DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND Lectures for Part II CST 2024/2025

PRACTICALITIES

- $\boldsymbol{\cdot}$ My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

• Formal methods: mathematical tools for the specification, development, analysis and verification of software and hardware systems.

- Formal methods: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning for/about programming languages.

- Formal methods: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning for/about programming languages.
- Programming language semantics: what is the (mathematical) meaning of a program?

- Formal methods: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning for/about programming languages.
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

 \cdot $\mbox{Insight:}$ exposes the mathematical "essence" of programming language ideas.

- Insight: exposes the mathematical "essence" of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.

4

- Insight: exposes the mathematical "essence" of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.
- Language design: feedback from semantics (functional programming, monads & handlers, linearity...).

- Insight: exposes the mathematical "essence" of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.
- Language design: feedback from semantics (functional programming, monads & handlers, linearity...).
- · Rigour: powerful way to justify formal methods.

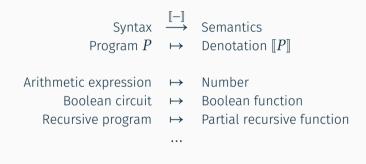
- · Operational
- Axiomatic
- Denotational

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- Axiomatic
- Denotational

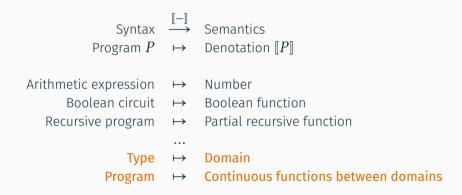
- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- Axiomatic: meaning of a program in terms of a *program logic* to reason about it (see Part II Hoare Logic & Model Checking).
- Denotational

- Operational: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- Axiomatic: meaning of a program in terms of a *program logic* to reason about it (see Part II Hoare Logic & Model Checking).
- Denotational: meaning of a program defined abstractly as object of some suitable mathematical structure (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL



DENOTATIONAL SEMANTICS IN A NUTSHELL



PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- mathematical object, implementation/machine independent;
- · captures the concept of a programming language construct;
- $\boldsymbol{\cdot}$ should relate to practical implementations, though...

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

- · mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;
- should relate to practical implementations, though...

Compositionality

- The denotation of a whole is defined using the denotation of its parts;
- $\llbracket P \rrbracket$ represents the contribution of P to any program containing P;
- $\boldsymbol{\cdot}$ More flexible and expressive than whole-program semantics.

Programs

 $C \in \mathbf{Prog} ::= \mathsf{skip} \mid L := A \mid C; C \mid \mathsf{if} \ B \ \mathsf{then} \ C \ \mathsf{else} \ C \mid \mathsf{while} \ B \ \mathsf{do} \ C$

8

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Programs

 $C \in \mathbf{Prog} ::= \mathsf{skip} \mid L := A \mid C; C \mid \mathsf{if} \; B \; \mathsf{then} \; C \; \mathsf{else} \; C \mid \mathsf{while} \; B \; \mathsf{do} \; C$

ranges over integers
$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Programs

 $C \in \mathbf{Prog} ::= \mathsf{skip} \mid L := A \mid C; C \mid \mathsf{if} \; B \; \mathsf{then} \; C \; \mathsf{else} \; C \mid \mathsf{while} \; B \; \mathsf{do} \; C$

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathsf{true} \mid \mathsf{false} \mid A = A \mid \neg B \mid \dots$$

Programs

 $C \in \mathbf{Prog} ::= \mathsf{skip} \mid L := A \mid C; C \mid \mathsf{if} \; B \; \mathsf{then} \; C \; \mathsf{else} \; C \mid \mathsf{while} \; B \; \mathsf{do} \; C$

8

DENOTATION FUNCTIONS - NAÏVELY

$$A: Aexp \rightarrow \mathbb{Z}$$

where

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

DENOTATION FUNCTIONS - NAÏVELY

$$A: \operatorname{Aexp} \to \mathbb{Z}$$
$$B: \operatorname{Bexp} \to \mathbb{B}$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\mathbb{B} = \{\text{true}, \text{false}\}$$

ARITHMETIC EXPRESSIONS?

$$\mathcal{A} \left[\!\left[\underline{n}\right]\!\right] = n$$

$$\mathcal{A} \left[\!\left[A_1 + A_2\right]\!\right] = \mathcal{A} \left[\!\left[A_1\right]\!\right] + \mathcal{A} \left[\!\left[A_2\right]\!\right]$$

ARITHMETIC EXPRESSIONS?

$$\mathcal{A} \left[\underline{n} \right] = n$$

$$\mathcal{A} \left[A_1 + A_2 \right] = \mathcal{A} \left[A_1 \right] + \mathcal{A} \left[A_2 \right]$$

$$\mathcal{A} \left[L \right] = ???$$

DENOTATION FUNCTIONS - LESS NAÏVELY

State =
$$(\mathbb{L} \to \mathbb{Z})$$

DENOTATION FUNCTIONS - LESS NAÏVELY

State =
$$(\mathbb{L} \to \mathbb{Z})$$

$$A : \mathbf{Aexp} \to (\mathbf{State} \to \mathbb{Z})$$

$$\mathcal{B}: Bexp \to (State \to \mathbb{B})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\mathbb{B} = \{true, false\}.$$

DENOTATION FUNCTIONS - LESS NAÏVELY

State =
$$(\mathbb{L} \to \mathbb{Z})$$

$$A : Aexp \rightarrow (State \rightarrow \mathbb{Z})$$

$$\mathcal{B}: \mathbf{Bexp} \to (\mathbf{State} \to \mathbb{B})$$

$$C: \mathbf{Prog} \to (\mathsf{State} \to \mathsf{State})$$

where

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

$$\mathbb{B} = \{\text{true}, \text{false}\}.$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$\mathcal{A}\left[\!\left[\underline{n}\right]\!\right] = \lambda s \in \text{State.} \, n$$

$$\mathcal{A}\left[\!\left[A_1 + A_2\right]\!\right] = \lambda s \in \text{State.} \, \mathcal{A}\left[\!\left[A_1\right]\!\right](s) + \mathcal{A}\left[\!\left[A_2\right]\!\right](s)$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$\mathcal{A}\llbracket\underline{n}\rrbracket = \lambda s \in \text{State. } n$$

$$\mathcal{A}\llbracket A_1 + A_2 \rrbracket = \lambda s \in \text{State. } \mathcal{A}\llbracket A_1 \rrbracket (s) + \mathcal{A}\llbracket A_2 \rrbracket (s)$$

$$\mathcal{A}\llbracket L \rrbracket = \lambda s \in \text{State. } s(L)$$

SEMANTICS OF BOOLEAN EXPRESSIONS

$$\mathcal{B}[\![\mathsf{true}]\!] = \lambda s \in \mathsf{State}. \ \mathsf{true}$$

$$\mathcal{B}[\![\mathsf{false}]\!] = \lambda s \in \mathsf{State}. \ \mathsf{false}$$

$$\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in \mathsf{State}. \ \mathsf{eq} \left(\mathcal{A}[\![A_1]\!] \left(s \right), \mathcal{A}[\![A_2]\!] \left(s \right) \right)$$
 where $\mathsf{eq}(a, a') = \begin{cases} \mathsf{true} & \mathsf{if} \ a = a' \\ \mathsf{false} & \mathsf{if} \ a \neq a' \end{cases}$

SEMANTICS OF PROGRAMS

$$\mathcal{C}[skip] = \lambda s \in State. s$$

$$\mathcal{C}[\![\mathsf{skip}]\!] = \lambda s \in \mathsf{State.} \ s$$

$$\mathcal{C}[\![\mathsf{if} \ B \ \mathsf{then} \ C \ \mathsf{else} \ C']\!] = \lambda s \in \mathsf{State.} \ \mathsf{if} \ (\mathcal{B}[\![B]\!] \ (s), \mathcal{C}[\![C]\!] \ (s), \mathcal{C}[\![C']\!] \ (s))$$

$$\mathsf{where} \ \mathsf{if} \ (b, x, x') = \begin{cases} x & \mathsf{if} \ b = \mathsf{true} \\ x' & \mathsf{if} \ b = \mathsf{false} \end{cases}$$

$$\mathcal{C}[\![\mathsf{skip}]\!] = \lambda s \in \mathsf{State.} \, s$$

$$\mathcal{C}[\![\mathsf{if} \, B \, \mathsf{then} \, C \, \mathsf{else} \, C']\!] = \lambda s \in \mathsf{State.} \, \mathsf{if} \, (\mathcal{B}[\![B]\!](s), \mathcal{C}[\![C]\!](s), \mathcal{C}[\![C']\!](s))$$

$$\mathsf{where} \, \mathsf{if} \, (b, x, x') = \begin{cases} x & \mathsf{if} \, b = \mathsf{true} \\ x' & \mathsf{if} \, b = \mathsf{false} \end{cases}$$

$$\mathcal{C}[\![L := A]\!] = \lambda s \in \mathsf{State.} \, s[L \mapsto \mathcal{A}[\![A]\!](s)]$$

$$\mathsf{where} \, s[L \mapsto n](L') = \begin{cases} n & \mathsf{if} \, L' = L \\ s(L) & \mathsf{otherwise} \end{cases}$$

$$\mathcal{C}[\![\mathsf{skip}]\!] = \lambda s \in \mathsf{State.} \, s$$

$$\mathcal{C}[\![\mathsf{if} \, B \, \mathsf{then} \, C \, \mathsf{else} \, C']\!] = \lambda s \in \mathsf{State.} \, \mathsf{if} \, (\mathcal{B}[\![B]\!](s), \mathcal{C}[\![C]\!](s), \mathcal{C}[\![C']\!](s))$$

$$\mathsf{where} \, \mathsf{if} (b, x, x') = \begin{cases} x & \mathsf{if} \, b = \mathsf{true} \\ x' & \mathsf{if} \, b = \mathsf{false} \end{cases}$$

$$\mathcal{C}[\![L := A]\!] = \lambda s \in \mathsf{State.} \, s[L \mapsto \mathcal{A}[\![A]\!](s)]$$

$$\mathsf{where} \, s[L \mapsto n](L') = \begin{cases} n & \mathsf{if} \, L' = L \\ s(L) & \mathsf{otherwise} \end{cases}$$

$$\mathcal{C}[\![C; C']\!] = \mathcal{C}[\![C']\!] \circ \mathcal{C}[\![C]\!]$$

$$= \lambda s \in \mathsf{State.} \, \mathcal{C}[\![C']\!](\mathcal{C}[\![C]\!](s))$$

SEMANTICS OF LOOPS?

