{𝑓
0(𝑥) def= 𝑥

𝑓 𝑛+1(𝑥) def= 𝑓 (𝑓 𝑛(𝑥)).
Since ∀𝑑 ∈ 𝐷. ⊥ ⊑ 𝑑 , one has 𝑓 0(⊥) = ⊥ ⊑ 𝑓 1(⊥); and by monotonicity of 𝑓

𝑓 𝑛(⊥) ⊑ 𝑓 𝑛+1(⊥) ⇒ 𝑓 𝑛+1(⊥) = 𝑓 (𝑓 𝑛(⊥)) ⊑ 𝑓 (𝑓 𝑛+1(⊥)) = 𝑓 𝑛+2(⊥).
Therefore, by induction on 𝑛 ∈ ℕ, the elements 𝑓 𝑛(⊥) form a chain in 𝐷:

𝑓0(⊥) ⊑ 𝑓1(⊥) ⊑ … ⊑ 𝑓𝑛(⊥) ⊑ 𝑓𝑛+1(⊥) ⊑ …
So since 𝐷 is a cpo, this chain has a least upper bound.
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Theorem 6 (Kleene’s fixed point theorem) Let 𝑓 : 𝐷 → 𝐷 be a continuous function
on a domain 𝐷. Then 𝑓 possesses a least pre-fixed point, given by

fix(𝑓 ) = ⨆
𝑛≥0

𝑓 𝑛(⊥).
∗

By Proposition 1, fix(𝑓 ) is thus also the least fixed point of 𝑓 .
This theorem is sometimes attributed (amongst others) to Tarski. Another, different,

fixed point theorem more often attributed to Tarski (or Knaster-Tarski) gives the exis-
tence of fixed point of monotone functions on complete lattices (posets where every
subset has an upper and lower bound).

Proof First note that

𝑓 (fix(𝑓 )) = 𝑓 (⨆
𝑛≥0

𝑓 𝑛(⊥))

= ⨆
𝑛≥0

𝑓 (𝑓 𝑛(⊥)) by continuity of 𝑓

= ⨆
𝑛≥0

𝑓 𝑛+1(⊥) by definition of 𝑓 𝑛

= ⨆
𝑛≥0

𝑓 𝑛(⊥) by Proposition 3

= fix(𝑓 ).
So fix(𝑓 ) is a fixed point for 𝑓 , and hence in particular a pre-fixed point. To verify
that it is a least pre-fixed point, suppose that 𝑑 ∈ 𝐷 satisfies 𝑓 (𝑑) ⊑ 𝑑 . Then since ⊥
is least in 𝐷

𝑓 0(⊥) = ⊥ ⊑ 𝑑
and assuming 𝑓 𝑛(⊥) ⊑ 𝑑 , we have

𝑓 𝑛+1(⊥) = 𝑓 (𝑓 𝑛(⊥)) ⊑ 𝑓 (𝑑) monotonicity of 𝑓
⊑ 𝑑 by assumption on 𝑑 .

Hence by induction on 𝑛 ∈ ℕ we have ∀𝑛 ∈ ℕ. 𝑓 𝑛(⊥) ⊑ 𝑑 . Therefore 𝑑 is an upper
bound for the chain and hence lies above the least such, i.e.

fix(𝑓 ) = ⨆
𝑛≥0

𝑓 𝑛(⊥) ⊑ 𝑑.

Since this is the case for every pre-fixed point, fix(𝑓 ) is indeed the least pre-fixed
point, as claimed. □
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Example 13 Our running example, the function 𝐹J𝐵K,J𝐶K, is continuous (Exercise 3)
on the domain State ⇀ State. So we can apply the fixed point theorem above, and
define J𝚠𝚑𝚒𝚕𝚎 𝐵 𝚍𝚘 𝐶K to be fix(𝐹J𝐵K,J𝐶K). Actually, the method used to construct
the partial function 𝑤∞ at the end of Section 1.2 is an instance of the method used in
the proof of the fixed point theorem to construct least pre-fixed points. ∗

2.7 Exercises

Exercise 1 Verify the claims of Examples 1 and 4: that the relation ⊑ defined there is
a partial order; that 𝑓 is indeed the lub of the chain 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … ; and that the
totally undefined partial function is the least element.

Exercise 2 Show the properties of least upper bounds given in Remark 1(iv), Propo-
sition 2, Proposition 3 and Proposition 4:

• lubs are unique;
• lubs are monotone;
• discarding a finite number of elements at the beginning of a chain does not

change its lub;
• eventually constant chains always have a lub, which is their ultimate value.

Exercise 3 Let 𝑏 ∈ State ⇀ 𝔹 and 𝑐 ∈ State ⇀ State be two monotone and contin-
uous functions. Recall we defined 𝐹𝑏,𝑐 in Section 1.2 as

𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏(𝑠), 𝑤 ∘ 𝑐(𝑠), 𝑠).

Verify our claims that the function 𝐹𝑏,𝑐 is monotone and continuous. When is it strict?
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3 Constructions on Domains
Using Kleene’s fixed point theorem, we now know how we can compute fixed points,
given we are dealing with continuous functions in a domain. But this is only useful if
we know how to construct interesting domains and continuous functions.

Thus, in this section we give various ways of building domains and continuous func-
tions, concentrating on the ones that will be needed for a denotational semantics of
the programming language Pcf studied in the second half of the course. Recall that
to specify a cpo one must define a set equipped with a binary relation and then prove
that

(i) the relation is a partial order;
(ii) lubs exist for all chains in the partially ordered set.
Furthermore, for the cpo to be a domain, one additionally must show that
(iii) there is a least element.

Note that since lubs of chains and least elements are unique if they exist, a cpo or
domain is completely determined by its underlying set and partial order. In what
follows we will give various recipes for constructing cpos and domains and leave as an
exercise the task of checking that they are indeed domains, i.e. that properties (i)–(iii)
do hold.

3.1 Flat domains

In order to model the Pcf ground types 𝚗𝚊𝚝 and 𝚋𝚘𝚘𝚕, we will use the notion of flat
domain, that we already encountered in Example 6.

Definition 11 (Discrete cpo) For any set 𝑋 , the relation of equality makes (𝑋 , =)
into a partial order, called the discrete order with underlying set 𝑋 . This poset is in
fact a cpo. ∗
Definition 12 (Flat domain) The flat domain on a set 𝑋 is defined by:

• its underlying set 𝑋 ⨄{⊥} (i.e. 𝑋 extended with a new element ⊥);
• 𝑥 ⊑ 𝑥′ if either 𝑥 = ⊥ or 𝑥 = 𝑥′. ∗

The Hasse diagram of a flat domain looks as follows (the only edges relate ⊥ to the
elements of 𝑋 ):

𝑋

⊥

23



The following instances of continuous functions between flat domains will also be
needed for the denotational semantics of Pcf.

Proposition 7 (Flat domain lifting) Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function between
two sets. Then

𝑓⊥ : 𝑋⊥ → 𝑌⊥

𝑑 ↦ {
𝑓 (𝑑) if 𝑑 ∈ 𝑋 and 𝑓 is defined at 𝑑
⊥ if 𝑑 ∈ 𝑋 and 𝑓 is not defined at 𝑑
⊥ if 𝑑 = ⊥

defines a strict continuous function between the corresponding flat domains. ∗

3.2 Products of domains

Definition 13 (Binary product of two orders) The product of two posets (𝐷1, ⊑1)
and (𝐷2, ⊑2) has underlying set

𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}
and partial order ⊑ defined by

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2 ∗

Proposition 8 (Products preserve lubs and least element) lubs of chains are com-
puted componentwise:

⨆
𝑛≥0

(𝑑1,𝑛, 𝑑2,𝑛) = (⨆
𝑖≥0

𝑑1,𝑖,⨆
𝑗≥0

𝑑2,𝑗).

If (𝐷1, ⊑1) and (𝐷2, ⊑2) have least elements, so does (𝐷1 × 𝐷2, ⊑) with
⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Thus, the product of two cpos (respectively domains) is a cpo (respectively domain). ∗

Proposition 9 (Functions of two arguments) Let 𝐷, 𝐸 and 𝐹 be cpos. A function
𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone if and only if it is monotone in each argument separately:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).
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Moreover, it is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆
𝑚≥0

𝑑𝑚 , 𝑒) = ⨆
𝑚≥0

𝑓 (𝑑𝑚, 𝑒)

𝑓 (𝑑 , ⨆
𝑛≥0

𝑒𝑛) = ⨆
𝑛≥0

𝑓 (𝑑, 𝑒𝑛). ∗

Proof The ‘only if’ directions are straightforward. Indeed, observe that if 𝑑 ⊑ 𝑑′ then
(𝑑, 𝑒) ⊑ (𝑑′, 𝑒), and

(⨆
𝑚≥0

𝑑𝑚, 𝑒) = ⨆
𝑚≥0

(𝑑𝑚, 𝑒)

as well as the companion facts for the right argument.
For the ‘if’ direction, suppose first that 𝑓 is monotone in each argument separately.

Then given (𝑑, 𝑒) ⊑ (𝑑′, 𝑒′) in 𝐷 × 𝐸, by definition of the partial order on the binary
product we have 𝑑 ⊑ 𝑑′ in 𝐷 and 𝑒 ⊑ 𝑒′ in 𝐸. Hence,

𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒) by monotonicity in the first argument

⊑ 𝑓 (𝑑′, 𝑒′) by monotonicity in the second argument

and therefore by transitivity, 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒′), as required for monotonicity of 𝑓 .
Now suppose 𝑓 is continuous in each argument separately. Then given a chain

(𝑑0, 𝑒0) ⊑ (𝑑1, 𝑒1) ⊑ (𝑑2, 𝑒2) ⊑ … in the binary product, we have

𝑓 (⨆
𝑛≥0

(𝑑𝑛, 𝑒𝑛)) = 𝑓 (⨆
𝑖≥0

𝑑𝑖 ,⨆
𝑗≥0

𝑒𝑗) lubs are componentwise (Prop. 8)

= ⨆
𝑖≥0

𝑓 (𝑑𝑖,⨆
𝑗≥0

𝑒𝑗) by continuity in the first argument

= ⨆
𝑖≥0

(⨆
𝑗≥0

𝑓 (𝑑𝑖, 𝑒𝑗)) by continuity in the second argument

= ⨆
𝑛≥0

𝑓 (𝑑𝑛, 𝑒𝑛) by diagonalisation (Prop. 5)

as required for continuity of 𝑓 . □

Proposition 10 (Projections and pairing) Let 𝐷1 and 𝐷2 be cpos. The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2
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are continuous functions.
If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are continuous functions from a cpo 𝐷, then the

pairing function
⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2

𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))
is continuous. ∗
Proof Continuity of these functions follows immediately from the characterisation
of lubs of chains in 𝐷1 × 𝐷2 given in Proposition 8. □

We can generalize the product construction to not just a binary product, but any
product.

Definition 14 (General product of posets) Given a set 𝐼 , suppose that for each 𝑖 ∈
𝐼 we are given a cpo (𝐷𝑖, ⊑𝑖). The product of this whole family of cpos has

• underlying set equal to the 𝐼 -fold cartesian product, ∏𝑖∈𝐼 𝐷𝑖, of the sets 𝐷𝑖 – so
it consists of all functions 𝑝 defined on 𝐼 and such that the value of 𝑝 at each
𝑖 ∈ 𝐼 is some 𝑝(𝑖) ∈ 𝐷𝑖;

• partial order ⊑ defined componentwise, that is

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ⊑𝑖 𝑝′(𝑖). ∗

Remark 3 The usual binary product can be seen as a special case of the above, when
taking 𝐼 to be a two-element set, for instance 𝔹. Indeed, an element 𝑝 ∈ ∏𝑖∈𝔹 𝐷𝑖
corresponds to (𝑝 true, 𝑝 false) ∈ 𝐷true × 𝐷false. ∗
Proposition 12 (General products of cpos and domains) As for the binary prod-
uct, lubs in (∏𝑖∈𝐼 𝐷𝑖, ⊑) can be computed componentwise: if 𝑝0 ⊑ 𝑝1 ⊑ 𝑝2 ⊑ … is a
chain in the product cpo, its lub is the function mapping each 𝑖 ∈ 𝐼 to the lub in 𝐷𝑖 of the
chain 𝑝0(𝑖) ⊑ 𝑝1(𝑖) ⊑ 𝑝2(𝑖) ⊑ … . Said otherwise,

(⨆
𝑛≥0

𝑝𝑛) (𝑖) = ⨆
𝑛≥0

𝑝𝑛(𝑖) (𝑖 ∈ 𝐼 ).

In particular, for each 𝑖 ∈ 𝐼 the 𝑖th projection function

𝜋𝑖 : ∏𝑗∈𝐼 𝐷𝑗 → 𝐷𝑖
𝑝 ↦ 𝑝(𝑖)

is continuous.
If all the 𝐷𝑖 are domains, then so is their product – the least element being the function

mapping each 𝑖 ∈ 𝐼 to the least element of 𝐷𝑖. ∗
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3.3 Function domains

The set of continuous functions between two cpos/domains can itself be made into a
cpo/domain. The terminology ‘exponential’ cpo/domain is sometimes used instead of
‘function’ cpo/domain.

Definition 15 (Cpo/domain of continuous functions) Given two cpos (𝐷, ⊑𝐷) and
(𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has underlying set

{𝑓 : 𝐷 → 𝐸 ∣ is a continuous function}
equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).
As for products, lubs and least elements always exist and are computed ‘argument-

wise’, using lubs in 𝐸:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛≥0

𝑓𝑛) (𝑑) = ⨆
𝑛≥0

𝑓𝑛(𝑑)

∗
Proof The proof that argumentwise least elements and lubs are themselves least el-
ements and lubs is essentially similar to that for products, see Proposition 8.

However, we should additionally show that the lub of a chain of functions, ⨆𝑛≥0 𝑓𝑛,
is continuous. The proof uses the ‘interchange law’ of Proposition 5. Given a chain in
𝐷,

(⨆
𝑛≥0

𝑓𝑛)((⨆
𝑚≥0

𝑑𝑚)) = ⨆
𝑛≥0

(𝑓𝑛(⨆
𝑚≥0

𝑑𝑚)) definition of ⨆
𝑛≥0

𝑓𝑛

= ⨆
𝑛≥0

(⨆
𝑚≥0

𝑓𝑛(𝑑𝑚)) continuity of each 𝑓𝑛

= ⨆
𝑚≥0

(⨆
𝑛≥0

𝑓𝑛(𝑑𝑚)) interchange law

= ⨆
𝑚≥0

((⨆
𝑛≥0

𝑓𝑛)(𝑑𝑚)) definition of ⨆
𝑛≥0

𝑓𝑛.

□

Note that we actually did not use the fact that 𝐷 is a cpo/domain: it suffices that 𝐸
is. Intuitively, the structure of the function space is inherited from the structure of 𝐸,
since it is pointwise.