This is all very nice, but...

$$[\![\text{while } B \text{ do } C]\!] = ???$$

SEMANTICS OF LOOPS?

This is all very nice, but...

[while
$$B$$
 do C] = ???

Remember:

- · (while $B ext{ do } C, s) imes ext{ (if } B ext{ then } (C; ext{ while } B ext{ do } C) ext{ else skip, } s)$
- we want a compositional semantic: $[\![\mathbf{while}\ B\ \mathbf{do}\ C]\!]$ in terms of $[\![C]\!]$ and $[\![B]\!]$

LOOP AS A FIXPOINT

[while
$$B$$
 do C] = [if B then (C ; while B do C) else skip]
= $\lambda s \in \text{State.}$ if ([B], [while B do C] \circ [C] (s), s)

LOOP AS A FIXPOINT

[while
$$B$$
 do C] = [if B then (C ; while B do C) else skip]
= $\lambda s \in \text{State.}$ if ([B], [while B do C] \circ [C] (s), s)

Not a direct definition for [while B do C]... But a fixed point equation!

$$\llbracket \mathsf{while} \ B \ \mathsf{do} \ C \rrbracket = F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathsf{while} \ B \ \mathsf{do} \ C \rrbracket)$$

where
$$F_{b,c}$$
: (State \rightarrow State) \rightarrow (State \rightarrow State) $w \mapsto \lambda s \in \text{State. if}(b(s), w \circ c(s), s).$

Now we have a goal

- · Why/when does $w = F_{b,c}(w)$ have a solution?
- · What if it has several solutions? Which one should be our $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$?

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations $(f \in \mathbb{Z} \to \mathbb{Z})$:

$$f(x) = f(x) + 1 \tag{1}$$

$$f(x) = f(x) \tag{2}$$

What about their fixed points?

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations ($f \in \mathbb{Z} \to \mathbb{Z}$):

$$f(x) = f(x) + 1 \tag{1}$$

$$f(x) = f(x) \tag{2}$$

What about their fixed points?

- No function satisfies Eq. (1)!
- All functions satisfy Eq. (2)!

Both functions should diverge!

Both functions should diverge!

New rule: partial functions $f \in \mathbb{Z} \to \mathbb{Z}$

Both functions should diverge!

New rule: partial functions $f \in \mathbb{Z} \to \mathbb{Z}$

$$f(x) = f(x) + 1$$

has a unique solution: the nowhere-defined function $oldsymbol{\perp}$

Both functions should diverge!

New rule: partial functions $f \in \mathbb{Z} \to \mathbb{Z}$

$$f(x) = f(x) + 1$$

has a unique solution: the nowhere-defined function $oldsymbol{\perp}$

But

$$f(x) = f(x)$$

Has even more solutions now...

AN ORDER ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \to \mathbb{Z}$:

 $w \sqsubseteq w'$ if for all $s \in \mathbb{Z}$, if w is defined at s so is w' and moreover w(s) = w'(s). if the graph of w is included in the graph of w'.

AN ORDER ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \to \mathbb{Z}$:

 $w \sqsubseteq w'$ if for all $s \in \mathbb{Z}$, if w is defined at s so is w' and moreover w(s) = w'(s). if the graph of w is included in the graph of w'.

Least element $\bot \in \mathbb{Z} \to \mathbb{Z}$:

 \perp = totally undefined partial function

AN ORDER ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \to \mathbb{Z}$:

 $w \sqsubseteq w'$ if for all $s \in \mathbb{Z}$, if w is defined at s so is w' and moreover w(s) = w'(s). if the graph of w is included in the graph of w'.

Least element $\bot \in \mathbb{Z} \to \mathbb{Z}$:

 \perp is the **least** solution to f(x) = f(x), making it "canonical".

BACK TO LOOPS

 $C: \mathbf{Prog} \to (\mathsf{State} \overset{\longrightarrow}{\longrightarrow} \mathsf{State})$

BACK TO LOOPS

$$C: \mathbf{Prog} \to (\mathsf{State} \overset{\rightharpoonup}{\longrightarrow} \mathsf{State})$$

$$[\![\mathsf{while}\ X>0\ \mathsf{do}\ (Y\coloneqq X\ast Y;X\coloneqq X-1)]\!]$$

BACK TO LOOPS

$$C: \mathbf{Prog} \to (\mathsf{State} \overset{\rightharpoonup}{\longrightarrow} \mathsf{State})$$

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

should be some w such that:

$$w = F_{[X>0],[Y:=X*Y;X:=X-1]}(w).$$

$$C: \mathbf{Prog} \to (\mathsf{State} \rightharpoonup \mathsf{State})$$

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

should be some w such that:

$$w = F_{[X>0],[Y:=X*Y;X:=X-1]}(w).$$

That is, we are looking for a fixed point of the following F:

$$F: (\text{State} \to \text{State}) \to (\text{State} \to \text{State})$$

$$w \mapsto \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is $\begin{cases} w_0 = \bot \\ w_{n+1} = F(w_n) \end{cases}$.

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

$$w_1[X \mapsto x, Y \mapsto y] = F(\bot)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ \text{undefined} & \text{if } x \geq 1 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

$$w_2[X \mapsto x, Y \mapsto y] = F(w_1)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\ \text{undefined} & \text{if } x \ge 2 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
 if $x < 0$
$$[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \leq x < n \end{cases}$$
 undefined if $x \geq n$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
 if $x < 0$
$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq ... \sqsubseteq w_n \sqsubseteq ...$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

 $w_0 \sqsubseteq w_1 \sqsubseteq ... \sqsubseteq w_n \sqsubseteq ... \sqsubseteq w_\infty$?

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq ... \sqsubseteq w_n \sqsubseteq ... \sqsubseteq w_\infty$$

$$w_{\infty}[X \mapsto x, Y \mapsto y] = \bigsqcup_{i \in \mathbb{N}} w_i = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \ge 0 \end{cases}$$

$$F(w_{\infty})[X \mapsto x, Y \mapsto y]$$

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of F)

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of w_{∞})

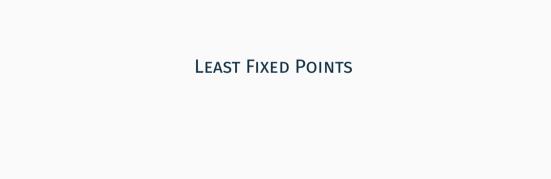
$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \end{cases}$$
 (definition of w_{∞})
$$= w_{\infty}[X \mapsto x, Y \mapsto y]$$

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases}$$
 (definition of w_{∞})
$$= w_{\infty}[X \mapsto x, Y \mapsto y]$$

- $F(w_{\infty}) = w_{\infty}$ i.e. w_{∞} is a fixed point of F;
- actually, the least fixed point;
- which agrees with the operational semantics (!)

THE REST OF THIS COURSE

Part I domain theory \rightarrow building mathematical tools Part II denotational semantics for PCF



POSETS AND MONOTONE FUNCTIONS

LEAST FIXED POINTS

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. \ d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

antisymmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

PARTIALLY ORDERED SET

A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. d \subseteq d' \subseteq d'' \Rightarrow d \subseteq d''$

antisymmetric: $\forall d, d' \in D, d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.

REFL
$$\frac{}{x \sqsubseteq x}$$

TRANS
$$\frac{x \sqsubseteq y \quad y \sqsubseteq z}{x \sqsubseteq z}$$
 ASYM $\frac{x \sqsubseteq y \quad y \sqsubseteq x}{x = y}$

ASYM
$$\frac{x \sqsubseteq y \qquad y \sqsubseteq x}{x = y}$$

Domain of partial functions $X \rightharpoonup Y$

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Domain of partial functions $X \rightharpoonup Y$

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Order: $f \sqsubseteq g$ if $dom(f) \subseteq dom(g)$ and $\forall x \in dom(f)$. f(x) = g(x), i.e. if $graph(f) \subseteq graph(g)$.

Domain of partial functions $X \rightharpoonup Y$

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Order: $f \sqsubseteq g$ if $dom(f) \subseteq dom(g)$ and $\forall x \in dom(f)$. f(x) = g(x), i.e. if $graph(f) \subseteq graph(g)$.

Proof!

MONOTONICITY

A function $f:D \to E$ between posets is **monotone** if

$$\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

MONOTONICITY

A function $f: D \to E$ between posets is **monotone** if

$$\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

$$\text{Mon } \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$

LEAST FIXED POINTS

LEAST ELEMENTS AND PRE-FIXED POINTS

LEAST ELEMENT

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x.$$

If it exists, it is unique , and is written \bot_S , or simply \bot .

$$\text{LEAST } \frac{x \in S}{\bot_S \sqsubseteq x}$$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x.$$

If it exists, it is unique , and is written \bot_S , or simply \bot .

LEAST
$$\frac{\bot_S' \in S}{\bot_S \sqsubseteq \bot_S'}$$
 LEAST $\frac{\bot_S \in S}{\bot_S' \sqsubseteq \bot_S'}$ LEAST $\frac{\bot_S \in S}{\bot_S' \sqsubseteq \bot_S}$

FIXED POINT

A fixed point for a function $f: D \to D$ is an element $d \in D$ satisfying f(d) = d.