All the familiar operations on functions actually lift to the cpo structure, in the sense
that they aremonotone and continuous, when seen as functions from/into the relevant
function cpos.
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Proposition 13 (Evaluation) Given cpos 𝐷 and 𝐸, the evaluation function

eval : (𝐷 → 𝐸) × 𝐷 → 𝐸
(𝑓 , 𝑑) ↦ 𝑓 (𝑑) ∗

is continuous.

Proposition 14 (Currying1) Given any continuous function 𝑓 : 𝐷′ ×𝐷 → 𝐸 (with 𝐷,
𝐷′ and 𝐸 cpos), for each 𝑑′ ∈ 𝐷′ the function 𝜆𝑑 ∈ 𝐷. 𝑓 (𝑑′, 𝑑) is continuous (Proposi-
tion 9) and hence determines an element of the function cpo 𝐷 → 𝐸 that we denote by
cur(𝑓 )(𝑑′). Then

cur(𝑓 ) : 𝐷′ → (𝐷 → 𝐸)
𝑑′ ↦ 𝜆𝑑 ∈ 𝐷. 𝑓 (𝑑′, 𝑑)

is well-defined (i.e. 𝜆𝑑 ∈ 𝐷.𝑓 (𝑑′, 𝑑) is a continuous function) and continuous. ∗

Proposition 15 (Continuity of composition) For cpos𝐷, 𝐸, 𝐹 , the composition func-
tion 𝑐𝑖𝑟 𝑐 defined by

∘ : ((𝐸 → 𝐹) × (𝐷 → 𝐸)) ⟶ (𝐷 → 𝐹)
(𝑓 , 𝑔) ↦ 𝜆𝑑 ∈ 𝐷. 𝑔(𝑓 (𝑑))

is a well-defined continuous function. ∗

Proof For continuity of eval note that

eval(⨆
𝑛≥0

(𝑓𝑛, 𝑑𝑛)) = eval(⨆
𝑖≥0

𝑓𝑖 ,⨆
𝑗≥0

𝑑𝑗) lubs in products are componentwise

= (⨆
𝑖≥0

𝑓𝑖) (⨆
𝑗≥0

𝑑𝑗) by definition of eval

= ⨆
𝑖≥0

𝑓𝑖(⨆
𝑗≥0

𝑑𝑗) lubs in function cpos are argumentwise

= ⨆
𝑖≥0

⨆
𝑗≥0

𝑓𝑖(𝑑𝑗) by continuity of each 𝑓𝑖

= ⨆
𝑛≥0

𝑓𝑛(𝑑𝑛) by diagonalisation

= ⨆
𝑛≥0

eval(𝑓𝑛, 𝑑𝑛) by definition of eval.

1The name ‘currying’ is given to this operation in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.
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The continuity of each cur(𝑓 )(𝑑′) and then of cur(𝑓 ) follows immediately from the
fact that lubs of chains in 𝐷1 × 𝐷2 can be calculated componentwise.

The continuity of 𝑔 ∘ 𝑓 is a direct consequence of that of 𝑔 and 𝑓 . Continuity of ∘
again follows directly from diagonalisation. □

More interestingly, if 𝐷 is a domain then by Kleene’s fixed point theorem (Theo-
rem 6) we know that each continuous function 𝑓 ∈ (𝐷 → 𝐷) possesses a least fixed
point, fix(𝑓 ) ∈ 𝐷.

Proposition 16 (Continuity of the fixed point operator) The function

fix: (𝐷 → 𝐷) → 𝐷 ∗
is continuous.

Proof We must first prove that fix: (𝐷 → 𝐷) → 𝐷 is a monotone function. Suppose
𝑓1 ⊑ 𝑓2 in the function domain 𝐷 → 𝐷. We have to prove fix(𝑓1) ⊑ fix(𝑓2). But:

𝑓1(fix(𝑓2)) ⊑ 𝑓2(fix(𝑓2)) since 𝑓1 ⊑ 𝑓2
⊑ fix(𝑓2) because fix(𝑓2) is a pre-fixed point.

So fix(𝑓2) is a pre-fixed point for 𝑓1 and hence by minimality of fix(𝑓1) amongst pre-
fixed points, we have fix(𝑓1) ⊑ fix(𝑓2), as required.

Turning now to the preservation of lubs of chains, suppose 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … in
𝐷 → 𝐷. Recalling Remark 2, we just have to prove that

fix(⨆
𝑛≥0

𝑓𝑛) ⊑ ⨆
𝑛≥0

fix(𝑓𝑛)

and by the minimality of the least pre-fixed point, for this it suffices to show that
⨆𝑛≥0 fix(𝑓𝑛) is a pre-fixed point for the function ⨆𝑛≥0 𝑓𝑛. This is the case because:

(⨆
𝑚≥0

𝑓𝑚)(⨆
𝑛≥0

fix(𝑓𝑛)) = ⨆
𝑚≥0

𝑓𝑚(⨆
𝑛≥0

fix(𝑓𝑛)) function lubs are argumentwise

= ⨆
𝑚≥0

⨆
𝑛≥0

𝑓𝑚(fix(𝑓𝑛)) by continuity of each 𝑓𝑚

= ⨆
𝑘≥0

𝑓𝑘(fix(𝑓𝑘)) by diagonalisation

Moreover, each fix(𝑓𝑘) is a pre-fixed point, i.e. 𝑓𝑘(fix(𝑓𝑘)) ⊑ fix(𝑓𝑘), and so by
monotony of lubs (Proposition 2),

(⨆
𝑚≥0

𝑓𝑚)(⨆
𝑛≥0

fix(𝑓𝑛)) = ⨆
𝑘≥0

𝑓𝑘(fix(𝑓𝑘)) ⊑ ⨆
𝑘≥0

fix(𝑓𝑘)

as required. □
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3.4 Exercises

Exercise 4 Verify that the constructions given in Definition 12 (flat domains), Defi-
nition 13 (binary products), and Definition 14 (general product) indeed form domains
(for the latter two, this is respectively Proposition 8 and Proposition 12).

Verify that the flat domain lifting of functions (Proposition 7) and the if function
(Proposition 11) are continuous.

Exercise 5 Let 𝑋 and 𝑌 be sets and 𝑋⊥ and 𝑌⊥ the corresponding flat domains (Def-
inition 12). Show that a function 𝑓 : 𝑋⊥ → 𝑌⊥ is continuous if and only if one of the
following alternatives holds:

(a) 𝑓 is strict, i.e. 𝑓 (⊥) = ⊥;
(b) 𝑓 is constant, i.e. ∀𝑥, 𝑥′ ∈ 𝑋 . 𝑓 (𝑥) = 𝑓 (𝑥′).

Exercise 6 Let {⊤} be a one-element set and {⊤}⊥ the corresponding flat domain. Let
Ω be the domain of ‘vertical natural numbers’, defined in Example 8. Show that the
function domain (Ω → {⊤}⊥) is in bijection with Ω.

Exercise 7 Prove Propositions 14 and 15, i.e. that currying and composition are con-
tinuous.
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4 Scott Induction

4.1 Reasoning on fixed points

We now know how to construct fixed points using Kleene’s fixed point theorem (The-
orem 6), provided we are considering a continuous function between domains. More-
over, in Section 3, we have given a handful of way to create new interesting domains
(flat domains (Definition 12), product domains (Definitions 13 and 14), and function
domains (Definition 15)), and continuous functions between those.

We are missing an ingredient, however: how to reason on fixed points, i.e. prove
properties of the fixed points we know how to construct. Since Kleene’s fixed point
theorem gives an explicit construction of fix(𝑓 ) as ⨆𝑛 𝑓 𝑛(⊥), we can reason using
this construction. To show Φ(fix(𝑓 )) for some property Φ, this would typically go as
follows. First, show that Φ(⊥) holds, and that if Φ(𝑓 𝑛(⊥)) holds, then Φ(𝑓 𝑛+1(⊥))
holds. By induction on ℕ, we get that for all 𝑛 ∈ ℕ, Φ(𝑓 𝑛(⊥)) holds. If moreover for
any chain 𝑑0 ⊑ 𝑑1 ⊑ … such that ∀𝑛 ∈ ℕ. Φ(𝑑𝑛), we have Φ (⨆𝑛 𝑑𝑛), in particular we
get Φ(⨆𝑛 𝑓 𝑛(⊥)), i.e. Φ(fix(𝑓 )).

We can package this common reasoning into a form of induction principle, called
‘Scott induction’.

Theorem 17 (Scott induction) Let 𝐷 be a domain, 𝑓 : 𝐷 → 𝐷 be a continuous func-
tion and 𝑆 ⊆ 𝐷 be a subset of 𝐷. If the set 𝑆

(i) contains ⊥,
(ii) is chain-closed, i.e. the lub of any chain of elements of 𝑆 is also in 𝑆,
(iii) is stable for 𝑓 , i.e. 𝑓 (𝑆) ⊆ 𝑆,

then fix(𝑓 ) ∈ 𝑆. ∗

Remark 4 A set that satisfies the first and second items, i.e. that contains ⊥ and is
chain-closed, is sometimes called an admissible set.

We expressed Scott induction in terms of a subset, but it can be alternatively phrased
in terms of a property Φ, by taking 𝑆 to be {𝑑 ∈ 𝐷 ∣ Φ(𝑑)}. Accordingly, we will use
the terms chain-closed, admissible and stable for 𝑓 for properties, too. ∗

Example 14 Consider the domain Ω of ‘vertical natural numbers’ pictured in Exam-
ple 8. Then

• any finite subset of Ω is chain-closed;
• {0, 2, 4, 6, … } is not a chain-closed subset of Ω;
• {0, 2, 4, 6, … } ∪ {𝜔} is a chain-closed (indeed, is an admissible) subset of Ω.
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4.2 Building chain-closed subsets

The difficulty with applying Scott induction usually lies in identifying an appropriate
subset 𝑆; i.e. in finding a suitably strong ‘induction hypothesis’. Luckily, we can show
that a large family of sets are at least chain-closed.

Proposition 18 (Basic relations) Let 𝐷 be a cpo. The subsets

{(𝑥, 𝑦) ∈ 𝐷 × 𝐷 ∣ 𝑥 ⊑ 𝑦} and {(𝑥, 𝑦) ∈ 𝐷 × 𝐷 ∣ 𝑥 = 𝑦}
of 𝐷 × 𝐷 are chain-closed.
Said otherwise, the predicates 𝑥 ⊑ 𝑦 and 𝑥 = 𝑦 on𝐷×𝐷 determine chain-closed sets.∗

Proposition 19 (Inverse image and substitution) Let 𝑓 : 𝐷 → 𝐸 be a continuous
function between cpos𝐷 and 𝐸. Suppose 𝑆 is a chain-closed subset of 𝐸. Then the inverse
image

𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆}
is a chain-closed subset of 𝐷.
Said otherwise, if a property 𝑃(𝑦) on 𝐸 determines a chain-closed subset of 𝐸 and

𝑓 : 𝐷 → 𝐸 is a continuous function, then the property 𝑃(𝑓 (𝑥)) on 𝐷 determines a
chain-closed subset of 𝐷. ∗
Proposition 20 (Logical operations) Let 𝐷 be a cpo. Let 𝑆 ⊆ 𝐷 and 𝑇 ⊆ 𝐷 be
chain-closed subsets of 𝐷. Then 𝑆 ∪ 𝑇 and 𝑆 ∩ 𝑇 are chain-closed subsets.
In terms of properties, if 𝑃(𝑥) and 𝑄(𝑥) determine chain-closed subsets of 𝐷, then so

do 𝑃 ∨ 𝑄 and 𝑃 ∧ 𝑄. ∗
Actually, if more generally (𝑆𝑖)𝑖∈𝐼 is a family of chain-closed subsets of 𝐷 indexed

by a set 𝐼 , then ⋂𝑖∈𝐼 𝑆𝑖 is a chain-closed subset of 𝐷. As a consequence, we get the
following.

Proposition 21 (Universal quantification) If a property 𝑃(𝑥, 𝑦) determines a chain-
closed subset of𝐷×𝐸, then the property ∀𝑥 ∈ 𝐷. 𝑃(𝑥, 𝑦) determines a chain-closed subset
of 𝐸. ∗
Proof This is because

{𝑦 ∈ 𝐸 ∣ ∀𝑥 ∈ 𝐷. 𝑃(𝑥, 𝑦)} = ⋂
𝑑∈𝐷

{𝑦 ∈ 𝐸 ∣ 𝑃(𝑑, 𝑦)}

= ⋂
𝑑∈𝐷

𝑓𝑑−1{(𝑥, 𝑦) ∈ 𝐷 × 𝐸 ∣ 𝑃(𝑥, 𝑦)}

where 𝑓𝑑 : 𝐸 → 𝐷 × 𝐸 is the continuous function defined as 𝑓𝑑(𝑦) = (𝑑, 𝑦) for every
𝑑 ∈ 𝐷. □
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Combining these properties, we obtain that any formula built-up as a universal
quantification over several variables of conjunctions and disjunctions of basic proper-
ties of the form 𝑓 (𝑥1, ⋯ , 𝑥𝑘) ⊑ 𝑔(𝑥1, ⋯ , 𝑥𝑙) or 𝑓 (𝑥1, ⋯ , 𝑥𝑘) = 𝑔(𝑥1, ⋯ , 𝑥𝑙), where 𝑓
and 𝑔 are continuous, will determine a chain-closed subset of the product cpo appro-
priate to the non-quantified variables. Some 𝑥𝑖 can also be constants, as was used in
the proof of Proposition 21.

Note, however, that infinite unions of chain-closed subsets need not be chain-closed.
Indeed, any set is a union of finite subsets, which are always chain-closed – so if infi-
nite unions of chain-closed subsets were chain-closed, all sets would be chain-closed.
Accordingly, we cannot in general build chain-closed subsets with existential quan-
tifications. Similarly, the complement of a chain-closed set (or the logical negation of
a formula), also need not be chain-closed.

Any formula written using:
• signature: continuous functions + constants
• relations: equality, inequality
• logical connectives: conjuction, disjunction, universal quantification

is chain-closed.
Given any set 𝐼 , domains 𝐷, 𝐸, functions (𝑓𝑖)𝑖∈𝐼 , 𝑔: 𝐷 → 𝐸, 𝑒 ∈ 𝐸,

Φ(𝑥) ≔ ∀𝑦 ∈ 𝐸, (∀𝑖 ∈ 𝐼 , 𝑓𝑖(𝑥) ⊑ 𝑦) ∨ 𝑔(𝑥) = 𝑒
is chain-closed.

4.3 Using Scott induction

Example 15 (Revisiting the least fixed point property) Let 𝐷 be a domain and
let 𝑓 : 𝐷 → 𝐷 be a continuous function, 𝑑 ∈ 𝐷, and assume 𝑓 (𝑑) ⊑ 𝑑 , i.e. 𝑑 is
a pre-fixed point of 𝑓 .