(LEAST) PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

(LEAST) PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least $\operatorname{pre-fixed}$ point of f, if it exists, will be written

(LEAST) PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

It is thus (uniquely) specified by the two properties:

$$\operatorname{LFP-FIX} \frac{f(d) \sqsubseteq d}{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$$

$$_{\mathsf{LFP-FIX}} \overline{f(\mathrm{fix}(f)) \sqsubseteq \mathrm{fix}(f)}$$

The least pre-fixed point is a pre-fixed point.

$$\operatorname{LFP-FIX} \frac{f(d) \sqsubseteq d}{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$$

To prove $fix(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

$$\operatorname{LFP-FIX} \frac{f(d) \sqsubseteq d}{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$\text{ASYM} \ \frac{\text{LFP-FIX}}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)} \frac{\text{fix}(f) \sqsubseteq f(\text{fix}(f))}{f(\text{fix}(f)) = \text{fix}(f)}$$

$$\operatorname{LFP-FIX} \frac{f(d) \sqsubseteq d}{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$\text{ASYM} \frac{\int_{\text{LFP-FIX}}^{\text{LFP-FIX}} \overline{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)} \frac{\int_{\text{LFP-LEAST}}^{\text{MON}} \frac{\overline{f(\text{fix}(f))} \sqsubseteq \text{fix}(f)}{f(\text{fix}(f)) \sqsubseteq f(\text{fix}(f))}}{f(\text{fix}(f)) \sqsubseteq f(\text{fix}(f))}$$

LEAST FIXED POINTS LEAST UPPER BOUNDS

LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq ...$, written $\bigsqcup_{n \geq 0} d_n$, satisfies the two following properties:

$$\overline{x_i \sqsubseteq \bigsqcup_{n \geq 0} x_n}$$

LUB-LEAST
$$\dfrac{\forall n \geq 0 \ . \ x_n \sqsubseteq x}{\bigsqcup_{n \geq 0} x_n \sqsubseteq x}$$

LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq ...$, written $\bigsqcup_{n \geq 0} d_n$, satisfies the two following properties:

LUB-BOUND
$$x_i \sqsubseteq \bigsqcup_{n \geq 0} x_n$$

LUB-LEAST
$$\frac{\forall n \geq 0 \, . \, x_n \sqsubseteq x}{\bigsqcup_{n \geq 0} x_n \sqsubseteq x}$$

- · Other names: supremum, limit...
- · Might write simply $\bigsqcup_n d_n$ or even $\bigsqcup d_n$
- · Only lubs of chains but can be generalized
- $\cdot \bigsqcup_{i \geq 0} d_i$ need not be one of the d_i this is the interesting case!

Lubs are unique.

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$.

Lubs are unique (if they exist).

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$ (if they exist).

For any d, $\bigsqcup_n d = d$ (and in particular it exists).

For any chain and $N \in \mathbb{N}$, $\coprod_n d_n = \coprod_n d_{n+N}$ (if any of the two exists).

DIAGONALISATION

Assume $d_{m,n} \in D (m, n \ge 0)$ satisfies

$$m \leq m' \wedge n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$

DIAGONALISATION

Assume $d_{m,n} \in D (m, n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \ \sqsubseteq \ \bigsqcup_{n\geq 0} d_{1,n} \ \sqsubseteq \ \bigsqcup_{n\geq 0} d_{2,n} \ \sqsubseteq \ \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \; \sqsubseteq \; \bigsqcup_{m\geq 0} d_{m,1} \; \sqsubseteq \; \bigsqcup_{m\geq 0} d_{m,2} \; \sqsubseteq \; \dots$$

DIAGONALISATION

Assume $d_{m,n} \in D (m, n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \; \sqsubseteq \; \bigsqcup_{n\geq 0} d_{1,n} \; \sqsubseteq \; \bigsqcup_{n\geq 0} d_{2,n} \; \sqsubseteq \; \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m\geq 0} \left(\bigsqcup_{n\geq 0} d_{m,n} \right) = \bigsqcup_{k\geq 0} d_{k,k} = \bigsqcup_{n\geq 0} \left(\bigsqcup_{m\geq 0} d_{m,n} \right) .$$

COMPLETE PARTIAL ORDERS AND DOMAINS

LEAST FIXED POINTS

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

A domain is a cpo with a least element \bot .

DOMAIN OF PARTIAL FUNCTIONS

Least element: \bot is the totally undefined function.

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Beware: the definition of $\bigsqcup_{n\geq 0} f_n$ is unambiguous only if the f_i form a chain!

FINITE CPOS

Finite posets are always cpos – why?

FINITE CPOS

Finite posets are always cpos – why?

Are they always domains?

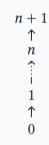
FINITE CPOS

Finite posets are always cpos – why?

Are they always domains?

The flat natural numbers \mathbb{N}_+

VERTICAL NATURAL NUMBERS



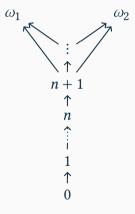
No! (Why?)

VERTICAL NATURAL NUMBERS



Yes!

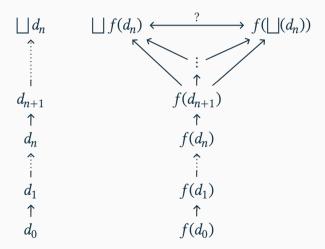
VERTICAL NATURAL NUMBERS



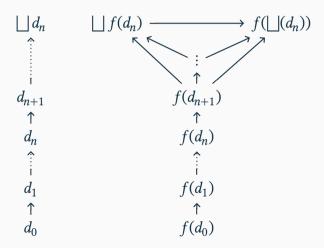
No! (Why?)

LEAST FIXED POINTS CONTINUOUS FUNCTIONS

$D \xrightarrow{f} E$



$$D \xrightarrow{f} E$$



CONTINUITY AND STRICTNESS

Given two cpos D and E, a function $f: D \to E$ is **continuous** if

- · it is monotone, and
- · it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$$

Note: one direction is automatic.

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function $f: D \to E$ is **continuous** if

- · it is monotone, and
- · it preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n)$$

Note: one direction is automatic.

A function f is **strict** if $f(\bot_D) = \bot_E$.

THESIS

All computable functions are continuous.

THESIS

All computable functions are continuous.

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

$$\mapsto \bot$$

 $\mapsto 1$

$$0 \ 0 \ 0 \ 0 \ \overline{0}$$

$$\mapsto 0$$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

0	0	\perp				$\mapsto \bot$
0	0	0	0	1		$\mapsto 1$
0	0	0	0	0		\mapsto ?
0	0	0	0	0	$\overline{0}$	$\mapsto 0$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

Later in the course: **show** the thesis... by giving a denotational semantics.

KLEENE'S FIXED POINT THEOREM

LEAST FIXED POINTS

KLEENE'S FIXED POINT THEOREM

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

KLEENE'S FIXED POINT THEOREM

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

It is thus also the least fixed point of f!

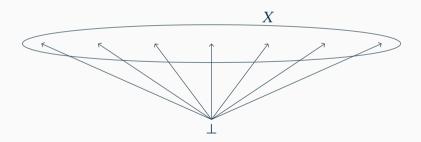
CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS

FLAT DOMAIN ON X

The flat domain on a set X is defined by:

- its underlying set $X + \{\bot\}$;
- $\cdot x \sqsubseteq x'$ if either $x = \bot$ or x = x'.



FLAT DOMAIN LIFTING

Let f:X
ightharpoonup Y be a partial function between two sets. Then

defines a strict continuous function between the corresponding flat domains.

CONSTRUCTIONS ON DOMAINS

PRODUCTS OF DOMAINS

BINARY PRODUCT

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \wedge d_2 \in D_2\}$$

and partial order ⊑ defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \wedge d_2 \sqsubseteq_2 d_2'$$

BINARY PRODUCT

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$$

and partial order ⊑ defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \wedge d_2 \sqsubseteq_2 d_2'$$

$$\text{POX} \ \frac{d_1 \sqsubseteq_1 d_1' \qquad d_2 \sqsubseteq_2 d_2'}{(d_1, d_2) \sqsubseteq (d_1', d_2')}$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}).$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}).$$

If
$$(D_1,\sqsubseteq_1)$$
 and (D_2,\sqsubseteq_2) have least elements, so does $(D_1\times D_2,\sqsubseteq)$ with

$$\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}).$$

If (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) have least elements, so does $(D_1\times D_2,\sqsubseteq)$ with

$$\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$$

Products of cpos (domains) are cpos (domains).

FUNCTIONS OF TWO ARGUMENTS

A function $f:(D\times E)\to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

FUNCTIONS OF TWO ARGUMENTS

A function $f:(D\times E)\to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

$$f(\bigsqcup_{m\geq 0} d_m, e) = \bigsqcup_{m\geq 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n\geq 0} e_n) = \bigsqcup_{n\geq 0} f(d, e_n).$$

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

$$\text{MONX} \ \frac{f \text{ monotone} \qquad x \sqsubseteq x' \qquad y \sqsubseteq y'}{f(x,y) \sqsubseteq f(x',y')}$$

$$f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right) = \bigsqcup_{m} \bigsqcup_{n} f(x_{m}, y_{n}) = \bigsqcup_{k} f(x_{k}, y_{k})$$

PROJECTION AND PAIRING

Let D_1 and D_2 be cpos. The projections

$$\pi_1: D_1 \times D_2 \to D_1
(d_1, d_2) \mapsto d_1$$

$$\pi_2: D_1 \times D_2 \to D_2
(d_1, d_2) \mapsto d_2$$

are continuous functions.

PROJECTION AND PAIRING

Let D_1 and D_2 be cpos. The projections

$$\pi_1: D_1 \times D_2 \to D_1
(d_1, d_2) \mapsto d_1$$
 $\pi_2: D_1 \times D_2 \to D_2
(d_1, d_2) \mapsto d_2$

are continuous functions.

If $f_1:D\to D_1$ and $f_2:D\to D_2$ are continuous functions from a cpo D, then the pairing function

$$\langle f_1, f_2 \rangle : D \rightarrow D_1 \times D_2$$

 $d \mapsto (f_1(d), f_2(d))$

is continuous.

DOMAIN CONDITIONAL

For any domain D, the conditional function

if:
$$\mathbb{B}_{\perp} \times (D \times D) \rightarrow D$$

 $(x,d) \mapsto \begin{cases} \pi_1(d) & \text{if } x = \text{true} \\ \pi_2(d) & \text{if } x = \text{false} \\ \bot_D & \text{if } x = \bot \end{cases}$

is continuous.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

$$\prod_{i\in I}X_i$$

Two ways to see it:

· tuples: $(..., x_i, ...)_{i \in I}$ such that $x_i \in X_i$;

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

$$\prod_{i\in I}X_i$$

Two ways to see it:

- tuples: $(..., x_i, ...)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

$$\prod_{i\in I}X_i$$

Two ways to see it:

- tuples: $(..., x_i, ...)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

$$\prod_{i\in I}X_i$$

Two ways to see it:

- tuples: $(..., x_i, ...)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Projections (for any $i \in I$):

$$\pi_i: \left(\prod_{i\in I} X_i\right) \to X_i$$

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The product of this whole family of cpos has

· underlying set equal to $\prod_{i \in I} D_i$;

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The product of this whole family of cpos has

- · underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p_i'.$$

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The product of this whole family of cpos has

- · underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p_i'.$$

I-indexed products of cpos (domains) are cpos (domains), and projections are continuous.