Define the downset of 𝑑 as follows:

𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑}.
By the properties of the previous section, 𝑑 ↓ is a chain-closed subset, which contains
⊥. Moreover, we have

𝑥 ∈ 𝑑 ↓ ⇔ 𝑥 ⊑ 𝑑
⇒ 𝑓 (𝑥) ⊑ 𝑓 (𝑑)
⇒ 𝑓 (𝑥) ⊑ 𝑑
⇒ 𝑓 (𝑥) ∈ 𝑑 ↓

Thus, 𝑑 ↓ is stable for 𝑓 . By Scott induction, fix(𝑓 ) ∈ 𝑑 ↓, i.e. fix(𝑓 ) ⊑ 𝑑 . ∗
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The next example shows that Scott’s Induction Principle can be used for proving (the
denotational version of) partial correctness assertions about programs, i.e. assertions
of the form ‘if the program terminates, then such-and-such a property holds of the
results’. By contrast, a total correctness assertion would be ‘the program does termi-
nate and such-and-such a property holds of the results’. Because Scott Induction can
only be applied for properties Φ for which Φ(⊥) holds, it is not so useful for proving
total correctness.

Example 16 Let 𝐹 be the continuous function defined in Section 1.3, whose least
fixed point is the denotation of the command

𝐶 def= 𝚠𝚑𝚒𝚕𝚎 𝑋 > 0 𝚍𝚘 (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
We will use Scott induction to prove

∀𝑥. ∀𝑦 ≥ 0. fix(𝐹)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] ⇓ ⟹ (fix(𝐹)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) (𝑌 ) ≥ 0
where for 𝑤 ∈ 𝐷 = State ⇀ State we write 𝑤(𝑠) ⇓ to mean ‘the partial function 𝑤
is defined at the state 𝑠’. In words, we want to prove that if the command 𝐶 is run in
a state where the variable 𝑌 has a non-negative value, and the execution terminates,
then the value of 𝑌 at the end of the execution is still non-negative. ∗

Proof Let 𝐷 = State ⇀ State and 𝑆 be the subset given by

𝑆 def= {𝑤 ∈ 𝐷 ∣ ∀𝑥.∀𝑦 ≥ 0.(𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] ⇓) ⇒ (𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) (𝑌 ) ≥ 0}
Since the precondition of the implication always holds for ⊥𝐷 which is the nowhere-
defined function, ⊥𝐷 ∈ 𝑆.

Moreover, we have that

𝑆 = ⋂
𝑥∈ℤ

⋂
𝑦∈ℕ

(𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] ⇓) ⇒ 𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦](𝑌 ) ≥ 0

Given a fixed 𝑥, 𝑦 , the set of 𝑤 such that

(𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] ⇓) ⇒ 𝑤[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦](𝑌 ) ≥ 0
is chain-closed. Indeed, given a chain (𝑤𝑖)𝑖∈ℕ in that set, there are two possibilities.
Either the value of all 𝑤𝑖[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] is undefined, in which case this is also true
of their lub. Or for some index 𝑖 the state 𝑤𝑖[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] is defined, say some
state 𝑠 such that 𝑠(𝑌 ) ≥ 0. But then for all 𝑗 > 𝑖, also 𝑤𝑗[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝑠, and
so this is also true of the lub. Thus, 𝑆 is an intersection of chain-closed sets, and is
chain-closed.
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Finally, 𝑆 is stable for 𝐹 . Indeed, let us thus assume we are given 𝑤 ∈ 𝑆, and suppose
moreover that 𝑥 ∈ ℤ, 𝑦 ≥ 0 and 𝐹(𝑤)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] ⇓. In the case where 𝑥 ≤ 0,
we simply have

𝐹(𝑤)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦](𝑌 ) = 𝑦 ≥ 0.
Otherwise, 𝑥 > 0, and we have

𝐹(𝑤)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦](𝑌 ) = 𝑥 ⋅ 𝑦 ≥ 0
since by assumption 𝑥, 𝑦 ≥ 0. Thus, 𝐹(𝑤) ∈ 𝑆, as claimed.

Since 𝑆 is admissible and stable for 𝐹 , we can conclude by Scott induction that
fix(𝐹) ∈ 𝑆, as desired. □

Example 17 Let 𝐷 be a domain and let 𝑓 , 𝑔 : 𝐷 → 𝐷 be continuous functions such
that 𝑓 ∘ 𝑔 ⊑ 𝑔 ∘ 𝑓 . Then,

𝑓 (⊥) ⊑ 𝑔(⊥) ⟹ fix(𝑓 ) ⊑ fix(𝑔) . ∗

Proof Consider the property Φ(𝑥) ≡ (𝑓 (𝑥) ⊑ 𝑔(𝑥)) on 𝐷. By assumption, Φ(⊥)
holds. Moreover, by the properties of Section 4.2, Φ is chain-closed. Since

𝑓 (𝑥) ⊑ 𝑔(𝑥) ⇒ 𝑔(𝑓 (𝑥)) ⊑ 𝑔(𝑔(𝑥)) ⇒ 𝑓 (𝑔(𝑥)) ⊑ 𝑔(𝑔(𝑥))
Φ is also stable for 𝑔.

Thus, by Scott induction, we have that

𝑓 (fix(𝑔)) ⊑ 𝑔(fix(𝑔)) = fix(𝑔) .
Hence, fix(𝑔) is a pre-fixed point of 𝑓 , and fix(𝑓 ) ⊑ fix(𝑔) as claimed. □

4.4 Exercises

Exercise 8 Show the properties of Section 4.2, i.e. that equality and ⊑ give basic
chain-closed sets, that chain-closed sets are stable for inverse image (by continuous
functions), and that binary union and arbitrary intersection of chain-closed sets are
again chain-closed.

Exercise 9 Give a counter-example showing that even if 𝑆 ⊆ 𝐷 is chain-closed and
𝑓 : 𝐷 → 𝐸 is continuous, 𝑓 (𝑆), the image of 𝑆 by 𝑓 (that is, the set {𝑓 (𝑥), 𝑥 ∈ 𝑆}) is
not always chain-closed.

[Hint: observe that 𝑓 does not need to reflect the order. That is, there can be ele-
ments in 𝐷 such that 𝑓 (𝑑) ⊑ 𝑓 (𝑑′) but not necessarily 𝑑 ⊑ 𝑑′.]
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Exercise 10 Give an example of a subset 𝑆 ⊆ 𝐷 × 𝐷′ of a product cpo that is not
chain-closed, but which satisfies both of the following:

(i) for all 𝑑 ∈ 𝐷, {𝑑′ ∣ (𝑑, 𝑑′) ∈ 𝑆} is a chain-closed subset of 𝐷′; and
(ii) for all 𝑑′ ∈ 𝐷′, {𝑑 ∣ (𝑑, 𝑑′) ∈ 𝑆} is a chain-closed subset of 𝐷.

[Hint: consider 𝐷 = 𝐷′ = Ω, the cpo in Example 8.]
(Compare this with the property of continuous functions given in Proposition 9, i.e.

that continuity of functions from 𝐷 ×𝐷′ is equivalent to continuity in each argument
separately.)
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Part II

Denotational Semantics for Pcf

5 Pcf
The language Pcf (‘Programming Computable Functions’) is a simple functional pro-
gramming language that has been used extensively as an example language in the
development of the theory of both denotational and operational semantics (and the
relationship between the two). Its syntax was introduced by Dana Scott circa 1969 as
part of a ‘Logic of Computable Functions’2 and was studied as a programming lan-
guage in a highly influential paper by Plotkin [7].

5.1 Syntax

5.1.1 Types and terms

Types: 𝜏 ::= 𝚗𝚊𝚝 ∣ 𝚋𝚘𝚘𝚕 ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 𝟶 ∣ 𝚜𝚞𝚌𝚌(𝑡) ∣ 𝚙𝚛𝚎𝚍(𝑡) ∣
𝚝𝚛𝚞𝚎 ∣ 𝚏𝚊𝚕𝚜𝚎 ∣ 𝚣𝚎𝚛𝚘?(𝑡) ∣ 𝚒𝚏 𝑡 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 𝑡
𝑥 ∣ 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ 𝚏𝚒𝚡(𝑡)

Figure 1: Syntax of Pcf

2This logic was the stimulus for the development of the ML language and LCF system for machine-
assisted proofs byMilner, Gordon et al.—see Paulson [5]; Scott’s original work was eventually published
as Scott [6].
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The types and terms of the Pcf language are defined in Fig. 1. The intended meaning
of the syntactic constructions is as follows.

• 𝚗𝚊𝚝 is the type of the natural numbers, 0, 1, 2, 3, … . In Pcf these are generated
from 0 by repeated application of the successor operation, 𝚜𝚞𝚌𝚌, which adds
1 to its argument. The predecessor operation 𝚙𝚛𝚎𝚍 subtracts 1 from strictly
positive natural numbers (and is undefined at 0).

• 𝚋𝚘𝚘𝚕 is the type of booleans, 𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎. The operation 𝚣𝚎𝚛𝚘? tests
whether its argument is zero or strictly positive and returns 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎 ac-
cordingly. The conditional expression 𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 𝑡′ behaves like either
𝑡 or 𝑡′ depending upon whether 𝑏 evaluates to 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎 respectively.

• A Pcf variable, 𝑥 , stands for an expression.
• 𝜏 -> 𝜏 ′ is the type of (partial) functions taking a single argument of type 𝜏 and

(possibly) returning a result of type 𝜏 ′. 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡 is the notation we will use for
function abstraction (i.e. λ-abstraction) in Pcf. The application of function 𝑓 to
argument 𝑢 is indicated by 𝑡 𝑢. The scope of a function abstraction extends as
far to the right of the dot as possible and function application associates to the
left (i.e. 𝑓 𝑡 𝑢 means (𝑓 𝑡) 𝑢, not 𝑓 (𝑡 𝑢)).

• The expression 𝚏𝚒𝚡(𝑡) indicates an element 𝑥 recursively defined by 𝑥 = 𝑡 𝑥 .
Thus, the following recursive OCaml function

let rec f (x1 : α1) ... (xn : αn) : τ := p

corresponds to

𝚏𝚒𝚡(𝚏𝚞𝚗 𝑓 : 𝛼1 -> … -> 𝛼𝑛 -> 𝜏 . 𝚏𝚞𝚗 𝑥1: 𝛼1. (… (𝚏𝚞𝚗 𝑥𝑛: 𝛼𝑛. 𝑝))).
The 𝚏𝚒𝚡 syntax has the advantage of being as expressive, but easier to manipu-
late in theory. The λ-calculus equivalent to 𝚏𝚒𝚡(𝑓 ) is 𝑌 𝑓 , where 𝑌 is a suitable
fixed point combinator.

All in all, Pcf is basically a very toy version of a language from the ML family. The
main difference is that Pcf is pure, meaning that there is no state that changes dur-
ing expression evaluation. So in particular variables are ‘identifiers’ standing for a
fixed expression to be manipulated and passed around, rather than ‘program vari-
ables’ whose contents may get mutated during evaluation.

Variables and substitution

The fact that 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡 binds the variable 𝑥 means that we have to deal with the usual
phenomena around variable binding, that were already covered in Part IB – Computa-
tion Theory (for λ-calculus) and Part IB – Semantics of Programming Languages (for
other functional languages).

38



Just as in these courses, we consider Pcf terms up to α-equivalence of bound vari-
ables. That is, 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥 and 𝚏𝚞𝚗 𝑦: 𝜏 . 𝑦 denote the same Pcf program. We will also
use the substitution operation, andwewill denote the substitution of 𝑢 for 𝑥 as 𝑡[𝑢/𝑥].

Since these are not the main focus here, we refer to these courses for details.

5.1.2 Typing

Definition 16 (Contexts) A context, usually denoted Γ, is a partial function from
variables to types. The empty context is denoted ⋅, and context extension Γ, 𝑥: 𝜏 is the
context that maps 𝑥 to 𝜏 and acts on other variables like Γ. ∗

Remark 5 Alternatively, we can see contexts as (finite) lists of pairs of a variable and
a type, that is, as given by the following grammar:

Γ ::= ⋅ ∣ Γ, 𝑥: 𝜏
The view of contexts as partial functions is slightly easier to manipulate informally,
which is why we stick with this presentation. ∗

Pcf is a typed language: types are assigned to terms via the relation Γ ⊢ 𝑡 : 𝜏
defined in Fig. 2.

There is a subtle, but important difference with Part IB – Semantics of Programming
Languages, to how we think of types. In Part IB, types were a way to ensure that
“programs do not get stuck”: the operational semantics was defined for all terms. The
safety property was proven afterwards, showing that all well-typed programs have
a meaningful operational semantics in that they either reduce to a value, or reduce
forever. Here, we will only define the semantics of well-typed terms. The philosophy
is that an ill-typed term does not really qualify as a program: it should be rejected by
the compiler, and as such never executed. Therefore, there is no point in defining its
semantics.

Definition 17 We will write PcfΓ,𝜏 for the set of terms of type 𝜏 in context Γ, i.e.

PcfΓ,𝜏
def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 }

and we simply write Pcf𝜏 for Pcf⋅,𝜏 for terms of type 𝜏 in the empty context, i.e. well-
typed terms closed terms. ∗

Proposition 22 (Typing is stable by substitution) If Γ ⊢ 𝑡 : 𝜏 and Γ, 𝑥: 𝜏 ⊢ 𝑡′ : 𝜏 ′
both hold, then so does Γ ⊢ 𝑡′[𝑡/𝑥] : 𝜏 ′.

Proof This is a direct induction on typing derivations. □
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Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

Zero Γ ⊢ 𝟶 : 𝚗𝚊𝚝 Succ
Γ ⊢ 𝑡 : 𝚗𝚊𝚝

Γ ⊢ 𝚜𝚞𝚌𝚌(𝑡) : 𝚗𝚊𝚝 Pred
Γ ⊢ 𝑡 : 𝚗𝚊𝚝

Γ ⊢ 𝚙𝚛𝚎𝚍(𝑡) : 𝚗𝚊𝚝
True Γ ⊢ 𝚝𝚛𝚞𝚎 : 𝚋𝚘𝚘𝚕 False Γ ⊢ 𝚏𝚊𝚕𝚜𝚎 : 𝚋𝚘𝚘𝚕

IsZ
Γ ⊢ 𝑡 : 𝚗𝚊𝚝

Γ ⊢ 𝚣𝚎𝚛𝚘?(𝑡) : 𝚋𝚘𝚘𝚕 If

Γ ⊢ 𝑏 : 𝚋𝚘𝚘𝚕
Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ 𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 𝑡′ : 𝜏

Var
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 Fun

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ 𝚏𝚞𝚗 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏

App
Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎

Γ ⊢ 𝑓 𝑢 : 𝜏 Fix
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ 𝚏𝚒𝚡(𝑓 ) : 𝜏

Figure 2: Typing for Pcf

5.2 Operational semantics

We give the operational semantics of Pcf in terms of an inductively defined relation
of evaluation, given in Fig. 3.

The results of evaluation are Pcf terms of a particular form, called values (or “canon-
ical forms”). The values of type 𝚋𝚘𝚘𝚕 are 𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎, and those of type 𝚗𝚊𝚝 are
unary representations of natural numbers, 𝑛 (𝑛 ∈ ℕ), where

{ 0 def= 𝟶
𝑛 + 1 def= 𝚜𝚞𝚌𝚌(𝑛).