CONSTRUCTIONS ON DOMAINS FUNCTION DOMAINS

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

$${f:D \to E \mid \text{ is a } continuous function}}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. \ f(d) \sqsubseteq_E f'(d).$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set $\{f: D \to E \mid \text{ is a } continuous \text{ function}\}$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\mathrm{def}}{\Leftrightarrow} \forall d \in D. \ f(d) \sqsubseteq_E f'(d).$$

$$\frac{f \sqsubseteq_{D \to E} g \qquad x \sqsubseteq_{D} y}{f(x) \sqsubseteq_{E} g(y)}$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

$$\{f: D \to E \mid \text{ is a continuous function}\}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. \ f(d) \sqsubseteq_E f'(d).$$

Argumentwise least elements and lubs:

$$\perp_{D \to E}(d) = \perp_{E} \qquad \left(\bigsqcup_{n \ge 0} f_n\right)(d) = \bigsqcup_{n \ge 0} f_n(d)$$

FUNCTION OPERATIONS ARE CONTINUOUS

Evaluation, currying
$$(f:(D'\times D)\to E)$$
 and composition

eval:
$$(D \to E) \times D \to E$$

 $(f,d) \mapsto f(d)$
cur (f) : $D' \to (D \to E)$
 $d' \mapsto \lambda d \in D$. $f(d',d)$
 \circ : $((E \to F) \times (D \to E)) \longrightarrow (D \to F)$
 $(f,g) \mapsto \lambda d \in D$. $g(f(d))$

are all well-defined and continuous.

CONTINUITY OF THE FIXED POINT OPERATOR

fix:
$$(D \to D) \to D$$

is continuous.

CONSTRUCTIONS ON DOMAINS BACK TO THE INTRODUCTION

THE SEMANTICS OF A WHILE LOOP

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

is a fixed point of the following $F: D \to D$, where D is (State \to State):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$

THE SEMANTICS OF A WHILE LOOP

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

is a fixed point of the following $F:D\to D$, where D is ($State_{\perp}\to State_{\perp}$):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$

$$F(\bot) = \bot$$

 $State_{\perp} \rightarrow State_{\perp}$ is a domain!

KLEENE'S FIXED POINT THEOREM

Kleene's fixed point theorem:

$$w_{\infty} = \bigsqcup_{i \in \mathbb{N}} F^n(\bot)$$

is the least fixed point of F, and in particular a fixed point.

KLEENE'S FIXED POINT THEOREM

Kleene's fixed point theorem:

$$w_{\infty} = \bigsqcup_{i \in \mathbb{N}} F^n(\bot)$$

is the least fixed point of F, and in particular a fixed point.

We can compute explicitly

$$w_{\infty}[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \ge 0 \end{cases}$$

And check this agrees with the operational semantics.

REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, $f:D\to D$ be a continuous function and $S\subseteq D$ be a subset of D. If the set S

- (i) contains ⊥,
- (ii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,
- (iii) is stable for f, i.e. $f(S) \subseteq S$,

then $fix(f) \in S$.

REASONING ON FIXED POINTS: SCOTT INDUCTION

Let D be a domain, $f: D \to D$ be a continuous function and $S \subseteq D$ be a subset of D. If the set S

- (i) contains ⊥,
- (ii) is chain-closed, i.e. the lub of any chain of elements of S is also in S,
- (iii) is stable for f, i.e. $f(S) \subseteq S$,

then $fix(f) \in S$.

$$\Phi(\bot) \qquad \Phi(x) \Rightarrow \Phi(f(x)) \qquad (\forall i \in \mathbb{N}. \ \Phi(x_i)) \Rightarrow \Phi(\bigsqcup_{i \in \mathbb{N}} x_i)$$
 Scottind
$$\frac{\Phi(\operatorname{fix}(f))}{}$$

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}\ ,\qquad d\downarrow^{\mathrm{def}}_{=}\{x\in D\mid x\sqsubseteq d\}\qquad\text{and}\qquad \{(x,y)\in D\times D\mid x=y\}$$

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}$$
, $d\downarrow^{\operatorname{def}}_=\{x\in D\mid x\sqsubseteq d\}$ and $\{(x,y)\in D\times D\mid x=y\}$

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$
 if $S \subseteq E$ is chain-closed, and $f: D \to E$ is continuous

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}\ ,\qquad d\downarrow^{\mathrm{def}}=\{x\in D\mid x\sqsubseteq d\}\quad \text{ and }\quad \{(x,y)\in D\times D\mid x=y\}$$

$$f^{-1}S=\{x\in D\mid f(x)\in S\}\quad \text{ if }S\subseteq E\text{ is chain-closed, and }f\colon D\to E\text{ is continuous}$$

$$S\cup T\quad \text{ and }\quad \bigcap_{i\in I}S_i\quad \text{ if }S,T\text{ and }S_i\text{ are}$$

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}\;,\quad d\downarrow^{\mathrm{def}}_{=}\{x\in D\mid x\sqsubseteq d\}\quad\text{and}\quad \{(x,y)\in D\times D\mid x=y\}$$

$$f^{-1}S=\{x\in D\mid f(x)\in S\}\quad\text{if }S\subseteq E\text{ is chain-closed, and }f\colon D\to E\text{ is continuous}$$

$$S\cup T\quad\text{and}\quad\bigcap_{i\in I}S_i\quad\text{if }S,T\text{ and }S_i\text{ are}$$

$$\forall S \stackrel{\text{def}}{=} \{ y \in E \mid \forall x \in D. (x, y) \in S \} \subseteq E \quad \text{if } S \subseteq D \times E \text{ is}$$

THE "LOGICAL" VIEW

Any formula written using:

- signature: continuous functions + constants
- · relations: equality, inequality
- · logical connectives: conjuction, disjunction, universal quantification

is chain-closed.

THE "LOGICAL" VIEW

Any formula written using:

- · signature: continuous functions + constants
- · relations: equality, inequality
- · logical connectives: conjuction, disjunction, universal quantification

is chain-closed.

Given any set I, domains D, E, functions $(f_i)_{i \in I}$, $g: D \to E$, $e \in E$,

$$\Phi(x) := \forall y \in E, (\forall i \in I, f_i(x) \sqsubseteq y) \lor g(x) = e$$

is chain-closed.

EXAMPLE: DOWNSET

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of the continuous $f: D \to D$. By Scott induction on $d \downarrow$, $\operatorname{fix}(f) \sqsubseteq d$.

EXAMPLE: DOWNSET

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of the continuous $f: D \to D$. By Scott induction on $d \downarrow$, $\operatorname{fix}(f) \sqsubseteq d$.

Proof!

EXAMPLE: PARTIAL CORRECTNESS

Let w_{∞} : State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x,y) = \begin{cases} (x,y) & \text{if } x \le 0 \\ w(x-1,x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

EXAMPLE: PARTIAL CORRECTNESS

Let w_{∞} : State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \le 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

Claim:

$$\forall x. \ \forall y \ge 0. \ w_{\infty}(x, y) \ \downarrow \implies \ \pi_Y(w_{\infty}(x, y)) \ge 0$$

EXAMPLE: PARTIAL CORRECTNESS

Let w_{∞} : State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

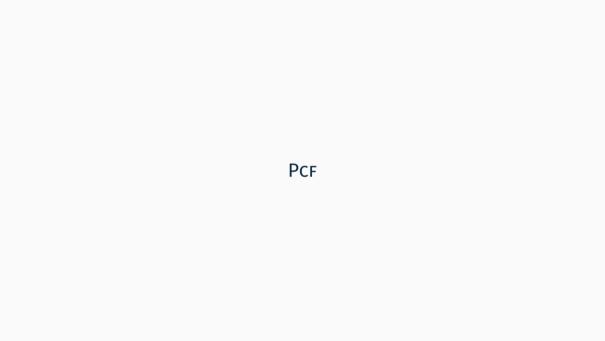
Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \le 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

Claim:

$$\forall x. \ \forall y \ge 0. \ w_{\infty}(x, y) \ \downarrow \implies \ \pi_Y(w_{\infty}(x, y)) \ge 0$$

Proof: by Scott induction!



PCF Syntax

SYNTAX OF PCF

Types:

$$\tau ::= \mathsf{nat} \mid \mathsf{bool} \mid \tau \to \tau$$

SYNTAX OF PCF

```
Types: \tau ::= \mathsf{nat} \mid \mathsf{bool} \mid \tau \to \tau t ::= 0 \mid \mathsf{succ}(t) \mid \mathsf{pred}(t) \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{zero}?(t) \mid \mathsf{if} \ t \ \mathsf{then} \ t \ \mathsf{else} \ t x \mid \mathsf{fun} \ x : \tau . \ t \mid t \ t \mid \mathsf{fix}(t)
```

SYNTAX OF PCF

Types:
$$\tau ::= \mathsf{nat} \mid \mathsf{bool} \mid \tau \to \tau$$

Terms:
$$t ::= 0 \mid \operatorname{succ}(t) \mid \operatorname{pred}(t) \mid \\ \operatorname{true} \mid \operatorname{false} \mid \operatorname{zero}?(t) \mid \operatorname{if} t \operatorname{then} t \operatorname{else} t \\ x \mid \operatorname{fun} x : \tau. \ t \mid t \mid \operatorname{fix}(t)$$

- \cdot λ -calculus + base types/functions + fix
- tiny ML (without references, ADTs, polymorphism...)

Variables: up to α -equivalence

Variables: up to α -equivalence

Substitution: t[u/x]

Variables: up to α -equivalence

Substitution: t[u/x]

Contexts: \cdot and Γ , x: τ

Variables: up to α -equivalence

Substitution: t[u/x]

Contexts: \cdot and Γ , x: τ

- partial maps from variable to types
- finite lists x_1 : τ_1 , ..., x_n : τ_n

TYPING FOR PCF (I)

 $\Gamma \vdash t : au$ The term t has type au in context Γ

ZERO $\overline{\Gamma \vdash \mathbf{0} : \mathtt{nat}}$

Succ $\frac{\Gamma \vdash t : \mathtt{nat}}{\Gamma \vdash \mathtt{succ}(t) : \mathtt{nat}}$

 $\frac{\Gamma \vdash t : \mathtt{nat}}{\Gamma \vdash \mathtt{pred}(t) : \mathtt{nat}}$

TYPING FOR PCF (I)

 $\Gamma dash t : au$ The term t has type au in context Γ

TYPING FOR PCF (II)

TYPING FOR PCF (II)

$$\begin{array}{ll} \text{VAR} \; \dfrac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} & \text{FUN} \; \dfrac{\Gamma, x : \sigma \vdash t : \tau}{\Gamma \vdash \text{fun} \, x : \sigma . \, t : \sigma \to \tau} & \text{App} \; \dfrac{\Gamma \vdash f : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash f \, u : \tau} \\ & \\ & \text{FIX} \; \dfrac{\Gamma \vdash f : \tau \to \tau}{\Gamma \vdash \text{fix}(f) : \tau} \end{array}$$

 $\mathsf{PCF}_{\Gamma, au} \stackrel{\mathrm{def}}{=} \{ t \mid \Gamma \vdash t : au \}$

 $\mathsf{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \mathsf{PCF}_{\cdot,\tau}$

TYPING FOR PCF (II)

$$\text{VAR} \ \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \text{FUN} \ \frac{\Gamma, x : \sigma \vdash t : \tau}{\Gamma \vdash \text{fun} \ x : \sigma . \ t : \sigma \to \tau} \qquad \text{App} \ \frac{\Gamma \vdash f : \sigma \to \tau}{\Gamma \vdash f \ u : \tau}$$

$$\text{FIX} \ \frac{\Gamma \vdash f : \tau \to \tau}{\Gamma \vdash \text{fix}(f) : \tau}$$

 $\mathsf{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \mathsf{PCF}_{,\tau}$

The only programs we care about!

 $\mathsf{PCF}_{\Gamma, au} \stackrel{\mathrm{def}}{=} \{ t \mid \Gamma \vdash t : au \}$

TYPING AND SUBSTITUTION

If
$$\Gamma \vdash t : \tau$$
 and $\Gamma, x : \tau \vdash t' : \tau'$ both hold, then so does $\Gamma \vdash t'[t/x] : \tau'$.

PCF

OPERATIONAL SEMANTICS

PCF VALUES

$$v := \underbrace{\emptyset \mid \operatorname{succ}(v)}_{\underline{n}} \mid \operatorname{true} \mid \operatorname{false} \mid \underbrace{\operatorname{fun} x : \tau . t}_{\operatorname{All functions} (< \operatorname{fun} >)}$$

PCF VALUES

$$v := \underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \operatorname{true} \mid \operatorname{false} \mid \underbrace{\operatorname{fun} x : \tau . t}_{\operatorname{All functions} (< \operatorname{fun} >)}$$

We will only evaluate closed term to values.

$$\forall \mathsf{AL} \ \frac{\vdash \mathit{v} : \mathit{\tau}}{\mathit{v} \ \mathit{\downarrow}_{\mathit{\tau}} \ \mathit{v}}$$

$$\text{VAL} \ \frac{\vdash v : \tau}{v \Downarrow_{\tau} v} \qquad \qquad \text{Succ} \ \frac{t \Downarrow_{\text{nat}} v}{\text{succ}(t) \Downarrow_{\text{nat}} \text{succ}(v)} \qquad \qquad \text{PRED} \ \frac{t \Downarrow_{\text{nat}} \text{succ}(v)}{\text{pred}(t) \Downarrow_{\text{nat}} v}$$

EXAMPLES

plus
$$\stackrel{\text{def}}{=} \text{fun } x : \text{nat. fix}(\text{fun}(p : \text{nat} \rightarrow \text{nat})(y : \text{nat}).$$

if zero?(y) then x else succ(p pred(y)))

plus
$$\underline{3} \, \underline{1} \, \downarrow_{\mathsf{nat}} \underline{4}$$

EVALUATION (I)

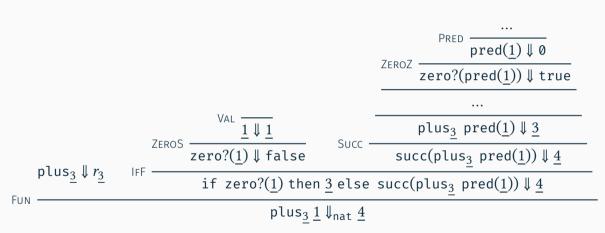
```
\mathsf{FUN} \, \frac{\mathsf{plus} \, \Downarrow \, \mathsf{plus} \, \quad \mathsf{plus}_{\underline{3}} \, \underline{1} \, \Downarrow \, \underline{4}}{\mathsf{plus} \, \underline{3} \, \underline{1} \, \Downarrow_{\mathsf{nat}} \, \underline{4}} \mathsf{plus}_{x} \, \stackrel{\mathsf{def}}{=} \, \mathsf{fix}(\mathsf{fun}(p:\mathsf{nat} \, \to \, \mathsf{nat})(y:\mathsf{nat}). \mathsf{if} \, \mathsf{zero}?(y) \, \mathsf{then} \, x \, \mathsf{else} \, \, \mathsf{succ}(p \, \mathsf{pred}(y)))
```

EVALUATION (I)

```
_{\text{FUN}} \; \frac{\text{plus} \; \downarrow \; \text{plus} \qquad \text{plus}_{\underline{3}} \; \underline{1} \; \downarrow \underline{4}}{\text{plus} \; \underline{3} \; \underline{1} \; \downarrow_{\text{nat}} \; \underline{4}}
                          plus<sub>v</sub> \stackrel{\text{def}}{=} fix(fun(p:nat \rightarrow nat)(y:nat).
                                                        if zero?(v) then x else succ(p pred(v)))
                  \frac{\forall \text{AL}}{(\text{fun } p: \text{nat} \rightarrow \text{nat. ...}) \downarrow ...} \qquad \forall \text{AL}} \frac{}{(\text{fun } y: \text{nat. ...})[p/\text{plus}_x] \downarrow r_x}
       FUN
                                                  (\operatorname{fun}(p:\operatorname{nat}\to\operatorname{nat})(y:\operatorname{nat}).\dots)\operatorname{plus}_x \Downarrow r_x
FIX
               plus_x \downarrow fun y: nat. if zero?(y) then x else succ(plus_x pred(y))
```

 r_{r}

EVALUATION (II)



DIVERGENCE

Divergence $(t \uparrow_{\tau})$:

$$t: \tau \land \exists v. t \downarrow_{\tau} v$$

DIVERGENCE

Divergence $(t \uparrow_{\tau})$:

$$t: \tau \land \exists v. t \downarrow_{\tau} v$$

$$\Omega_{\tau} \stackrel{\text{def}}{=} \mathsf{fix}(\mathsf{fun}\,x{:}\tau.\,x)$$

$$\Omega_{ au} \uparrow_{ au}$$
 (diverges)

DIVERGENCE

Divergence ($t \uparrow_{\tau}$):

$$t: au \quad \wedge \quad
extcolor{def}{2} v. t \downarrow_{ au} v$$

$$\Omega_{ au} \stackrel{\mathrm{def}}{=} \mathrm{fix}(\mathrm{fun}\, x : au. \, x)$$

$$\Omega_{ au} \uparrow_{ au} \quad (\mathrm{diverges})$$

$$\frac{\operatorname{fun} x : \tau. \, x \, \Downarrow \, \operatorname{fun} x : \tau. \, x}{\left(\operatorname{fun} x : \tau. \, x\right) \left(\operatorname{fix}\left(\operatorname{fun} x : \tau. \, x\right)\right) \, \Downarrow \, v}$$
$$\frac{\operatorname{fix}\left(\operatorname{fun} x : \tau. \, x\right) \left(\operatorname{fix}\left(\operatorname{fun} x : \tau. \, x\right)\right) \, \Downarrow \, v}{\operatorname{fix}\left(\operatorname{fun} x : \tau. \, x\right) \, \Downarrow \, v}$$

CALL-BY-NAME AND CALL-BY-VALUE

$$\text{FUN-CBN} \, \frac{t \, \Downarrow_{\sigma \to \tau} \, \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad t' [u/x] \, \Downarrow_{\tau} \, v }{t \, u \, \Downarrow_{\tau} \, v }$$

$$\text{FUN-CBV} \, \frac{t \, \Downarrow_{\sigma \to \tau} \, \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad u \, \Downarrow_{\sigma} \, v' \qquad t' [v'/x] \, \Downarrow_{\tau} \, v }{t \, u \, \Downarrow_{\tau} \, v }$$

CALL-BY-NAME AND CALL-BY-VALUE

$$\begin{aligned} & \text{Fun-CBN} \; \frac{t \; \Downarrow_{\sigma \to \tau} \; \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad t' [u/x] \; \Downarrow_{\tau} \, v}{t \; u \; \Downarrow_{\tau} \; v} \\ & \text{Fun-CBV} \; \frac{t \; \Downarrow_{\sigma \to \tau} \; \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad u \; \Downarrow_{\sigma} \, v' \qquad t' [v'/x] \; \Downarrow_{\tau} \, v}{t \; u \; \Downarrow_{\tau} \; v} \end{aligned}$$

What does (fun x: nat. 0) Ω_{nat} denote?

CALL-BY-NAME AND CALL-BY-VALUE

$$\begin{aligned} & \text{FUN-CBN} \, \frac{t \, \Downarrow_{\sigma \to \tau} \, \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad t' [u/x] \, \Downarrow_{\tau} \, v}{t \, u \, \Downarrow_{\tau} \, v} \\ & \\ & \text{FUN-CBV} \, \frac{t \, \Downarrow_{\sigma \to \tau} \, \text{fun} \, x \text{:} \, \sigma \text{.} \, t' \qquad u \, \Downarrow_{\sigma} \, v' \qquad t' [v'/x] \, \Downarrow_{\tau} \, v}{t \, u \, \Downarrow_{\tau} \, v} \end{aligned}$$

What does (fun x: nat. 0) Ω_{nat} denote?