Values at function types, being function abstractions 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡 , are more “inten-
sional” than those at the ground data types, since the body 𝑡 is an unevaluated Pcf
term.

Example 18 (The diverging term) Proposition 23 shows that every closed typeable
term evaluates to at most one value. Of course there are some typeable terms that do
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Values: 𝑣 ::= 𝟶 ∣ 𝚜𝚞𝚌𝚌(𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ 𝚝𝚛𝚞𝚎 ∣ 𝚏𝚊𝚕𝚜𝚎 ∣ 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡

𝑡 ⇓𝜏 𝑣 The closed term 𝑡 ∈ Pcf𝜏 evaluates to value 𝑣 at type 𝜏

Val
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 Succ

𝑡 ⇓𝚗𝚊𝚝 𝑣
𝚜𝚞𝚌𝚌(𝑡) ⇓𝚗𝚊𝚝 𝚜𝚞𝚌𝚌(𝑣) Pred

𝑡 ⇓𝚗𝚊𝚝 𝚜𝚞𝚌𝚌(𝑣)
𝚙𝚛𝚎𝚍(𝑡) ⇓𝚗𝚊𝚝 𝑣

ZeroZ
𝑡 ⇓𝚗𝚊𝚝 𝟶

𝚣𝚎𝚛𝚘?(𝑡) ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 ZeroS
𝑡 ⇓𝚗𝚊𝚝 𝚜𝚞𝚌𝚌(𝑣)

𝚣𝚎𝚛𝚘?(𝑡) ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎

IfT
𝑏 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 𝑡1 ⇓𝜏 𝑣
𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2 ⇓𝜏 𝑣 IfF

𝑏 ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎 𝑡2 ⇓𝜏 𝑣
𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2 ⇓𝜏 𝑣

Fun
𝑡 ⇓𝜎->𝜏 𝚏𝚞𝚗 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 Fix
𝑡 (𝚏𝚒𝚡(𝑡)) ⇓𝜏 𝑣
𝚏𝚒𝚡(𝑡) ⇓𝜏 𝑣

Figure 3: Evaluation for Pcf
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not evaluate to anything. We write 𝑡 ⇑𝜏 (read ‘𝑡 diverges’) if 𝑡 : 𝜏 and ∄𝑣 . 𝑡 ⇓𝜏 𝑣 . For
example

Ω𝜏
def= 𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥)

satisfies Ω𝜏 ⇑𝜏 .
For if for some 𝑣 there were a proof of 𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥) ⇓𝜏 𝑣 , choose one of minimal

height. This proof, call it P , must look like

𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥 ⇓ 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥
P′

𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥) (𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥)) ⇓ 𝑣

𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
where P′ is a strictly shorter proof of 𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥) ⇓𝜏 𝑣 , which contradicts the
minimality of P . ∗

Remark 6 (Call-by-name and call-by-value) This is a call-by-name operational se-
mantics: in Rule Fun, the argument of a function does not get evaluated before being
substituted in the function’s body. An alternative, call-by-value operational semantics
would be the following:

Fun-CBV
𝑡 ⇓𝜎->𝜏 𝚏𝚞𝚗 𝑥: 𝜎 . 𝑡′ 𝑢 ⇓𝜎 𝑣 ′ 𝑡′[𝑣 ′/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣
The main difference is that because their argument is always evaluated, call-by-

value functions have to be strict: the program

(𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝟶) Ω𝚗𝚊𝚝

diverges in call-by-value, but returns 𝟶 in call-by-name. This means that 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝟶
should be interpreted by the constant 0 function in ℕ⊥ → ℕ⊥ in call-by-name, but by
the function mapping ⊥ → ⊥ and every “real” natural number to 0 in call-by-value.

Most of what we develop can be adapted to the call-by-value setting, although one
has to be careful about constraining functions to be strict in the right places. But not
everywhere: the least fixed point of any strict function is ⊥, so taking fixed points of
only strict functions is not interesting. We will thus stick to the simpler call-by-name
semantics for this course, but it is certainly possible to circumvent this issue, and give
a denotational semantics to call-by-value languages. ∗

42



𝑡 ⇝𝜏 𝑡′ Closed term 𝑡 ∈ Pcf𝜏 reduces to 𝑡′ ∈ Pcf𝜏 at type 𝜏

𝑡 ⇝𝚗𝚊𝚝 𝑡′
𝚘𝚙(𝑡) ⇝𝜏 𝚘𝚙(𝑡′) ( where 𝚘𝚙 is 𝚜𝚞𝚌𝚌 or 𝚙𝚛𝚎𝚍 and 𝜏 is 𝚗𝚊𝚝

or 𝚘𝚙 is 𝚣𝚎𝚛𝚘? and 𝜏 is 𝚋𝚘𝚘𝚕 )

𝚙𝚛𝚎𝚍(𝚜𝚞𝚌𝚌(𝑣)) ⇝𝚗𝚊𝚝 𝑣 𝚣𝚎𝚛𝚘?(𝟶) ⇝𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎

𝚣𝚎𝚛𝚘?(𝚜𝚞𝚌𝚌(𝑣)) ⇝𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎

𝑏 ⇝𝚋𝚘𝚘𝚕 𝑏′
𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2 ⇝𝜏 𝚒𝚏 𝑏′ 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2

𝚒𝚏 𝚝𝚛𝚞𝚎 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2 ⇝𝜏 𝑡1 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝑡1 𝚎𝚕𝚜𝚎 𝑡2 ⇝𝜏 𝑡2
𝑡 ⇝𝜎->𝜏 𝑡′
𝑡 𝑢 ⇝𝜏 𝑡′ 𝑢 (𝚏𝚞𝚗 𝑥: 𝜎 . 𝑡) 𝑢 ⇝𝜏 𝑡[𝑢/𝑥] 𝚏𝚒𝚡(𝑡) ⇝𝜏 𝑡 (𝚏𝚒𝚡(𝑡))

Figure 4: Transition for Pcf

Remark 7 (Small and big step semantics) This presentation is “big-step”, i.e. in
that it directly relates a program with a value, representing the possible results of
evaluation, rather than relating programs via a “small-step” transition relation.3 In
our context this presentation is slightly easier to work with, but our proofs could be
easily ported to the small-step presentation.

Let the relation 𝑡 ⇝𝜏 𝑡′ (for 𝑡 , 𝑡′ ∈ Pcf𝜏 ) be the one inductively defined in Fig. 4.
Then one can show that for all 𝜏 and 𝑡 , 𝑣 ∈ Pcf𝜏 with 𝑣 a value

𝑡 ⇓𝜏 𝑣 ⇔ 𝑡 ⇝⋆𝜏 𝑣
where ⇝⋆𝜏 denotes the reflexive-transitive closure of the relation ⇝𝜏 . ∗
Example 19 (Partial recursive functions in Pcf) Although the Pcf syntax is rather
terse, the combination of increment, decrement, test for zero, conditionals, function
abstraction and application, and fixed point recursion makes it Turing complete – in
the sense that all partial recursive functions4 can be coded. More precisely, for every
partial recursive function 𝜙, there is a Pcf term 𝜙 such that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is

defined then 𝜙 𝑛 ⇓𝚗𝚊𝚝 𝜙(𝑛).
3The kind which was used in Part IB – Semantics.
4See Part IB – Computation Theory.
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For example, recall that the partial function ℎ:ℕ × ℕ ⇀ ℕ defined by primitive
recursion from 𝑓 :ℕ ⇀ ℕ and 𝑔:ℕ × ℕ × ℕ ⇀ ℕ satisfies that for all 𝑥, 𝑦 ∈ ℕ

{ℎ(𝑥, 0) = 𝑓 (𝑥)
ℎ(𝑥, 𝑦 + 1) = 𝑔(𝑥, 𝑦 , ℎ(𝑥, 𝑦)).

Thus, if the function 𝑓 has been coded in Pcf by a term 𝑓 ′ : 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 and the
function 𝑔 by a term 𝑔′ : 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 -> 𝚗𝚊𝚝, then ℎ can be coded by

𝐻 def= 𝚏𝚒𝚡(𝚏𝚞𝚗 ℎ: 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 -> 𝚗𝚊𝚝. 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝚏𝚞𝚗 𝑦: 𝚗𝚊𝚝.
𝚒𝚏 𝚣𝚎𝚛𝚘?(𝑦) 𝚝𝚑𝚎𝚗 𝑓 ′ 𝑥 𝚎𝚕𝚜𝚎 𝑔′ 𝑥 (𝚙𝚛𝚎𝚍(𝑦)) (ℎ 𝑥 (𝚙𝚛𝚎𝚍(𝑦)))).

Apart from primitive recursion, and the base cases, the other construction needed for
defining partial recursive functions is minimisation. For example, the partial function
𝑚:ℕ ⇀ ℕ defined from 𝑘:ℕ × ℕ ⇀ ℕ by minimisation satisfies that for all 𝑥 ∈ ℕ,
𝑚(𝑥) is the least 𝑦 ≥ 0 such that 𝑘(𝑥, 𝑦) = 0 and ∀𝑧. 0 ≤ 𝑧 < 𝑦 ⇒ 𝑘(𝑥, 𝑧) > 0. This
can also be expressed using fixed points. For if 𝑘 has been coded in Pcf by a term
𝑘′ : 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 -> 𝚗𝚊𝚝, then in fact 𝑚 can be coded as 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝑚′ 𝑥 𝟶 where

𝑚′ def= 𝚏𝚒𝚡(𝚏𝚞𝚗𝑚′: 𝚗𝚊𝚝 -> 𝚗𝚊𝚝 -> 𝚗𝚊𝚝. 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝚏𝚞𝚗 𝑦: 𝚗𝚊𝚝.
𝚒𝚏 𝚣𝚎𝚛𝚘?(𝑘′ 𝑥 𝑦) 𝚝𝚑𝚎𝚗 𝑦 𝚎𝚕𝚜𝚎 (𝑚′ 𝑥 𝚜𝚞𝚌𝚌(𝑦))). ∗

Proposition 23 (Determinism) Evaluation in Pcf is deterministic: if both 𝑡 ⇓𝜏 𝑣 and
𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′. ∗

Proof By rule induction: one shows that

{(𝑡, 𝜏 , 𝑣) ∣ 𝑡 ⇓𝜏 𝑣 ∧ ∀𝑣 ′.(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)}
is closed under the axioms and rules defining ⇓.

Intuitively, the idea is that there is always at most one evaluation rule that applies.
Either because there is only one rule for the outermost term constructor of 𝑡 (value,
application, etc.), or, in case multiple rules could apply (Rules IfF or IfT for instance),
because of the inductive hypothesis (e.g. for 𝚒𝚏 both rules cannot apply simultane-
ously, because the condition cannot both evaluate to 𝚝𝚛𝚞𝚎 and 𝚏𝚊𝚕𝚜𝚎). □

5.3 Contextual equivalence

Recall (from Part IB – Semantics) the general notion of contextual equivalence.
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Definition 18 (Contextual equivalence – informal) Two phrases of a programming
language are contextually equivalent if any occurrences of the first phrase in a com-
plete program can be replaced by the second phrase without affecting the observable
results of executing the program. ∗

It is really a family of notions, parameterised by the particular choices one takes for
what constitutes a ‘complete program’ in the language and what are the ‘observable
results’ of executing such programs. For Pcf it is reasonable to take the programs
to be closed terms of type 𝚗𝚊𝚝 or 𝚋𝚘𝚘𝚕, and to observe the values (or divergence)
that result from evaluating such terms. Open terms are incomplete, in the sense that
they are missing the values for which their variables stand. Function types 𝜎 -> 𝜏
do not give sensible observable results: since values at function types are intentional,
observing function types would lead us to distinguish functions which have different
source code, which is too fine-grained.

First, we need to define contexts. There is an unfortunate clash of terminology
between typing contexts Γ used to define typing and evaluation contexts C used to
define contextual equivalence. We will use context alone when it is clear what kind of
context we mean, and talk about typing/evaluation contexts when ambiguity might
arise.

Definition 19 (Evaluation contexts) An evaluation context is a term with a hole,
written −, to be filled by a Pcf term. Formally, it is given by the following grammar:

C ::= − ∣ 𝚜𝚞𝚌𝚌(C) ∣ 𝚙𝚛𝚎𝚍(C) ∣ 𝚣𝚎𝚛𝚘?(C) ∣
𝚒𝚏 C 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 𝑡 ∣ 𝚒𝚏 𝑡 𝚝𝚑𝚎𝚗 C 𝚎𝚕𝚜𝚎 𝑡 ∣ 𝚒𝚏 𝑡 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 C ∣
𝚏𝚞𝚗 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ 𝚏𝚒𝚡(C)

Given such a context C,5 we write C[𝑡] for the Pcf expression that results from re-
placing − in C by 𝑡 . ∗

Note that this form of substitution may well involve the capture of free variables in
𝑡 by binders in C. For example, if C is 𝚏𝚞𝚗 𝑥: 𝜏 . −, then C[𝑥] is 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥 .
Definition 20 (Typing for evaluation contexts) Typing is extended straightforwardly
to contexts: we write Γ ⊢Δ,𝜎 C : 𝜏 to mean that assuming that the hole has type 𝜎
in typing context Δ, the whole evaluation context has type 𝜏 in typing context Δ. The
only new rule is

Γ ⊢Γ,𝜏 − : 𝜏
5It is common practice to write C[−] instead of C to indicate the symbol being used to mark the

‘hole’ in C.
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All other rules from Fig. 2 are adapted to type the evaluation context using this new
relation, so for instance the rule for application of a context is

Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1
Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 ∗

Definition 21 (Contextual equivalence) Given a type 𝜏 , a typing context Γ and
terms 𝑡 , 𝑡′ ∈ PcfΓ,𝜏 , contextual equivalence, written Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 is defined to hold
if for all evaluation contexts C such that ⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is 𝚗𝚊𝚝 or 𝚋𝚘𝚘𝚕, and for
all values 𝑣 ∈ Pcf𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇔ C[𝑡′] ⇓𝛾 𝑣 .
When Γ is the empty context, we simply write 𝑡 ≅ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 . ∗

Remark 8 Note that divergence is covered by this definition. Indeed, if Γ ⊢ 𝑡 ≅ctx
𝑡′ : 𝜏 , by contrapositive if 𝑡 ⇑𝜏 , then also 𝑡′ must diverge, because if 𝑡′ would evaluate
to some 𝑣 then 𝑡 should do so too. ∗

5.4 Exercises

Exercise 11 Carry out the suggested proof that evaluation is deterministic (Proposi-
tion 23).

Exercise 12 Recall that Church’s fixed point combinator in the untyped lambda cal-

culus is 𝑌 def= 𝜆𝑓 . (𝜆𝑥. 𝑓 (𝑥 𝑥))(𝜆𝑥. 𝑓 (𝑥 𝑥)). Show that there are no Pcf types 𝜏1, 𝜏2, 𝜏3
so that the following typing relation holds:

⋅ ⊢ 𝚏𝚞𝚗 𝑓 : 𝜏1. (𝚏𝚞𝚗 𝑥: 𝜏2. 𝑓 (𝑥 𝑥)) (𝚏𝚞𝚗 𝑥: 𝜏2. 𝑓 (𝑥 𝑥)) : 𝜏3
Exercise 13 Define the following Pcf terms:

𝚙𝚕𝚞𝚜 def= 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝚏𝚒𝚡(𝚏𝚞𝚗(𝑝: 𝚗𝚊𝚝 -> 𝚗𝚊𝚝)(𝑦: 𝚗𝚊𝚝).
𝚒𝚏 𝚣𝚎𝚛𝚘?(𝑦) 𝚝𝚑𝚎𝚗 𝑥 𝚎𝚕𝚜𝚎 𝚜𝚞𝚌𝚌(𝑝 𝚙𝚛𝚎𝚍(𝑦)))

𝚖𝚞𝚕 def= 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝚏𝚒𝚡(𝚏𝚞𝚗(𝑡: 𝚗𝚊𝚝 -> 𝚗𝚊𝚝)(𝑦: 𝚗𝚊𝚝).
𝚒𝚏 𝚣𝚎𝚛𝚘?(𝑦) 𝚝𝚑𝚎𝚗 0 𝚎𝚕𝚜𝚎 𝚙𝚕𝚞𝚜 𝑥 (𝑡 𝚙𝚛𝚎𝚍(𝑦)))

Show by induction on 𝑛 ∈ ℕ that for all 𝑚 ∈ ℕ
𝚙𝚕𝚞𝚜 𝑚 𝑛 ⇓𝚗𝚊𝚝 𝑚 + 𝑛
𝚖𝚞𝚕 𝑚 𝑛 ⇓𝚗𝚊𝚝 𝑚 ⋅ 𝑛.

Using the above functions, define a factorial function and show that it does indeed
compute the factorial.
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6 Denotational Semantics for Pcf

6.1 Introducing denotational semantics

Contextual equivalence is the natural notion of equivalence between programs. How-
ever, it is generally very hard to work with, because of the universal quantification
over all evaluation contexts. Thus, we would like to obtain another form of equiva-
lence, which avoids this difficulty and is thus easier to handle. Denotational semantics
provides tooling for this.

The aims of denotational semantics

More precisely, our goals are to define
• a mapping of Pcf types 𝜏 to domains J𝜏K;
• a mapping of closed, well-typed Pcf terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏K;
• denotation of open terms will be continuous functions.

And we moreover want to ensure that the following properties hold.
Compositionality: J𝑡K = J𝑡′K ⇒ JC[𝑡]K = JC[𝑡′]K.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = 𝚋𝚘𝚘𝚕 or 𝚗𝚊𝚝, if 𝑡 ∈ Pcf𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .
The soundness and adequacy properties make precise the connection between the

operational and denotational semantics for which we are aiming. Note that the ad-
equacy property only involves the ‘ground’ datatypes ℕ and 𝔹. One cannot expect
such a property to hold at function types because of the ‘intensional’ nature of values
at such types we already mentioned. Indeed, such an adequacy property at function
types would contradict the compositionality and soundness properties we want forJ−K, as the following example shows.

Example 20 Consider the following two Pcf value terms of type 𝚗𝚊𝚝 -> 𝚗𝚊𝚝:
Now 𝑣/⇓ 𝑣 ′, since 𝑣 is a value, so it does not evaluate further. However, the soundness

and compositionality properties of J−K imply that J𝑣K = J𝑣 ′K. Indeed, we have

(𝚏𝚞𝚗 𝑦: 𝚗𝚊𝚝. 𝑦) 𝟶 ⇓𝚗𝚊𝚝 𝟶.

So by soundness (𝚏𝚞𝚗 𝑦: 𝚗𝚊𝚝. 𝑦) 𝟶 = J𝟶K. Therefore, by compositionality for C[−] def=
𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. − we have

JC[(𝚏𝚞𝚗 𝑦: 𝚗𝚊𝚝. 𝑦) 𝟶]K = JC[𝟶]K
i.e. J𝑣K = J𝑣 ′K. ∗

The value of denotational semantics comes from the following theorem, that we can
already prove now, from the requirements we just made.
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Theorem 24 (Semantic equality implies contextual equivalence) For all types 𝜏
and closed terms 𝑡1, 𝑡2 ∈ Pcf𝜏 , if J𝑡1K and J𝑡2K are equal elements of the domain J𝜏K, then
𝑡1 ≅ctx 𝑡2 : 𝜏 .

Proof

C[𝑡1] ⇓𝚗𝚊𝚝 𝑣 ⇒ JC[𝑡1]K = J𝑣K (soundness)

⇒ JC[𝑡2]K = J𝑣K (compositionality on J𝑡1K = J𝑡2K)
⇒ C[𝑡2] ⇓𝚗𝚊𝚝 𝑣 (adequacy)

and symmetrically for C[𝑡2] ⇓𝚗𝚊𝚝 𝑣 ⇒ C[𝑡1] ⇓𝚗𝚊𝚝 𝑣 , and similarly for 𝚋𝚘𝚘𝚕. □

This means that we can use denotational semantics to establish instances of contex-
tual equivalence, by showing that terms have equal denotation. In many cases this is
an easier task than proving contextual equivalence directly from the definition. Theo-
rem 24 generalises to open terms: if the continuous functions that are the denotations
of two open terms (of the same type for some typing context) are equal, then the terms
are contextually equivalent.

The question remains, though, to know if this proof technique is complete. That
is, is equality in the model a necessary condition for contextual equivalence? We will
come back to this question (called full abstraction), in the last chapter.

6.2 Definition

We now turn to the task of defining a denotational semantics for Pcf. The properties
of compositionality, soundness, and adequacy will be the focus of the later sections.

6.2.1 Types and contexts

Definition 22 (Semantics of types) For each Pcf type 𝜏 we define its semantics as
a domain J𝜏K by induction on its structure:

J𝚗𝚊𝚝K def= ℕ⊥ (flat domain)

J𝚋𝚘𝚘𝚕K def= 𝔹⊥ (flat domain)

J𝜏 -> 𝜏 ′K def= J𝜏K → J𝜏 ′K (function domain)

We use flat domains (Definition 12) and function domains (Definition 15). ∗
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Definition 23 (Semantics of context) The semantics of a context Γ is an environ-
ment, i.e. a mapping from variables to values in the relevant domain:

JΓK def= ∏
𝑥∈dom(Γ)

JΓ(𝑥)K
That is, JΓK is the domain of partial functions 𝜌 from variables to domains such that
dom(𝜌) = dom(Γ) and 𝜌(𝑥) ∈ JΓ(𝑥)K for all 𝑥 ∈ dom(Γ). ∗

Remark 9 Unfolding the definition, we get that
• for the empty context, J⋅K = 𝟙, i.e. a type with a single element (technically, the

nowhere-defined partial function);
• for a context with only one variable J𝑥: 𝜏K = ({𝑥} → J𝜏K) ≅ J𝜏K;
• more generally, J𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛K ≅ J𝜏1K × ⋯ × J𝜏𝑛K.

Given these isomorphisms, we will think of environments both as iterated products
and as partial maps, depending on what is most useful. ∗

6.2.2 Terms

To every typing judgement
Γ ⊢ 𝑡 : 𝜏

we associate a continuous function

JΓ ⊢ 𝑡 : 𝜏K : JΓK → J𝜏K
between domains. In other words,

J−K : PcfΓ,𝜏 → JΓK → J𝜏K
The continuous function is defined by induction on the structure of 𝑡 (or, equiva-

lently, on its typing derivation).

Remark 10
• Just as in Section 1.1, we use J−K for the three different functions computing

the denotation of a type, a context and a term.
• Because terms have at most one typing derivation (andwell-typed terms exactly

one), defining the denotation on well-typed terms or on typing derivation is
equivalent, and we will conflate the two. This abuse would not be so benign if
we had more than one typing derivation! In that case we could have different
semantics for different derivations for the same term, and so talking about “the”
semantics of a term would be ambiguous. ∗
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Definition 24 (Denotation of operations on 𝔹 and ℕ) Let succ, pred and zero?
be the functions respectively defined as follows:

succ : ℕ → ℕ
𝑛 ↦ 𝑛 + 1

pred : ℕ ⇀ ℕ
𝑛 + 1 ↦ 𝑛

0 undefined

zero? : ℕ → 𝔹
0 ↦ true

𝑛 + 1 ↦ false
We define the following:

J𝟶K (𝜌) def= 0 ∈ ℕ⊥J𝚝𝚛𝚞𝚎K (𝜌) def= true ∈ 𝔹⊥J𝚏𝚊𝚕𝚜𝚎K (𝜌) def= false ∈ 𝔹⊥

J𝚜𝚞𝚌𝚌(𝑡)K (𝜌) def= succ⊥(J𝑡K (𝜌)) ∈ ℕ⊥J𝚙𝚛𝚎𝚍(𝑡)K (𝜌) def= pred⊥(J𝑡K (𝜌)) ∈ ℕ⊥J𝚣𝚎𝚛𝚘?(𝑡)K (𝜌) def= zero?⊥(J𝑡K (𝜌)) ∈ 𝔹⊥

J𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑡 𝚎𝚕𝚜𝚎 𝑡′K def= if(J𝑏K (𝜌), J𝑡K (𝜌), J𝑡′K (𝜌)) ∈ J𝜏K
Where 𝑓⊥ is the flat domain lifting, defined in Proposition 7, and the semantic con-

ditional function if : 𝔹⊥ × (𝐷 × 𝐷) → 𝐷 is defined in Proposition 11 – here we take
𝐷 to be J𝜏K, the common type of 𝑡 and 𝑡′. ∗
Remark 11 We have already done all the work necessary to show this indeed defines
continuous functions. By Example 10, the constant functions interpreting 𝟶, 𝚝𝚛𝚞𝚎
and 𝚏𝚊𝚕𝚜𝚎 are continuous. By Proposition 7 and continuity of composition (Proposi-
tion 15), if J𝑡K is continuous, then so is J𝚜𝚞𝚌𝚌(𝑡)K = succ⊥ ∘ J𝑡K, and similarly for 𝚙𝚛𝚎𝚍
and 𝚣𝚎𝚛𝚘?. Finally, for the conditional, we rely on Proposition 11 telling us that if is
continuous, and on Proposition 10 for continuity of pairing. ∗
Definition 25 (Denotation of the λ-calculus operations) Wedefine the following:

J𝑥K (𝜌) def= 𝜌(𝑥) ∈ JΓ(𝑥)K (for 𝑥 ∈ dom(Γ))J𝑡1 𝑡2K (𝜌) def= (J𝑡1K (𝜌)) (J𝑡2K (𝜌))J𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡K (𝜌) def= 𝜆𝑑 ∈ J𝜏K . J𝑡K (𝜌[𝑥 ↦ 𝑑])
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The interpretation of variable is the projection from a general product (defined in
Proposition 12), that of an application is eval as defined in Proposition 13, and that of
abstraction is currying, defined in Proposition 14. ∗
Definition 26 (Denotation of fixed points) Finally, we set

J𝚏𝚒𝚡 𝑓 K (𝜌) def= fix(J𝑓 K (𝜌)) ∗

Theorem 25 (Denotation is well-defined) For any Pcf term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 ,
the object J𝑡K is well-defined and a continuous function J𝑡K : JΓK → 𝜏 . ∗
Proof The proof is by induction on the typing derivation.

We have already explained in Remark 11 that the interpretation of all the operations
on booleans and natural numbers are continuous or preserve continuity obtained from
induction hypothesis.

Similarly, the interpretation of a variable is continuous by Proposition 12, that of
application by Proposition 13 and continuity of pairing. For abstraction, assume we
have Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏 . By induction hypothesis, J𝑡K : JΓ, 𝑥: 𝜎K → J𝜏K. But JΓ, 𝑥: 𝜎K =JΓK × J𝜎K, and so we get that cur(J𝑡K) : JΓK → (J𝜎K → J𝜏K) = JΓK → J𝜎 -> 𝜏K as
necessary.

Finally, continuity of the interpretation of 𝚏𝚒𝚡 is exactly Proposition 16. □

Remark 12 (Denotation of closed terms) If 𝑡 ∈ Pcf𝜏 , then by definition ⋅ ⊢ 𝑡 : 𝜏
holds, so we get J𝑡K : J⋅K → J𝜏K. Recall from Remark 9 that the interpretation of the
empty context is a singleton set 𝟙. Thus, J⋅K → J𝜏K is in bijection with 𝜏 . So we can
identify the denotation of closed Pcf terms with elements of the domain denoting
their type, and consider that J𝑡K ∈ J𝜏K. ∗

6.3 Compositionality

The fact that the denotational semantics of Pcf terms is compositional – i.e. that
the denotation of a compound term is a function of the denotations of its immediate
subterms – is part and parcel of the definition of J𝑡K by induction on the structure of
𝑡 : the denotation of each term constructor is defined by combining the denotation of
their immediate subterms.

Theorem 26 (Compositionality) Suppose 𝑡 , 𝑢 ∈ PcfΔ,𝜎 , such thatJ𝑡K = J𝑢K : JΔK → J𝜎K
Suppose moreover that C[−] is a Pcf context such that Γ ⊢Δ,𝜎 C : 𝜏 . ThenJC[𝑡]K = JC[𝑢]K : JΓK → J𝜏K .

∗
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Proof The proof is by induction on the typing derivation for C[−]. In the base case
of the typing rule for −, we have that −[𝑡] = 𝑡 and −[𝑢] = 𝑢, so we use the fact that
the denotation of 𝑡 and 𝑢 are equal. In all other case, we use the induction hypothesis,
together with the fact that the denotation of a term is defined in terms of that of its
subterm.

For example, let us consider in detail the case of 𝚜𝚞𝚌𝚌, so assume C = 𝚜𝚞𝚌𝚌(C′).
We have C[𝑡] = 𝚜𝚞𝚌𝚌(C′[𝑡]), and similarly for 𝑢. By induction hypothesis, JC′[𝑡]K =JC′[𝑢]K. But then, for any 𝜌 ∈ JΓK,

JC[𝑡]K (𝜌) = J𝚜𝚞𝚌𝚌(C′[𝑡])K (𝜌)
= succ⊥(JC′[𝑡]K (𝜌))
= succ⊥(JC′[𝑢]K (𝜌))
= J𝚜𝚞𝚌𝚌(C′[𝑢])K (𝜌)
= JC[𝑢]K (𝜌)

And so JC[𝑡]K = JC[𝑢]K. □

As a special case for closed 𝑡 and 𝑢, we get the requirement of compositionality as
stated in Section 6.1.

Remark 13 We can even go one step further, and define the denotation of a context
directly: if Γ ⊢Δ,𝜎 C : 𝜏 , then JCK should be an element of (JΔK → J𝜎K) → JΓK → J𝜏K.
Intuitively, a context takes something of the “type of the hole” – since that hole lives
in a context, this is a continuous function – and an environment for the context, and
gives back a semantic value of the type of the whole context. To obtain this, set

J−K (𝑑) = 𝑑JC 𝑡K (𝑑)(𝜌) = (JCK (𝑑)(𝜌))(J𝑡K (𝜌))
⋮

That is, define the denotation of the hole to simply be the identity, and on all other
context former, to mimick the denotation of terms.