In call-by-value, all functions are strict... but the least-fixed points of a strict function is always \bot !

SMALL-STEP SEMANTIC

Small-step $t \rightsquigarrow_{\tau} u$:

$$\frac{}{(\operatorname{fun} x : \sigma. t) u \rightsquigarrow_{\tau} t[u/x]}$$

$$\frac{t \rightsquigarrow_{\sigma \to \tau} t'}{t \ u \rightsquigarrow_{\tau} t' \ u}$$

SMALL-STEP SEMANTIC

Small-step $t \rightsquigarrow_{\tau} u$:

$$\frac{}{(\operatorname{fun} x: \sigma. t) u \rightsquigarrow_{\tau} t[u/x]}$$

$$\frac{t \quad \sigma \to \tau \quad t}{t \quad u \rightsquigarrow_{\tau} t' \quad u}$$

We have $t \downarrow_{\tau} v$ iff $t \leadsto_{\tau}^{\star} u$.

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ϕ , there is a PCF term $\underline{\phi} \in \text{PCF}_{\mathtt{nat} \to \mathtt{nat}}$ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\underline{\phi} \, \underline{n} \, \Downarrow_{\mathtt{nat}} \, \underline{\phi(n)}$.

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ϕ , there is a PCF term $\underline{\phi} \in \text{PCF}_{\mathtt{nat} \to \mathtt{nat}}$ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\underline{\phi} \, \underline{n} \, \Downarrow_{\mathtt{nat}} \, \underline{\phi(n)}$.

(Later on:
$$\phi = \left[\!\left[\underline{\phi}\right]\!\right]$$
).

DETERMINISM

Evaluation in PCF is deterministic: if both $t \downarrow_{\tau} v$ and $t \downarrow_{\tau} v'$ hold, then v = v'.

Evaluation in PCF is deterministic: if both $t \downarrow_{\tau} v$ and $t \downarrow_{\tau} v'$ hold, then v = v'.

By (rule) induction on evaluation ↓:

$$P(t,\tau,\nu) \stackrel{\mathrm{def}}{=} \forall \nu' \in \mathsf{PCF}_{\tau} . (t \downarrow_{\tau} \nu' \Rightarrow \nu = \nu')$$

Intuition: there is always exactly one rule which applies.

PCF

CONTEXTUAL EQUIVALENCE

CONTEXTUAL EQUIVALENCE - INFORMAL

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a **complete program** can be replaced by the second phrase without affecting the **observable results** of executing the program.

CONTEXTUAL EQUIVALENCE - INFORMAL

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a **complete program** can be replaced by the second phrase without affecting the **observable results** of executing the program.

The intuitive notion of **program equivalence** for programmers.

CONTEXTUAL EQUIVALENCE - INFORMAL

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a **complete program** can be replaced by the second phrase without affecting the **observable results** of executing the program.

The intuitive notion of **program equivalence** for programmers.

But what's a complete program? What's an observable result?

EVALUATION CONTEXTS

"Term with a hole":

```
 \mathcal{C} ::= - |\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C})| \operatorname{zero}(\mathcal{C})|  if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} | fun x: \tau. \mathcal{C} | \mathcal{C} t | t \mathcal{C} | fix(\mathcal{C})
```

EVALUATION CONTEXTS

"Term with a hole":

```
 \mathcal{C} ::= - |\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C})| \operatorname{zero}(\mathcal{C})|  if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} fun x:\tau. \mathcal{C} | \mathcal{C} t | t \mathcal{C} | fix(\mathcal{C})
```

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$.

EVALUATION CONTEXTS

"Term with a hole":

$$\mathcal{C} ::= - |\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C})| \operatorname{zero}(\mathcal{C})|$$
 if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} fun $x:\tau$. \mathcal{C} | \mathcal{C} t | t \mathcal{C} | fix(\mathcal{C})

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$.

$$\frac{\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1}{\Gamma \vdash_{\Delta,\sigma} \mathcal{C} u : \tau_2} \qquad \dots$$

CONTEXTUAL EQUIVALENCE

Given a type au, a typing context Γ and terms $t,t'\in \mathsf{PCF}_{\Gamma,\tau}$, contextual equivalence, written $\Gamma \vdash t \cong_{\mathsf{ctx}} t' : \tau$ is defined to hold if for all evaluation contexts $\mathcal C$ such that $\cdot \vdash_{\Gamma,\tau} \mathcal C : \gamma$, where γ is nat or bool , and for all values $v \in \mathsf{PCF}_{\gamma}$,

$$\mathcal{C}[t] \Downarrow_{\gamma} v \Leftrightarrow \mathcal{C}[t'] \Downarrow_{\gamma} v.$$

When Γ is the empty context, we simply write $t \cong_{\operatorname{ctx}} t' : \tau$ for $\cdot \vdash t \cong_{\operatorname{ctx}} t' : \tau$.

CONTEXTUAL EQUIVALENCE

Given a type au, a typing context Γ and terms $t,t'\in \mathsf{PCF}_{\Gamma,\tau}$, contextual equivalence, written $\Gamma \vdash t \cong_{\mathsf{ctx}} t' : \tau$ is defined to hold if for all evaluation contexts $\mathcal C$ such that $\cdot \vdash_{\Gamma,\tau} \mathcal C : \gamma$, where γ is nat or bool , and for all values $v\in \mathsf{PCF}_{\gamma}$,

$$\mathcal{C}[t] \downarrow_{\gamma} \nu \Leftrightarrow \mathcal{C}[t'] \downarrow_{\gamma} \nu.$$

When Γ is the empty context, we simply write $t \cong_{\operatorname{ctx}} t' : \tau$ for $\cdot \vdash t \cong_{\operatorname{ctx}} t' : \tau$.

Divergence is implicitly covered.

DENOTATIONAL SEMANTICS FOR PCF INTRODUCING DENOTATIONAL SEMANTICS

THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PCF types au to domains $[\![au]\!]$;
- a mapping of closed, well-typed PCF terms $\vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

THE AIMS OF DENOTATIONAL SEMANTICS

- · a mapping of PCF types au to domains $[\![au]\!]$;
- a mapping of closed, well-typed PCF terms $\vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

```
Compositionality: \llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket.

Soundness: for any type \tau, t \downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket.

Adequacy: for \gamma = \mathsf{bool} or \mathsf{nat}, if t \in \mathsf{PCF}_{\gamma} and \llbracket t \rrbracket = \llbracket v \rrbracket then t \downarrow_{\gamma} v.
```

ADEQACY FOR FUNCTION TYPES?

$$v \stackrel{\text{def}}{=} \text{fun } x : \text{nat.} (\text{fun } y : \text{nat. } y) \text{ 0} \text{ and } v' \stackrel{\text{def}}{=} \text{fun } x : \text{nat. 0}.$$

Proof principle: to show

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau$$

it suffices to establish

$$[\![t_1]\!] = [\![t_2]\!] \in [\![\tau]\!]$$

Proof principle: to show

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau$$

it suffices to establish

$$[\![t_1]\!] = [\![t_2]\!] \in [\![\tau]\!]$$

Proof principle: to show

$$t_1 \cong_{\operatorname{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

and symmetrically for $C[t_2] \downarrow_{nat} v \Rightarrow C[t_1] \downarrow_{nat} v$, and similarly for **bool**.

Proof principle: to show

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

Denotational equality is **sound**, but is it **complete**? Does equality in the model imply contextual equivalence?

Proof principle: to show

$$t_1 \cong_{\operatorname{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

Denotational equality is **sound**, but is it **complete**? Does equality in the model imply contextual equivalence?

Full abstraction.

DENOTATIONAL SEMANTICS FOR PCF DEFINITION

SEMANTICS OF TYPES

SEMANTICS OF CONTEXTS

$$\llbracket \Gamma \rrbracket \ \stackrel{\mathrm{def}}{=} \ \prod_{x \in \mathrm{dom}(\Gamma)} \ \llbracket \Gamma(x) \rrbracket \qquad \text{(environment)}$$

SEMANTICS OF CONTEXTS

$$\llbracket \Gamma
Vert \stackrel{\mathrm{def}}{=} \prod_{x \in \mathrm{dom}(\Gamma)} \llbracket \Gamma(x)
Vert$$
 (environment)

- $\cdot \ \llbracket x \colon \tau \rrbracket = (\{x\} \to \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
- $\cdot \ \llbracket x_1 \colon \tau_1, \dots, x_n \colon \tau_n \rrbracket \cong \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_n \rrbracket$

DENOTATIONAL SEMANTICS OF PCF

To every typing judgement

$$\Gamma \vdash t : \tau$$

we associate a continuous function

$$\llbracket\Gamma \vdash t : \tau\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

between domains. In other words,

$$\llbracket - \rrbracket : \mathsf{PCF}_{\Gamma,\tau} \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

succ:
$$\mathbb{N} \to \mathbb{N}$$
 pred: $\mathbb{N} \to \mathbb{N}$ $n+1 \mapsto n$ undefined

zero?: $\mathbb{N} \to \mathbb{B}$ $0 \mapsto \text{true}$ $n+1 \mapsto \text{false}$

$$\llbracket \operatorname{succ}(t) \rrbracket = \operatorname{succ}_{\perp} \circ \llbracket t \rrbracket$$

DENOTATION OF THE λ-CALCULUS OPERATIONS

$$\llbracket x \rrbracket (\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket$$

$$\llbracket x \rrbracket (\rho) = \pi_{x}(\rho)$$

DENOTATION OF THE λ-CALCULUS OPERATIONS

$$\begin{bmatrix} x \end{bmatrix} (\rho) \stackrel{\text{def}}{=} \rho(x) \\
 \begin{bmatrix} t_1 \ t_2 \end{bmatrix} (\rho) \stackrel{\text{def}}{=} (\llbracket t_1 \rrbracket (\rho)) (\llbracket t_2 \rrbracket (\rho))
 \end{bmatrix}$$

$$\llbracket t_1 \ t_2 \rrbracket = \operatorname{eval} \circ \langle \llbracket t_1 \rrbracket, \llbracket t_2 \rrbracket \rangle$$

DENOTATION OF THE λ-CALCULUS OPERATIONS

$$\llbracket \mathsf{fun}\, x \colon \tau \colon t \rrbracket = \mathsf{cur}(\llbracket t \rrbracket)$$

DENOTATION OF FIXED POINTS

$$\llbracket \operatorname{fix} f \rrbracket \left(\rho \right) \ \stackrel{\mathrm{def}}{=} \ \operatorname{fix}(\llbracket f \rrbracket \left(\rho \right))$$

DENOTATION OF PCF TERMS

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \tau$.

DENOTATION OF PCF TERMS

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $[\![t]\!]$ is well-defined and a continuous function $[\![t]\!] : [\![\Gamma]\!] \to \tau$.

$$\text{If } t \in \mathsf{PCF}_\tau \colon \quad \llbracket t \rrbracket \quad \in \quad \llbracket \cdot \rrbracket \to \llbracket \tau \rrbracket \quad = \quad \mathbb{1} \to \llbracket \tau \rrbracket \quad \cong \quad \llbracket \tau \rrbracket$$

DENOTATIONAL SEMANTICS FOR PCF COMPOSITIONALITY

COMPOSITIONALITY

Suppose $t, u \in PCF_{\Delta,\sigma}$, such that

$$\llbracket t \rrbracket = \llbracket u \rrbracket : \llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket$$

Suppose moreover that $\mathcal{C}[-]$ is a PCF context such that $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$. Then

$$\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[u] \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket.$$

A DENOTATION FOR EVALUATION CONTEXTS

If
$$\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : au$$
, then define $[\![\mathcal{C}]\!]$ such that

$$\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

A DENOTATION FOR EVALUATION CONTEXTS

If
$$\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : au$$
, then define $\llbracket \mathcal{C}
rbracket$ such that

$$\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

A DENOTATION FOR EVALUATION CONTEXTS

If
$$\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$$
, then define $\llbracket \mathcal{C} \rrbracket$ such that

$$\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

If
$$\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$$
 and $\Delta \vdash t : \sigma$, then

$$\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C} \rrbracket \left(\llbracket t \rrbracket \right)$$

SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

$$\Gamma \vdash u : \sigma$$
$$\Gamma, x : \sigma \vdash t : \tau$$

Then for all
$$\rho \in \llbracket \Gamma \rrbracket$$

$$\llbracket t[u/x] \rrbracket (\rho) = \llbracket t \rrbracket (\rho[x \mapsto \llbracket u \rrbracket (\rho)]).$$

In particular when $\Gamma = \cdot$, $[\![t]\!]: [\![\sigma]\!] o [\![\tau]\!]$ and

$$\llbracket t[u/x] \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket)$$

DENOTATIONAL SEMANTICS FOR PCF SOUNDNESS

SOUNDNESS

For all PCF types τ and all closed terms $t,v\in {\rm PCF}_{\tau}$ with v a value, if $t\downarrow_{\tau}v$ is derivable, then

$$[\![t]\!]=[\![v]\!]\in[\![\tau]\!]$$

DIVERGENCE

If $t \in \mathsf{PCF}_{\mathtt{nat}}$ and $[\![t]\!] = \bot$, then $t \uparrow_{\mathtt{nat}}$.

For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat}, \text{bool}\}$

$$[\![t]\!] = [\![v]\!] \in [\![\gamma]\!] \Rightarrow t \downarrow_{\gamma} v$$

For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat}, \text{bool}\}\$

$$[\![t]\!] = [\![v]\!] \in [\![\gamma]\!] \Rightarrow t \downarrow_{\gamma} v$$

Adequacy does **not** hold at function types or for open terms

For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat}, \text{bool}\}$

$$[\![t]\!] = [\![v]\!] \in [\![\gamma]\!] \Rightarrow t \downarrow_{\gamma} v$$

Adequacy does **not** hold at function types or for open terms

$$\llbracket \mathsf{fun}\, x{:}\,\tau.\,\,(\mathsf{fun}\, y{:}\,\tau.\,\,y)\,\,x\rrbracket \quad = \quad \llbracket \mathsf{fun}\, x{:}\,\tau.\,\,x\rrbracket \quad : \llbracket\tau\rrbracket \,\to\, \llbracket\tau\rrbracket$$

but

fun
$$x$$
: τ . (fun y : τ . y) $x \not \downarrow_{\tau \to \tau}$ fun x : τ . x

For any closed PCF term t and value v of ground type $\gamma \in \{\text{nat}, \text{bool}\}$

$$[\![t]\!] = [\![v]\!] \in [\![\gamma]\!] \Rightarrow t \downarrow_{\gamma} v$$

Adequacy does **not** hold at function types or for open terms

More serious:

```
[fun x: nat. (if zero?(f x) then true else true)]

?
[fun x: nat. true]
```


Proof idea: introduce a relation R such that

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

Proof idea: introduce a relation R such that

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

Proof idea: introduce a relation R such that

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n,t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathsf{PCF}_{\tau}$$

Proof idea: introduce a relation R such that

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n,t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathsf{PCF}_{\tau}$$

A logical relation.

Proof idea: introduce a relation R such that

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n,t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathsf{PCF}_{\tau}$$

A logical relation.

FORMAL APPROXIMATION AT BASE TYPES

$$\begin{array}{ccc} d \vartriangleleft_{\mathsf{nat}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d \in \mathbb{N} \Rightarrow t \Downarrow_{\mathsf{nat}} \underline{d}) \\ \\ d \vartriangleleft_{\mathsf{bool}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d = \mathsf{true} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{true}) \\ & \land (d = \mathsf{false} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{false}) \end{array}$$

FORMAL APPROXIMATION AT BASE TYPES

$$\begin{array}{ccc} d \mathrel{\vartriangleleft_{\mathsf{nat}}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d \in \mathbb{N} \Rightarrow t \Downarrow_{\mathsf{nat}} \underline{d}) \\ \\ d \mathrel{\vartriangleleft_{\mathsf{bool}}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d = \mathsf{true} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{true}) \\ & \land (d = \mathsf{false} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{false}) \end{array}$$

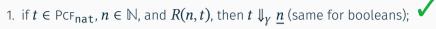
Exactly what we need to get 1.

FORMAL APPROXIMATION AT BASE TYPES

$$\begin{array}{ccc} d \mathrel{\vartriangleleft_{\mathsf{nat}}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d \in \mathbb{N} \Rightarrow t \Downarrow_{\mathsf{nat}} \underline{d}) \\ \\ d \mathrel{\vartriangleleft_{\mathsf{bool}}} t & \stackrel{\mathrm{def}}{\Leftrightarrow} & (d = \mathsf{true} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{true}) \\ & \mathrel{\land} (d = \mathsf{false} \Rightarrow t \Downarrow_{\mathsf{bool}} \mathsf{false}) \end{array}$$

Exactly what we need to get 1.

Note though that $\bot \lhd_{nat} t$ for any $t \in PCF_{nat}$.



- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \downarrow_Y \underline{n}$ (same for booleans);

- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) t;
 - 2.2 we need to interpret each typing rule.

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \downarrow_Y \underline{n}$ (same for booleans);

- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) t;
 - 2.2 we need to interpret each typing rule.

$$\mathsf{APP} \ \frac{\vdash t : \tau \to \tau' \qquad \vdash u : \tau}{\vdash t \ u : \tau'}$$

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) t;
 - 2.2 we need to interpret each typing rule.

$$\mathsf{APP} \; \frac{\vdash t : \tau \to \tau' \qquad \vdash u : \tau}{\vdash t \; u : \tau'}$$

Assume $\llbracket u \rrbracket \lhd_{\tau} u$ and $\llbracket t \rrbracket \lhd_{\tau \to \tau'} t$, how do we get $\llbracket t \ u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \lhd_{\tau} t \ u$?

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n,t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t).
 - 2.1 By induction on (the typing derivation of) t;
 - 2.2 we need to interpret each typing rule.

$$\mathsf{APP} \; \frac{\vdash t : \tau \to \tau' \qquad \vdash u : \tau}{\vdash t \; u : \tau'}$$

Assume $\llbracket u \rrbracket \lhd_{\tau} u$ and $\llbracket t \rrbracket \lhd_{\tau \to \tau'} t$, how do we get $\llbracket t \ u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \lhd_{\tau} t \ u$?

Define

$$d \vartriangleleft_{\tau \to \tau'} t \overset{\text{def}}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket, u \in \mathsf{PCF}_\tau . (e \vartriangleleft_\tau u \Rightarrow d(e) \vartriangleleft_{\tau'} t u)$$

FORMAL APPROXIMATION FOR OPEN TERMS

$$\operatorname{ABS} \frac{\Gamma, x \colon \tau \vdash t \colon \tau'}{\Gamma \vdash \operatorname{fun} x \colon \tau \colon t \colon \tau \to \tau'}$$

To prove Item 2, we need to talk about open terms.

FORMAL APPROXIMATION FOR OPEN TERMS

$$\text{ABS } \frac{\Gamma, x \colon \tau \vdash t \colon \tau'}{\Gamma \vdash \operatorname{fun} x \colon \tau \colon t \colon \tau \to \tau'}$$

To prove Item 2, we need to talk about open terms.

$$\llbracket t \rrbracket \left(\llbracket u \rrbracket \right) = \llbracket \left(t \llbracket u/x \rrbracket \right) \rrbracket$$
 Semantic application $pprox$ syntactic substitution

FORMAL APPROXIMATION FOR OPEN TERMS

$$\operatorname{ABS} \frac{\Gamma, x : \tau \vdash t : \tau'}{\Gamma \vdash \operatorname{fun} x : \tau . t : \tau \to \tau'}$$

To prove Item 2, we need to talk about open terms.

$$\llbracket t \rrbracket \left(\llbracket u \rrbracket \right) = \llbracket \left(t \llbracket u/x \rrbracket \right) \rrbracket$$
 Semantic application $pprox$ syntactic substitution

Parallel substitution: maps each $x \in \text{dom}(\Gamma)$ to $\sigma(x) \in \text{PCF}_{\Gamma(x)}$.

$$\rho \lhd_{\Gamma} \sigma \overset{\text{def}}{\Leftrightarrow} \forall x \in \text{dom}(\Gamma), \rho(x) \lhd_{\Gamma(x)} \sigma(x)$$

THE FUNDAMENTAL THEOREM

For any

- context Γ and type au
- · term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- · such that $\rho \lhd_{\Gamma} \sigma$

we have

$$\llbracket t \rrbracket (\rho) \lhd_{\tau} t [\sigma].$$

THE FUNDAMENTAL THEOREM

For any

- context Γ and type au
- term t such that $\Gamma \vdash t : \tau$
- \cdot environment ho
- substitution σ
- · such that $\rho \lhd_{\Gamma} \sigma$

we have

$$\llbracket t \rrbracket(\rho) \lhd_{\tau} t[\sigma].$$

Corollary: if
$$\cdot \vdash t : \tau$$
,

$$[t] \triangleleft_{\tau} t.$$

ADEQUACY

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \mathsf{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \lhd_{\tau} t;$

- 2. if $d' \sqsubseteq d$ and $d \vartriangleleft_{\tau} t$, then $d' \vartriangleleft_{\tau} t$;
- 3. the set $\{d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} t\}$ is chain-closed;

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \mathsf{PCF}_{\tau}, \bot_{\llbracket\tau\rrbracket} \lhd_{\tau} t$;

- 2. if $d' \sqsubseteq d$ and $d \vartriangleleft_{\tau} t$, then $d' \vartriangleleft_{\tau} t$;
- 3. the set $\{d \in \llbracket \tau \rrbracket \mid d \lhd_{\tau} t\}$ is chain-closed;

4. if $\forall v. \ t \downarrow_{\tau} v \Rightarrow t' \downarrow_{\tau} v$, and $d \vartriangleleft_{\tau} t$, then $d \vartriangleleft_{\tau} t'$.