By a direct induction on the context typing, if Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , we have

JC[𝑡]K = JCK (J𝑡K)
This gives us a more conceptual proof of compositionality, exposing its essence: given
the hypothesis of Theorem 26, we have

JC[𝑡]K = JCK (J𝑡K) = JCK (J𝑡′K) = JC[𝑡′]K ∗
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The following substitution property gives another aspect of the compositional na-
ture of the denotational semantics of Pcf. It can again be proven by induction on the
structure of the term 𝑡 .
Proposition 27 (Substitution property of the semantic function) Assume

Γ ⊢ 𝑢 : 𝜎
Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏

(so that by Proposition 22 we also have Γ ⊢ 𝑡[𝑢/𝑥] : 𝜏 ). Then for all 𝜌 ∈ JΓK
J𝑡[𝑢/𝑥]K (𝜌) = J𝑡K (𝜌[𝑥 ↦ J𝑢K (𝜌)]).

In particular when Γ = ⋅, J𝑡K : J𝜎K → J𝜏K and
J𝑡[𝑢/𝑥]K = J𝑡K (J𝑢K)

∗

6.4 Soundness

The second of the aims mentioned in Section 6.1 is soundness: if a closed Pcf term
𝑡 evaluates to a value 𝑣 in the operational semantics, then 𝑡 and 𝑣 have the same
denotation.

To make sure that the statement of soundness makes sense, we need a lemma re-
lating typing and evaluation.

Theorem 28 (Soundness) For all Pcf types 𝜏 and all closed terms 𝑡 , 𝑣 ∈ Pcf𝜏 with 𝑣 a
value, if 𝑡 ⇓𝜏 𝑣 is derivable from the axioms and rules in Fig. 3, then

J𝑡K = J𝑣K ∈ J𝜏K
that is, J𝑡K and J𝑣K are equal elements of the domain J𝜏K. ∗

Proof By induction on the (inductively defined) relation ⇓. Specifically, defining

Φ(𝑡, 𝜏 , 𝑣) def⇔ J𝑡K = J𝑣K ∈ J𝜏K
we need to show that the property Φ(𝑡, 𝜏 , 𝑣) is closed under the axioms and rules in
Fig. 3. We give the argument for rules Fun and Fix, and leave the others as exercises.
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Case Fun. Suppose J𝑡1K = q𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡′1
y ∈ J𝜏 → 𝜏 ′K (6)q𝑡′1[𝑡2/𝑥]y = J𝑣K ∈ J𝜏 ′K . (7)

We have to prove that J𝑡1 𝑡2K = J𝑣K ∈ J𝜏 ′K. ButJ𝑡1 𝑡2K = J𝑡1K (J𝑡2K) by definition of J−K (Definition 25)

= q𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡′1
y (J𝑡2K) by (6)

= (𝜆𝑑 ∈ J𝜏K . q𝑡′1y (𝑑))(J𝑡2K) by definition of J−K (Definition 25)

= q𝑡′1y (J𝑡2K)
= q𝑡′1[𝑡2/𝑥]y by Proposition 27

= J𝑣K by (7).

Case Fix. Suppose J𝑡 𝚏𝚒𝚡(𝑡)K = J𝑣K ∈ J𝜏K . (8)

We have to prove that J𝚏𝚒𝚡(𝑡)K = J𝑣K ∈ J𝜏K. ButJ𝚏𝚒𝚡(𝑡)K = fix(J𝑡K) by definition of J−K (Definition 26)

= J𝑡K (fix(J𝑡K)) by fixed point property of fix
= J𝑡K (J𝚏𝚒𝚡(𝑡)K) by definition of J−K (Definition 26)

= J𝑡 𝚏𝚒𝚡(𝑡)K by definition of J−K (Definition 25)

= J𝑣K by (8). □

Note that this implies a form of adequacy for divergence:

Proposition 29 (Divergence) If 𝑡 ∈ Pcf𝚗𝚊𝚝 and J𝑡K = ⊥, then 𝑡 ⇑𝚗𝚊𝚝. And similarly
for the type of booleans. ∗
Proof Assume that 𝑡 ∈ Pcf𝚗𝚊𝚝 and J𝑡K = ⊥, we need to show ∄𝑣 . 𝑡 ⇓𝚗𝚊𝚝 𝑣 . So assume
that there exists such a value, which must be a numeral 𝑛. Then we have

𝑛 = q𝑛y by definition of J−K
= J𝑡K by soundness (Theorem 28)

= ⊥ by assumption

But ℕ⊥ was defined so that 𝑛 ≠ ⊥! So 𝑡 cannot evaluate to a value, and it must
diverge. □

We have now established two of the three properties of the denotational semantics
of Pcf stated in Section 6.1 (and which are in particular needed to use denotational
equality to prove Pcf contextual equivalences). The third property, adequacy, is not
so easy to prove as are the first two. Its proof is the subject of the next section.
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6.5 Exercises

Exercise 14 Prove the substitution property of the semantic function (Proposition 27).

Exercise 15 Defining Ω𝜏
def= 𝚏𝚒𝚡(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥), show that JΩ𝜏 K is the least element ⊥

of the domain J𝜏K. Deduce that J𝚏𝚞𝚗 𝑥: 𝜏 . Ω𝜏 K = JΩ𝜏->𝜏 K.

55



7 Adequacy
We have already seen (in Section 6.4) that the denotational semantics of Pcf given in
Section 6 is sound for the operational semantics, in the sense defined in Section 6.1:
if 𝑡 ⇓𝜏 𝑣 then J𝑡K = J𝑣K. But we want more: we should be able to get back from
denotational to operational properties.

To this aim, we prove the property of adequacy : on closed terms of the base types
𝚋𝚘𝚘𝚕 and 𝚗𝚊𝚝, denotational and operational semantics agree. More precisely, we
have to prove for any closed Pcf term 𝑡 and value 𝑣 of type 𝛾 = 𝚗𝚊𝚝 or 𝚋𝚘𝚘𝚕, thatJ𝑡K = J𝑣K ⇒ 𝑡 ⇓𝛾 𝑣 .
Remark 14 (Adequacy at function types) Adequacy does not hold at function types
or for open termsJ𝚏𝚞𝚗 𝑥: 𝜏 . (𝚏𝚞𝚗 𝑦: 𝜏 . 𝑦) 𝑥K = J𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥K : J𝜏K → J𝜏K
but

𝚏𝚞𝚗 𝑥: 𝜏 . (𝚏𝚞𝚗 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑥
This example can seem innocuous. But the following one is muchmore serious. Given
𝑓 ∈ Pcf𝚗𝚊𝚝->𝚗𝚊𝚝, considerJ𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. (𝚒𝚏 𝚣𝚎𝚛𝚘?(𝑓 𝑥) 𝚝𝚑𝚎𝚗 𝚝𝚛𝚞𝚎 𝚎𝚕𝚜𝚎 𝚝𝚛𝚞𝚎)K

?= J𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. 𝚝𝚛𝚞𝚎K
This denotational equality holds exactly when 𝑓 is a total function. But there is

no hope that we can decide what the first expression should evaluate to: this would
mean solving the halting problem for 𝑓 ! ∗

Perhaps surprisingly, adequacy is not so easy to prove. We will employ a method
due to Plotkin (although not quite the one used in his original paper on Pcf [7]) and
Mulmuley [8] making use of the following ‘formal approximation’ relations. This is a
logical relation, somewhat similar to those seen in Part II – Types to show termination
of simply-typed λ-calculus.

7.1 Formal approximation relation

We define a family of binary relations

⊲𝜏 ⊆ J𝜏K × Pcf𝜏
indexed by the Pcf type 𝜏 . For each 𝜏 , ⊲𝜏 relates elements of the domain J𝜏K to closed
Pcf terms of type 𝜏 . We use infix notation and write 𝑑 ⊲𝜏 𝑡 instead of (𝑑, 𝑡) ∈ ⊲𝜏 .
The definition of these relations⊲𝜏 proceeds by induction on the structure of the type 𝜏 .
(Read the definition in conjunction with the definition of J𝜏K given in Definition 22.)
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Definition 27 (Formal approximation) Given a Pcf type 𝜏 , a semantic value 𝑑 ∈J𝜏K and a closed term 𝑡 ∈ Pcf𝜏 , the formal approximation relation ⊲𝜏 is defined as
follows:

𝑑 ⊲𝚗𝚊𝚝 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓𝚗𝚊𝚝 𝑑)
𝑑 ⊲𝚋𝚘𝚘𝚕 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎)

∧(𝑑 = false ⇒ 𝑡 ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎)
𝑑 ⊲𝜏->𝜏 ′ 𝑡

def⇔ ∀𝑒 ∈ J𝜏K , 𝑢 ∈ Pcf𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢) ∗
The key property of the relations ⊲𝜏 is that they are respected by all operations of

the Pcf language. But to be able to state this, we need to extend the relation to open
contexts, for which we need a few definitions.

Definition 28 (Parallel closed substitution) Given a typing context Γ, a parallel
closed substitution 𝜎 for Γ is a function mapping each variable 𝑥 ∈ domΓ to a closed
Pcf term 𝜎(𝑥) ∈ PcfΓ(𝑥).

We write ⊢ 𝜎 : Γ to express that 𝜎 is such a parallel closed substitution, and 𝑡[𝜎]
for the action of such a substitution on terms, simultaneously replacing each variable
𝑥 appearing in 𝑡 by 𝜎(𝑥).
Remark 15 Just like unary substitution, n-ary substitution preserve typing: if⊢ 𝜎 : Γ
and Γ ⊢ 𝑡 : 𝜏 , then ⊢ 𝑡[𝜎] : 𝜏 .

Actually, we can more generally define parallel open substitutions Δ ⊢ 𝜎 : Γ, but
we will not use such substitutions in this course. ∗
Definition 29 (Formal approximation for substitution) Given a context Γ, a sub-
stitution 𝜎 such that ⊢ 𝜎 : Γ and an environment 𝜌 ∈ JΓK, we extend the formal
approximation as follows:

𝜌 ⊲Γ 𝜎 def⇔ ∀𝑥 ∈ dom(Γ). 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥). ∗
We can now finally state the fundamental property of the logical relation.

Theorem 30 (Fundamental property of formal approximation) Given a term 𝑡 such
that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and substitution 𝜎 such that
𝜌 ⊲Γ 𝜎 , we have J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎]. ∗

Note that this fundamental property specialises in case Γ = ⋅ to giveJ𝑡K ⊲𝜏 𝑡
for all types 𝜏 and all closed Pcf terms 𝑡 : 𝜏 . (Here we are using the notation for
denotations of closed terms introduced in Remark 12.) Using this, we can complete
the proof of adequacy.
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Theorem 31 (Adequacy) For any closed Pcf term 𝑡 and value 𝑣 of ground type 𝛾 ∈
{𝚗𝚊𝚝, 𝚋𝚘𝚘𝚕} J𝑡K = J𝑣K ∈ J𝛾 K ⇒ 𝑡 ⇓𝛾 𝑣
Proof (Adequacy) We give the proof for 𝚗𝚊𝚝, the 𝚋𝚘𝚘𝚕 case is entirely similar. Be-
cause 𝑣 is a ground value of type 𝚗𝚊𝚝, it must be the case that 𝑣 = 𝑛 for some 𝑛 ∈ 𝚗𝚊𝚝.
Hence J𝑡K = q𝑛y = 𝑛 by assumption and definition of J−K

⇒ 𝑛 = J𝑡K ⊲𝜏 𝑡 by the fundamental property

⇒ 𝑡 ⇓ 𝑛 by definition of ⊲𝚗𝚊𝚝 □

7.2 Proof of the fundamental property of formal approximation

We first need some preliminary lemmas on formal approximation, all proven by in-
duction on 𝜏 .
Lemma 32 The least element approximates any program: for any 𝜏 and 𝑡 ∈ Pcf𝜏 ,
⊥J𝜏K ⊲𝜏 𝑡 . ∗
Proof At ground type 𝚗𝚊𝚝, we must show that if ⊥ℕ⊥ ∈ ℕ then a certain condition
holds. But this is vacuously true, since ⊥ ∉ ℕ. The same reasoning goes for 𝚋𝚘𝚘𝚕.

For 𝜏 → 𝜏 ′, we have

⊥J𝜏->𝜏 ′K = ⊥J𝜏K→J𝜏 ′K = 𝜆𝑒 ∈ J𝜏K . ⊥J𝜏 ′K
Now, assuming 𝑒, 𝑢 such that 𝑒 ⊲𝜏 𝑢, we must show ⊥J𝜏->𝜏 ′K(𝑒) ⊲𝜏 ′ 𝑡 𝑢. But this
amounts to ⊥J𝜏 ′K ⊲𝜏 ′ 𝑡 𝑢, which is true by induction hypothesis on 𝜏 ′. □

Lemma 33 Given 𝑡 ∈ Pcf𝜏 , the set {𝑑 ∈ J𝜏K ∣ 𝑑 ⊲𝜏 𝑡} is a chain-closed subset of the
domain J𝜏K. ∗
Lemma 34 If 𝑑′ ⊑ 𝑑 and 𝑑 ⊲𝜏 𝑡 , then 𝑑′ ⊲𝜏 𝑡 . ∗
Proof At base types, if 𝑑′ ⊑ 𝑑 either 𝑑′ = 𝑑 or 𝑑′ = ⊥. In the first case, the conclusion
is direct, and in the second we can apply Lemma 32.

At the function type 𝜏 → 𝜏 ′, as for the previous two lemmas we use the induction
hypothesis on 𝜏 ′ to conclude. □

Lemma 35 If 𝑡 , 𝑡′ ∈ Pcf𝜏 are such that ∀𝑣. 𝑡 ⇓𝜏 𝑣 ⇒ 𝑡′ ⇓𝜏 𝑣 , and 𝑑 ⊲𝜏 𝑡 , then 𝑑 ⊲𝜏 𝑡′.∗
Now we have all we need to look at the fundamental property.

Proof (Theorem 30, fundamental property of formal approximation) We proceed by
induction on typing, to show that

Φ(Γ, 𝑡, 𝜏 ) def⇔ ∀𝜌, 𝜎 . (𝜌 ⊲Γ 𝜎 ⇒ J𝑡K (𝜌) ⊲𝜏 𝑡[𝜎])
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Case Zero. Φ(Γ, 𝟶, 𝚗𝚊𝚝) holds because 𝟶 ⇓𝚗𝚊𝚝 𝟶 = 0.