FUNDAMENTAL PROPERTY

For any

- · context Γ , type τ and term t such that $\Gamma \vdash t : \tau$
- · environment ho
- · substitution σ
- \cdot such that $\rho \lhd_{\Gamma} \sigma$

we have $[t](\rho) \triangleleft_{\tau} t[\sigma]$.

FUNDAMENTAL PROPERTY

For any

- · context Γ , type τ and term t such that $\Gamma \vdash t : \tau$
- · environment ho
- · substitution σ
- · such that $\rho \lhd_{\Gamma} \sigma$

we have $[t](\rho) \triangleleft_{\tau} t[\sigma]$.

Proof! Induction on $\Gamma \vdash t : \tau$:

$$\forall \rho, \sigma. (\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket t \rrbracket (\rho) \triangleleft_{\tau} t [\sigma])$$

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\operatorname{ctx}} t' : \tau$ if for all $\mathcal C$ such that $\cdot \vdash_{\Gamma,\tau} \mathcal C : \gamma$ and for all values v,

$$C[t] \downarrow_{\gamma} v \Rightarrow C[t'] \downarrow_{\gamma} v.$$

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\operatorname{ctx}} t' : \tau$ if for all $\mathcal C$ such that $\cdot \vdash_{\Gamma,\tau} \mathcal C : \gamma$ and for all values v,

$$C[t] \downarrow_{\gamma} v \Rightarrow C[t'] \downarrow_{\gamma} v.$$

$$\Gamma \vdash t \cong_{\mathsf{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathsf{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathsf{ctx}} t : \tau)$$

MONOTONY OF FORMAL APPROXIMATION

Let au be a type, and assume $t_1,t_2\in {\rm PCF}_{ au}$ are such that $t_1\leq_{
m ctx} t_2: au$. Then $d\vartriangleleft_{ au} t_1\Rightarrow d\vartriangleleft_{ au} t_2.$

LEMMA: APPLICATION CONTEXTS

To characterise contextual preorder between closed terms, applicative contexts are enough.

LEMMA: APPLICATION CONTEXTS

To characterise contextual preorder between closed terms, **applicative** contexts are enough.

Let t_1, t_2 be closed terms of type τ . Then $t_1 \leq_{\text{ctx}} t_2 : \tau$ if and only if, for every term $f : \tau \to \text{bool}$,

 $f t_1 \downarrow_{\mathsf{bool}} \mathsf{true} \Rightarrow f t_2 \downarrow_{\mathsf{bool}} \mathsf{true}.$

CONTEXTUAL PREORDER AND FORMAL APPROXIMATION

Formal approximation corresponds to the contextual preorder.

CONTEXTUAL PREORDER AND FORMAL APPROXIMATION

Formal approximation corresponds to the contextual preorder.

For all PCF types au and all closed terms $t_1, t_2 \in \mathsf{PCF}_{ au}$

$$t_1 \leq_{\operatorname{ctx}} t_2 : \tau \Leftrightarrow \llbracket t_1 \rrbracket \vartriangleleft_\tau t_2.$$

EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For
$$\gamma=$$
 bool or nat, $t_1\leq_{\mathrm{ctx}} t_2:\gamma$ holds if and only if
$$\forall \nu.\; (t_1\, \Downarrow_{\gamma}\, \nu\Rightarrow t_2\, \Downarrow_{\gamma}\, \nu).$$

EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For
$$\gamma=$$
 bool or nat, $t_1\leq_{\mathrm{ctx}} t_2:\gamma$ holds if and only if
$$\forall \nu.\; (t_1\, \Downarrow_{\gamma}\, \nu\Rightarrow t_2\, \Downarrow_{\gamma}\, \nu).$$

At a function type
$$\tau \to \tau'$$
, $t_1 \leq_{\operatorname{ctx}} t_2 : \tau \to \tau'$ holds if and only if
$$\forall t \in \mathsf{PCF}_\tau \: . \: (t_1 \: t \leq_{\operatorname{ctx}} t_2 \: t : \tau').$$

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

FULL ABSTRACTION

A denotational model is fully abstract if

$$t_1 \cong_{\operatorname{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is **not** fully abstract.

PARALLEL OR

The parallel or function $\operatorname{por}:\mathbb{B}_{\perp}\times\mathbb{B}_{\perp}\to\mathbb{B}_{\perp}$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

LEFT SEQUENTIAL OR

The (left) sequential or function $or:\mathbb{B}_{\perp}\times\mathbb{B}_{\perp}\to\mathbb{B}_{\perp}$ is defined as

or
$$\stackrel{\text{def}}{=} \llbracket \operatorname{fun} x : \operatorname{bool.} \operatorname{fun} y : \operatorname{bool.} \operatorname{if} x \operatorname{then} \operatorname{true} \operatorname{else} y \rrbracket$$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	工	\perp	\perp

PARALLEL VS SEQUENTIAL OR

por	true	false	
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	Τ
true	true	true	true
false	true	false	\perp
\perp	上	\perp	丄

PARALLEL VS SEQUENTIAL OR

por	true	false	
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	Τ
true	true	true	true
false	true	false	\perp
\perp		\perp	\perp

or is sequential, but por is not.

UNDEFINABILITY OR PARALLEL OR

There is **no** closed PCF term

$$t: \mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}$$

satisfying

$$[\![t]\!] = \mathrm{por}: \mathbb{B}_\perp \to \mathbb{B}_\perp \to \mathbb{B}_\perp \ .$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen $T_{
m true}$ and $T_{
m false}$,

$$\begin{split} T_{\mathsf{true}} &\cong_{\mathsf{ctx}} T_{\mathsf{false}} : (\mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}) \to \mathsf{bool} \\ & \llbracket T_{\mathsf{true}} \rrbracket \neq \llbracket T_{\mathsf{false}} \rrbracket \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B} \end{split}$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$\begin{split} T_{\mathsf{true}} &\cong_{\mathsf{ctx}} T_{\mathsf{false}} : (\mathsf{bool} \to \mathsf{bool} \to \mathsf{bool}) \to \mathsf{bool} \\ & \llbracket T_{\mathsf{true}} \rrbracket \neq \llbracket T_{\mathsf{false}} \rrbracket \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B} \end{split}$$

Idea:

- for all $f \in PCF_{bool \rightarrow bool \rightarrow bool}$, ensure T_b $f \uparrow_{bool}$...
- but $\llbracket T_b \rrbracket$ (por) = $\llbracket b \rrbracket$.

EXAMPLE OF FULL ABSTRACTION FAILURE

```
\begin{split} T_b &\stackrel{\mathrm{def}}{=} & \mathsf{fun}\, f {:}\, \mathsf{bool} \to (\mathsf{bool} \to \mathsf{bool}). \\ & \mathsf{if}(f\, \mathsf{true}\, \Omega_{\mathsf{bool}}) \, \mathsf{then} \\ & \mathsf{if}\, (f\, \Omega_{\mathsf{bool}} \, \mathsf{true}) \, \mathsf{then} \\ & \mathsf{if}\, (f\, \mathsf{false}\, \mathsf{false}) \, \mathsf{then}\, \Omega_{\mathsf{bool}} \, \mathsf{else}\, b \\ & \mathsf{else}\, \Omega_{\mathsf{bool}} \\ & \mathsf{else}\, \Omega_{\mathsf{bool}} \end{split}
```


INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?
- · Contexts are too weak: they do not distinguish enough programs?

Pcf+por

$$\Gamma \vdash t : \tau$$

...
$$extstyle extstyle extstyle$$

 $t \downarrow_{\tau} v$

Full abstraction for Pcf+por

If we extend the semantics of PCF to PCF+por with

$$[por] = por$$

the resulting denotational semantics is fully abstract.

Full abstraction for Pcf+por

If we extend the semantics of PCF to PCF+por with

$$[\![\mathtt{por}]\!] = \mathrm{por}$$

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions → no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions → no por any more, but still not fully abstract...
- · only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become *much more* expressive.
- Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable idea?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- · linear logic
- logical relations
- game semantics
- · bisimulations techniques
- ...

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- a type τ as an object in a category;
- $\cdot \text{ a term } \Gamma \vdash t : \tau \text{ as a morphism/arrow } \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket.$

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- \cdot a type au as an object in a category;
- $\cdot \text{ a term } \Gamma \vdash t : \tau \text{ as a morphism/arrow } \llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket.$

Example: λ -calculus \rightarrow cartesian closed categories

DOMAIN THEORY FOR ABSTRACT DATATYPES

```
OCaml's ADT:
```

```
type 'a tree =
    | Leaf
    | Node of 'a * 'a tree * 'a tree
```

It is a fixed point equation! We can use domain theory to solve it.

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $\llbracket \Gamma \rrbracket \to T(\llbracket \tau \rrbracket)$

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between different approaches.