Case Succ. We have to prove that Φ(Γ, 𝑡, 𝚗𝚊𝚝) implies Φ(Γ, 𝚜𝚞𝚌𝚌(𝑡), 𝚗𝚊𝚝), which
amounts to showing that for all 𝑑′ ∈ J𝚗𝚊𝚝K, 𝑡′ ∈ Pcf𝚗𝚊𝚝,

𝑑′ ⊲𝚗𝚊𝚝 𝑡′ ⇒ succ⊥(𝑑′) ⊲𝚗𝚊𝚝 𝚜𝚞𝚌𝚌(𝑡′) (9)

That is, we can restrict to proving the statement on closed terms. Indeed, if we are
given 𝜌, 𝜎 such that 𝜌 ⊲Γ 𝜎 , J𝚜𝚞𝚌𝚌(𝑡)K (𝜌) = succ⊥(J𝑡K (𝜌)) and (𝚜𝚞𝚌𝚌(𝑡))[𝜎] =
𝚜𝚞𝚌𝚌(𝑡[𝜎]), we can apply 9 with 𝑑′ = J𝑡K (𝜌) and 𝑡′ = 𝑡[𝜎], since the right-hand side
then becomes exactly our induction hypothesis.

To show this, assume succ⊥(𝑑′) ∈ ℕ. This implies that 𝑑′ ∈ ℕ, and so by induction
hypothesis that 𝑡′ ⇓𝚗𝚊𝚝 𝑑′ We can then use rule Succ to conclude

𝚜𝚞𝚌𝚌(𝑡′) ⇓𝚗𝚊𝚝 𝚜𝚞𝚌𝚌(𝑑′) = 𝑑′ + 1 = succ⊥(𝑑′)

Cases Pred, IsZ. These cases are similar to the previous one, for the functions pred
and zero?.

Cases True, False. These cases are similar to those for 𝟶.

Case If. Just as for 𝚜𝚞𝚌𝚌, it is enough to consider closed terms, i.e. to show that if
𝑑1 ⊲𝚋𝚘𝚘𝚕 𝑡1, 𝑑2 ⊲𝜏 𝑡2, and 𝑑3 ⊲𝜏 𝑡3, then

if(𝑑1, 𝑑2, 𝑑3) ⊲𝜏 𝚒𝚏 𝑡1 𝚝𝚑𝚎𝚗 𝑡2 𝚎𝚕𝚜𝚎 𝑡3 (10)

where if is the continuous function if : 𝔹⊥ × (J𝜏K × J𝜏K) → J𝜏K of Proposition 11 that
was used in Definition 24 as the denotation of the conditional. If 𝑑1 = ⊥ ∈ 𝔹⊥, then
if(𝑑1, 𝑑2, 𝑑3) = ⊥ and (10) holds by Lemma 32. So we are left with the cases 𝑑1 = true
or 𝑑1 = false. We consider the case 𝑑1 = true; the argument for the other case is
similar.

Since true = 𝑑1 ⊲𝚋𝚘𝚘𝚕 𝑡1, by the definition of ⊲𝚋𝚘𝚘𝚕 we have 𝑡1 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎. It
follows from rule IfT for evaluation that

∀𝑣. (𝑡2 ⇓𝜏 𝑣 ⇒ 𝚒𝚏 𝑡1 𝚝𝚑𝚎𝚗 𝑡2 𝚎𝚕𝚜𝚎 𝑡3 ⇓𝜏 𝑣).
So Lemma 35 applied to 𝑑2 ⊲𝜏 𝑡2 yields that

𝑑2 ⊲𝜏 𝚒𝚏 𝑡1 𝚝𝚑𝚎𝚗 𝑡2 𝚎𝚕𝚜𝚎 𝑡3
and then since 𝑑2 = if(true, 𝑑2, 𝑑3) = if(𝑑1, 𝑑2, 𝑑3), we get (10), as required.
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Case Var. Φ(Γ, 𝑥, Γ(𝑥)) holds because if 𝜌 ⊲Γ 𝜎 , then for all 𝑥 ∈ dom(Γ) we have

J𝑥K (𝜌) def= 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥) def= 𝑥[𝜎]

Case Fun. By induction hypothesis, Φ(Γ, 𝑥: 𝜏 , 𝑡 , 𝜏 ′) holds. We moreover assume that
𝜌 ⊲Γ 𝜎 holds, and we have to show that J𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡K (𝜌) ⊲𝜏->𝜏 ′ (𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡)[𝜎], i.e.
that 𝑑 ⊲𝜏 𝑢 implies J𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡K (𝜌)(𝑑) ⊲𝜏 ′ ((𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡)[𝜎]) 𝑢. (11)

From Definition 25, we haveJ𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡K (𝜌)(𝑑) = J𝑡K (𝜌[𝑥 ↦ 𝑑]). (12)

Since (𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡)[𝜎] = 𝚏𝚞𝚗 𝑥: 𝜏 . (𝑡[𝜎]) and (𝑡[𝜎])[𝑢/𝑥] = 𝑡[𝜎[𝑥 ↦ 𝑢]], by rule Fun
for evaluation,

∀𝑣. (𝑡[𝜎[𝑥 ↦ 𝑢]] ⇓𝜏 ′ 𝑣 ⇒ ((𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡)[𝜎]) 𝑢 ⇓𝜏 ′ 𝑣) . (13)

Since 𝜌 ⊲Γ 𝜎 and 𝑑 ⊲𝜏 𝑢, we have 𝜌[𝑥 ↦ 𝑑] ⊲Γ,𝑥:𝜏 𝜎[𝑥 ↦ 𝑢]; so by Φ(Γ, 𝑥: 𝜏 , 𝑡 , 𝜏 ′)
we obtain J𝑡K (𝜌[𝑥 ↦ 𝑑]) ⊲𝜏 ′ 𝑡[𝜎[𝑥 ↦ 𝑢]].
Then (11) follows from this by using (12) and applying Lemma 35 with (13).

Case App. It suffices to show that if 𝑑1 ⊲𝜏->𝜏 ′ 𝑡1 and 𝑑2 ⊲𝜏 𝑡2, then 𝑑1(𝑑2) ⊲𝜏 ′ 𝑡1 𝑡2.
But this follows immediately from the definition of ⊲𝜏->𝜏 ′ .

Case Fix. As in the case of Succ, it is enough to show that

𝑑 ⊲𝜏->𝜏 𝑓 ⇒ fix 𝑑 ⊲𝜏 𝚏𝚒𝚡 𝑓
To show this, we use Scott induction (Theorem 17) on the set

{𝑒 ∈ J𝜏K ∣ 𝑒 ⊲𝜏 𝚏𝚒𝚡 𝑓 }
By Lemmas 32 and 33, this set contains ⊥J𝜏K and is chain-closed. It thus suffices to
prove that it is stable for 𝑓 , i.e. that

∀𝑒 ∈ J𝜏K . (𝑒 ∈ 𝑆 ⇒ 𝑑(𝑒) ∈ 𝑆).
Now, by definition of ⊲𝜏->𝜏 , it is the case that

𝑑(𝑒) ⊲𝜏 𝑓 (𝚏𝚒𝚡 𝑓 ). (14)

Rule Fix for evaluation implies

∀𝑣. (𝑓 (𝚏𝚒𝚡 𝑓 )) ⇓𝜏 𝑣 ⇒ 𝚏𝚒𝚡 𝑓 ⇓𝜏 𝑣). (15)

Then applying Lemma 35 to (14) and (15) yields 𝑑(𝑒) ⊲𝜏 𝚏𝚒𝚡 𝑓 , i.e. 𝑑(𝑒) ∈ 𝑆, as
required to complete Scott induction, this case and the whole proof. □
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7.3 Extensionality

The formal approximation relations⊲𝜏 is not just any relation. It actually corresponds
to a one-sided version of contextual equivalence.

Definition 30 (Contextual preorder) Given a type 𝜏 , a typing context Γ and terms
𝑡 , 𝑡′ ∈ PcfΓ,𝜏 , the contextual preorder, written Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 is defined to hold if for
all evaluation contexts C such that ⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is 𝚗𝚊𝚝 or 𝚋𝚘𝚘𝚕, and for all
values 𝑣 ∈ Pcf𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .
As for contextual equivalence, we write 𝑡 ≤ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 , i.e. if 𝑡 and

𝑡′ are closed. ∗

Before we can relate contextual preorder and formal approximation, we need a few
lemmas.

Lemma 36 (Monotony of formal approximation) Let 𝜏 be a type, and assume 𝑡1, 𝑡2 ∈
Pcf𝜏 are such that 𝑡1 ≤ctx 𝑡2 : 𝜏 . Then

𝑑 ⊲𝜏 𝑡1 ⇒ 𝑑 ⊲𝜏 𝑡2.
∗

Proof The proof is by induction on the structure of the type 𝜏 .
Indeed, if 𝜏 = 𝚗𝚊𝚝 or 𝚋𝚘𝚘𝚕, then 𝑡1 ≤ctx 𝑡2 : 𝜏 implies, using the trivial context −,

that
∀𝑣 : 𝜏 . (𝑡1 ⇓𝜏 𝑣 ⇒ 𝑡2 ⇓𝜏 𝑣)

from which we conclude by Lemma 35.
If 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′, then also

𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′

for any 𝑡 : 𝜏 , by taking an evaluation context C to C[− 𝑡]. Thus, we can apply the
induction hypothesis for 𝜏 ′ to conclude. □

Next, we show an important lemma, in essence saying that to characterise the con-
textual preorder between two terms, we can focus only on a very particular kind of
contexts: application contexts, which are of the form 𝑓 −.

Lemma 37 (Application contexts) Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx
𝑡2 : 𝜏 if and only if, for every term 𝑓 : 𝜏 → 𝚋𝚘𝚘𝚕,

𝑓 𝑡1 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 ⇒ 𝑓 𝑡2 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎. ∗
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Proof For the “only if” direction, simply note that

⋅ ⊢⋅,𝜏 𝑓 − : 𝚋𝚘𝚘𝚕
and so by the definition of contextual preorder,

𝑓 𝑡1 = (𝑓 −)[𝑡1] ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 ⇒ 𝑓 𝑡2 = (𝑓 −)[𝑡2] ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎
For the other direction, assume we are given an arbitrary context C and a value 𝑣 ,

and assume ⋅ ⊢Γ,𝜏 C : 𝛾 and C[𝑡] ⇓𝛾 𝑣 . Let us build the function 𝑓 as follows. First,
define 𝑐 : 𝜏 → 𝛾 as 𝚏𝚞𝚗 𝑥: 𝜏 . C[𝑥]. Then take 𝑔 : 𝛾 → 𝚋𝚘𝚘𝚕 which returns 𝚝𝚛𝚞𝚎 if
and only if its argument is equal to 𝑣 . This function is easily defined in Pcf – after
all, the language is Turing-complete, so we can certainly code a function that tests
whether its argument is a given boolean 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎, or a given natural number

𝑛. Given these, let 𝑓 def= 𝚏𝚞𝚗 𝑥: 𝜏 . 𝑔 (𝑐 𝑥). Then, 𝑓 𝑡 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 if and only if 𝑐 𝑡 ⇓𝛾 𝑣 ,
i.e. if and only if C[𝑡] ⇓𝛾 𝑣 . Now we can use our assumption for this 𝑓 , and conclude.□

Now we can relate formal approximation and the contextual preorder.

Proposition 38 (Contextual preorder corresponds to formal approximation) For
all Pcf types 𝜏 and all closed terms 𝑡1, 𝑡2 ∈ Pcf𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ J𝑡1K ⊲𝜏 𝑡2. ∗

Proof Assume J𝑡1K ⊲𝜏 𝑡2. For any 𝑓 ∈ Pcf𝜏->𝚋𝚘𝚘𝚕, by the fundamental property of ⊲
we have J𝑓 K ⊲𝜏->𝚋𝚘𝚘𝚕 𝑓 , which by definition of ⊲𝜏->𝚋𝚘𝚘𝚕 implies that

J𝑓 𝑡1K = J𝑡K (J𝑡1K) ⊲𝚋𝚘𝚘𝚕 𝑓 𝑡2. (16)

So if 𝑓 𝑡1 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎, then J𝑓 𝑡1K = 𝚝𝚛𝚞𝚎 (by soundness) and hence by definition of
⊲𝚋𝚘𝚘𝚕 from (16) we get 𝑓 𝑡2 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎. Using the characterisation of Lemma 37, we
finally obtain 𝑡1 ≤ctx 𝑡2 : 𝜏 . This establishes the right-to-left implication.

For the converse, we can use Lemma 36. Indeed, if 𝑡1 ≤ctx 𝑡2 : 𝜏 , by the fundamental
property J𝑡1K ⊲𝜏 𝑡1, and thus implies J𝑡1K ⊲𝜏 𝑡2. □

This equivalence allows us to transfer the extensionality properties enjoyed by the
domain partial orders ⊑ to the contextual preorder, as follows.

Proposition 39 (Extensionality properties of contextual preorder) For 𝛾 = 𝚋𝚘𝚘𝚕
or 𝚗𝚊𝚝, 𝑡1 ≤ctx 𝑡2 : 𝛾 holds if and only if

∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).
At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if

∀𝑡 ∈ Pcf𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′). ∗
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Proof The ‘only if’ directions are easy consequences of the definition of the contex-
tual preorder.

For the ‘if’ direction in case 𝜏 = 𝚋𝚘𝚘𝚕 or 𝚗𝚊𝚝, for any value 𝑣 we have

J𝑡1K = J𝑣K ⇒ 𝑡1 ⇓𝜏 𝑣 by adequacy

⇒ 𝑡2 ⇓𝜏 𝑣 by assumption

and hence J𝑡1K ⊲𝜏 𝑡2 by definition of ⊲ at these ground types. We conclude by Propo-
sition 38.

For the ‘if’ direction in case of a function type 𝜏 -> 𝜏 ′, we have

𝑑 ⊲𝜏 𝑡 ⇒ J𝑡1K (𝑑) ⊲𝜏 ′ 𝑡1 𝑡 since J𝑡1K ⊲𝜏 𝑡1
⇒ J𝑡1K (𝑑) ⊲𝜏 ′ 𝑡2 𝑡 by Lemma 36, since 𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′ by assumption

and hence J𝑡1K ⊲𝜏->𝜏 ′ 𝑡2 by definition of ⊲ at type 𝜏 -> 𝜏 ′. So once again we can
Proposition 38 to get the desired conclusion. □

7.4 Exercises

Exercise 16 Show Lemmas 33 and 35.

Exercise 17 For any Pcf type 𝜏 and any closed terms 𝑡1, 𝑡2 ∈ Pcf𝜏 , show that

∀𝑣. (𝑡1 ⇓𝜏 𝑣 ⇔ 𝑡2 ⇓𝜏 𝑣) ⇒ 𝑡1 ≅ctx 𝑡2 : 𝜏 . (17)

[Hint: combine Proposition 38 with Lemma 35.]

Exercise 18 Use (17) to show that 𝛽-conversion is valid up to contextual equivalence
in Pcf, in the sense that for all 𝑡 , 𝑢 such that 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′ and ⊢ 𝑢 : 𝜏 , we have

(𝚏𝚞𝚗 𝑥: 𝜏 . 𝑡) 𝑢 ≅ctx 𝑡[𝑢/𝑥] : 𝜏 ′.
Exercise 19 Is the converse of (17) valid at ground types? At function types?
[Hint: recall the extensionality property at function types (Proposition 39) and con-
sider the terms Ω𝚗𝚊𝚝->𝚗𝚊𝚝 and 𝚏𝚞𝚗 𝑥: 𝚗𝚊𝚝. Ω𝚗𝚊𝚝 (defined in Exercise 15), of type
𝚗𝚊𝚝 -> 𝚗𝚊𝚝.]
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8 Full abstraction

8.1 Failure of full abstraction

As we saw in Theorem 24, the adequacy property implies that contextual equivalence
of two Pcf terms can be proved by showing that they have equal denotations: J𝑡1K =J𝑡2K ∈ J𝜏K ⇒ 𝑡1 ≅ctx 𝑡2 : 𝜏 . In general one says that a denotational semantics is said
to be fully abstract if contextual equivalence coincides with equality of denotation.

Definition 31 (Full abstraction) A denotational model is fully abstract if

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ J𝑡1K = J𝑡2K ∈ J𝜏K ∗
Unfortunately this is not the case for the denotational semantics of Pcf using do-

mains and continuous functions: there are contextually equivalence Pcf terms with
unequal denotations. In other words, the domain model of Pcf is not fully abstract.
The classic example demonstrating this failure is due to Plotkin [7] and involves the
parallel-or function.

Definition 32 (Parallel or) The parallel or function por : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined
as given by the following table:

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥ ∗

Contrast por with the following ‘sequential-or’ function.

Definition 33 (Left sequential or) The (left) sequential or function or : 𝔹⊥ ×𝔹⊥ →
𝔹⊥ is defined as

or def= J𝚏𝚞𝚗 𝑥: 𝚋𝚘𝚘𝚕. 𝚏𝚞𝚗 𝑦: 𝚋𝚘𝚘𝚕. 𝚒𝚏 𝑥 𝚝𝚑𝚎𝚗 𝚝𝚛𝚞𝚎 𝚎𝚕𝚜𝚎 𝑦K
It is given by the following table:

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

∗
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Both functions give the usual boolean ‘or’ function when restricted to 𝔹, but differ
in their behaviour at arguments involving the element ⊥ denoting ‘non-termination’.
Note that por(𝑑1, 𝑑2) = true if either of 𝑑1 or 𝑑2 is true even if the other argument is
⊥; whereas or(⊥, 𝑑2) = ⊥ irrelevant of 𝑑2.

As noted in the definition, or is definable, in the sense that there is a closed Pcf term
𝑡 : 𝚋𝚘𝚘𝚕 -> (𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕)with J𝑡K = or. This term tests whether its first argument
is 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎, and so diverges if that first argument diverges, irrespective of its
second argument.

By contrast, for porwe have the following, first proven by Plotkin [7] – for a slightly
different function.

Theorem 40 (Undefinability of parallel or) There is no closed Pcf term

𝑡 : 𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕
satisfying J𝑡K = por : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ . ∗

We will not give the proof of this proposition here. The original proof by Plotkin [7]
operates via an ‘Activity Lemma’, but there are alternative approaches using ‘stable’
continuous functions [4, p 181], or using logical relations [9].

In any case, the key idea is that evaluation in Pcf proceeds sequentially. So whatever
𝑡 is, evaluation of 𝑡 𝑢1 𝑢2 must at some point involve full evaluation of either 𝑢1 or 𝑢2 (𝑡
cannot ignore its arguments if it is to return 𝚝𝚛𝚞𝚎 in some cases and 𝚏𝚊𝚕𝚜𝚎 in others);
whereas an algorithm to compute por at a pair of arguments must compute the values
of those arguments ‘in parallel’ in case one diverges whilst the other yields the value
𝚝𝚛𝚞𝚎.

One can exploit the undefinability of por in Pcf to manufacture a pair of contextu-
ally equivalent closed terms in Pcf with unequal denotations, and thus prove that our
denotational semantics is not fully abstract. Indeed, define, for 𝑏 ∈ {𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎},
the following program (Ω has been defined in Example 18):

𝑇𝑏 def= 𝚏𝚞𝚗 𝑓 : 𝚋𝚘𝚘𝚕 -> (𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕).
𝚒𝚏(𝑓 𝚝𝚛𝚞𝚎 Ω𝚋𝚘𝚘𝚕) 𝚝𝚑𝚎𝚗

𝚒𝚏 (𝑓 Ω𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎) 𝚝𝚑𝚎𝚗
𝚒𝚏 (𝑓 𝚏𝚊𝚕𝚜𝚎 𝚏𝚊𝚕𝚜𝚎) 𝚝𝚑𝚎𝚗 Ω𝚋𝚘𝚘𝚕 𝚎𝚕𝚜𝚎 𝑏

𝚎𝚕𝚜𝚎 Ω𝚋𝚘𝚘𝚕
𝚎𝚕𝚜𝚎 Ω𝚋𝚘𝚘𝚕

Theorem 41 (Failure of full abstraction) The denotational model given in Section 6,
using domains and continuous functions, is not fully abstract.
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More precisely, the two terms 𝑇𝚝𝚛𝚞𝚎 and 𝑇𝚏𝚊𝚕𝚜𝚎 are contextually equivalent but have
different denotations:

𝑇𝚝𝚛𝚞𝚎 ≅ctx 𝑇𝚏𝚊𝚕𝚜𝚎 : (𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕) -> 𝚋𝚘𝚘𝚕J𝑇𝚝𝚛𝚞𝚎K ≠ J𝑇𝚏𝚊𝚕𝚜𝚎K ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹 ∗

Proof From the definition of por in Definition 32 and the definition of J−K in Defini-
tions 24 to 26, it is not hard to see thatJ𝑇𝑏K (por) = J𝑏K
Thus J𝑇𝚝𝚛𝚞𝚎K (por) ≠ J𝑇𝚏𝚊𝚕𝚜𝚎K (por) and therefore J𝑇𝚝𝚛𝚞𝚎K ≠ J𝑇𝚏𝚊𝚕𝚜𝚎K.

To see that 𝑇𝚝𝚛𝚞𝚎 ≅ctx 𝑇𝚏𝚊𝚕𝚜𝚎 : (𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕) -> 𝚋𝚘𝚘𝚕 we use the
extensionality results of Proposition 39. Thus, we have to show for all 𝑡 : 𝚋𝚘𝚘𝚕 ->
𝚋𝚘𝚘𝚕 -> 𝚋𝚘𝚘𝚕 and 𝑣 ∈ {𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎} that

𝑇𝚝𝚛𝚞𝚎 𝑡 ⇓𝚋𝚘𝚘𝚕 𝑣 ⇔ 𝑇𝚏𝚊𝚕𝚜𝚎 𝑡 ⇓𝚋𝚘𝚘𝚕 𝑣 . (18)

But the definition of 𝑇𝑏 is such that 𝑇𝑏 𝑡 ⇓𝚋𝚘𝚘𝚕 𝑣 only holds if

𝑡 𝚝𝚛𝚞𝚎 Ω𝚋𝚘𝚘𝚕 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 𝑡 Ω𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎
𝑡 𝚏𝚊𝚕𝚜𝚎 𝚏𝚊𝚕𝚜𝚎 ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎.

By the soundness property (Theorem 28), this means thatJ𝑡K (true)(⊥) = true J𝑡K (⊥)(true) = true J𝑡K (false)(false) = false.
(Recall from Exercise 15 that JΩK = ⊥.) It follows in that case that the continuous
function J𝑡K : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ coincides with por (see Exercise 20). Thus, such a
𝑡 cannot exist, by Theorem 40. Therefore, (18) is trivially satisfied for all 𝑡 , and thus
𝑇𝚝𝚛𝚞𝚎 and 𝑇𝚏𝚊𝚕𝚜𝚎 are indeed contextually equivalent. □

8.2 Beyond full abstraction failure

This failure of full abstraction can be understood in three different ways. First, we
can see it as a failure of Pcf: the language is unable to express objects that naturally
appear in the semantics. Second, we can see it as a failure of contexts, which are not
expressive enough to distinguish terms which are semantically different. For instance,
we couldwish to have a context that is able to separate the two terms 𝑇𝚝𝚛𝚞𝚎 and 𝑇𝚏𝚊𝚕𝚜𝚎
above. Third, we can see it as a failure of themodel, which does not adequately capture
contextual equivalence. In particular, it contains “too many” elements, some of which
– such as por – should be ruled out because they do not correspond to behaviour
expressible by a Pcf program. All three approaches are valid, and lead to different
ways to “correct” the full abstraction failure.
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Full abstraction for Pcf+por

The failure of full abstraction for the denotational semantics of Pcf can be repaired
by extending Pcf with extra terms for those elements of the domain-theoretic model
that are not definable in the language as originally given. We have seen that por is
one such element ‘missing’ from Pcf, and a remarkable result6 is that this is the only
thing we need add to Pcf to obtain full abstraction. This extension is defined formally
in Fig. 5.

Terms: 𝑡 ::= ⋯ ∣ 𝚙𝚘𝚛(𝑡, 𝑡)

Γ ⊢ 𝑡 : 𝜏

… Por
Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏

Γ ⊢ 𝚙𝚘𝚛(𝑡1, 𝑡2) : 𝜏

𝑡 ⇓𝜏 𝑣

PorL
𝑡1 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎

𝚙𝚘𝚛(𝑡1, 𝑡2) ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎 PorR
𝑡2 ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎

𝚙𝚘𝚛(𝑡1, 𝑡2) ⇓𝚋𝚘𝚘𝚕 𝚝𝚛𝚞𝚎

PorF
𝑡1 ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎 𝑡2 ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎

𝚙𝚘𝚛(𝑡1, 𝑡2) ⇓𝚋𝚘𝚘𝚕 𝚏𝚊𝚕𝚜𝚎

Figure 5: Pcf+𝚙𝚘𝚛
The proof of this result, just like that of full abstraction failure, are out of the scope

of these notes, see Gunter [4] or Curien [10].

Theorem 42 (Full abstraction for Pcf+𝚙𝚘𝚛) If we extend the semantics of Pcf to
Pcf+𝚙𝚘𝚛 with J𝚙𝚘𝚛K = por
the resulting denotational semantics is fully abstract. ∗

6Shown in the original Plotkin [7] for a more expressive ‘parallel conditional’, and refined later to
parallel or, see e.g. Curien [10].
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Fully abstract semantics for Pcf

The evaluation of Pcf terms involves a form of ‘sequentiality’ which is not reflected
in the denotational semantics of Pcf using domains and continuous functions: the
continuous function por does not denote any Pcf term and this results in a mismatch
between denotational equality and contextual equivalence. But what precisely does
‘sequentiality’ mean in general? Can we characterise it in an abstract way, indepen-
dent of the particular syntax of Pcf terms, and hence give a more refined form of
denotational semantics that is fully abstract for contextual equivalence for Pcf (and
for other types of language besides the simple, pure functional language Pcf)? These
questions have driven the development of domain theory and denotational seman-
tics since the appearance of Plotkin [7]: see the survey by Hyland and Ong [11], for
example.

A first step by Berry [12] was to refine the domain model to so-called dI-domains
– and stable functions –, so that por does not belong to the semantic type 𝔹⊥ →
𝔹⊥ → 𝔹⊥. However, other, more complicated higher-order functions are allowed in
the semantics without being definable in Pcf, and this model is still not fully abstract.

It is only in the 90s that definitive answers started to emerge even for such an
apparently simple language as Pcf. O’Hearn and Riecke [13] construct a fully ab-
stract model of Pcf by using logical relations to characterise the definable elements
of the standard model. Although this does provide a solution, it does not seem to
give much insight into the nature of sequential computation. By contrast, Abramsky,
Jagadeesan, and Malacaria [14] and Hyland and Ong [11] solve the problem by intro-
ducing a radically different approach to giving semantics to programming languages,
based upon the idea of viewing program execution as a two-player game between the
program and the environment. See Abramsky et al. [15] and Hyland [16] for intro-
ductions to these game semantics.

Undecidability of contextual equivalence

Finally, a striking negative result by Loader should be mentioned. Note that the ma-
terial in Section 8.1 does not depend upon the presence of numbers and arithmetic in
Pcf. Let Pcf𝚋𝚘𝚘𝚕 denote the fragment of Pcf only involving 𝚋𝚘𝚘𝚕 and the function
types formed from it, 𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎, conditionals, variables, function abstraction and
application, and a primitive divergent term Ω𝚋𝚘𝚘𝚕 : 𝚋𝚘𝚘𝚕.

Since 𝔹⊥ is a finite domain and since the function domain formed from finite do-
mains is again finite, the domain associated to each Pcf𝚋𝚘𝚘𝚕 type is finite. Element in
these domains can be seen as some sort of higher-order “truth tables”, akin to those of
Section 8.1. A further simplification arises from the fact that if the domains 𝐷 and 𝐷′
are finite, then all chains are ultimately constants, and thus all monotone functions
from 𝐷 to 𝐷′ are continuous.
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Since there are finitely many semantic terms at each type, there are also finitely
many different equivalence classes up to contextual equivalence. Given these finite-
ness properties, and the terribly simple nature of the language, one might hope that
the following questions are decidable (uniformly in the Pcf𝚋𝚘𝚘𝚕 type 𝜏 ):

• Which elements of J𝜏K are definable by Pcf𝚋𝚘𝚘𝚕 terms?
• When are two Pcf𝚋𝚘𝚘𝚕 of type 𝜏 contextually equivalent?

Quite remarkably, Loader [17] shows that these are recursively undecidable questions.
Thus, while we can compute the denotational semantics of terms of Pcf𝚋𝚘𝚘𝚕 in the

domain model, and test their equality, there is no hope to get a fully abstract model,
even for Pcf𝚋𝚘𝚘𝚕, in which we can effectively compute denotations and test elements
for equality. This puts a strong limitation as to how “concrete” fully abstract models
can be.

However, if one’s goal is to develop tools to show contextual equivalence of pro-
grams, instead of looking for a one-size-fits all domain which exactly captures con-
textual equivalence with its denotational semantics, one can try and develop other
tools. A successful approach to this is applicative bisimilarity [18], a relation which
captures contextual equivalence but is much more amenable to proofs in particular
cases, although it remains undecidable even in simple cases by Loader’s result.

8.3 Exercises

Exercise 20 Suppose that a monotonic function 𝑝: : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ satisfies

𝑝(true)(⊥) = true 𝑝(⊥)(true) = true 𝑝(false)(false) = false.
Show that 𝑝 = por, by showing that 𝑝(𝑑1, 𝑑2) = por(𝑑1)(𝑑2), for all 𝑑1, 𝑑2 ∈ 𝔹⊥.

Exercise 21 Show that even though there are overlapping rules in Fig. 5, neverthe-
less the evaluation relation for Pcf+𝚙𝚘𝚛 is still deterministic (in the sense of Proposi-
tion 23).

Exercise 22 Give the axioms and rules for an inductively defined transition relation
for Pcf+𝚙𝚘𝚛. This should take the form of a binary relation 𝑡 ⇝ 𝑡′ between closed
Pcf+𝚙𝚘𝚛 terms. It should satisfy

𝑡 ⇓ 𝑣 ⇔ 𝑡 ⇝⋆ 𝑣
(where ⇝⋆ is the reflexive-transitive closure of ⇝).
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