Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type τ , $t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PcF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \Downarrow_{v} v$.

$$\begin{array}{ll} d \triangleleft_{\operatorname{nat}} t & \stackrel{\operatorname{def}}{\Leftrightarrow} & (d \in \mathbb{N} \Rightarrow t \Downarrow_{\operatorname{nat}} \underline{d}) \\ d \triangleleft_{\operatorname{bool}} t & \stackrel{\operatorname{def}}{\Leftrightarrow} & (d = \operatorname{true} \Rightarrow t \Downarrow_{\operatorname{bool}} \operatorname{true}) \\ & \wedge (d = \operatorname{false} \Rightarrow t \Downarrow_{\operatorname{bool}} \operatorname{false}) \\ d \triangleleft_{\tau \to \tau'} t & \stackrel{\operatorname{def}}{\Leftrightarrow} & \forall e \in \llbracket \tau \rrbracket, u \in \operatorname{PCF}_{\tau} . (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u) \end{array}$$

- \cdot context Γ , type au and term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- \cdot such that $ho \lhd_{\Gamma} \sigma$

we have $\llbracket t \rrbracket(\rho) \lhd_{\tau} t[\sigma]$.

- \cdot context Γ , type au and term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- \cdot such that $ho \lhd_{\Gamma} \sigma$

we have $\llbracket t \rrbracket(\rho) \lhd_{\tau} t[\sigma]$.

Implies adequacy when $\Gamma = \cdot$ and τ is a base type.

Adequacy

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in PCF_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. if $d' \sqsubseteq d$ and $d \triangleleft_{\tau} t$, then $d' \triangleleft_{\tau} t$; 3. the set $\{d \in [\tau] \mid d \triangleleft_{\tau} t\}$ is chain-closed;

1. By induct on the type I for any tERF Already sen IN_ Amt t I Tratil Similar, for bool. 400-121 dest tes Tol, uerto, tomain at u - UED Ry IN ONT, JUD 42 TU So 2000 - 100 - 50 +

- d=d' = d Int t 2. By induction on t -d=1 => 1 - Mratt spr not dEd'a matt 2 work litity abool is similar x d E tol + ten d'a sat MERFO S.t. edou Aggume celo), de Ende A tu by IH on T de atu trad no d'ast

1. The least element approximates any program: for any τ and $t \in PCF_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. if $d' \sqsubseteq d$ and $d \triangleleft_{\tau} t$, then $d' \triangleleft_{\tau} t$; 3. the set $\{d \in [\tau] \mid d \triangleleft_{\tau} t\}$ is chain-closed;

4. if $\forall v. t \downarrow_{\tau} v \Rightarrow t' \downarrow_{\tau} v$, and $d \triangleleft_{\tau} t$, then $d \triangleleft_{\tau} t'$.

4: Day induction on yt r mat: need dant't (delN => t'ld) assumed dant (dew => t ld) + t ld => t'ld + t ld => t'ld Absol: similar * fun: assume de sit ialse e e ton, uc PCF st. e a u red de situ by assumption de aitu tu funxib b["/a]llo IH on t tu fu so > tu funxib b["/a)llo IH on t tu do > tu funxib b["/a)llo IH on t fus daz t'

- \cdot context Γ , type au and term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- \cdot such that $\rho \lhd_{\Gamma} \sigma$

we have $\llbracket t \rrbracket(\rho) \lhd_{\tau} t[\sigma]$.

- \cdot context Γ , type au and term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- \cdot such that $\rho \lhd_{\Gamma} \sigma$

we have $\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]$.

Proof! Induction on $\Gamma \vdash t : \tau$:

 $\forall \rho, \sigma. \ (\rho \lhd_{\Gamma} \sigma \Rightarrow \llbracket t \rrbracket (\rho) \lhd_{\tau} t[\sigma])$

IN dans til den stud thus metumical folds

pred issens: similar

= (1 <ThD(e), <ThD(e), (th, 76)) H: byporture tillo A bo thenty elate Up 5 Enough db = brok b' d, <t, d2 <t, t' =) if <dy <t, it >> <t if b' then the else t2' the care depending on db - db = 1 then if 1 < 2, <...>> = 1? "T if b' then ti ta t''' - db = then if 1 < 1, <...>> = 1? dt b' then ti ta t'' twe d book' = b'll true thus tilled = if b'therticlot' the thus by h. dr a= if b'then tilletz' V

Var: T(2)=C Need: InT(e) ~ + + 5) ebc) <12 000 hypotheris e = 0 April de tota de de tota de de tota by def of dont

Fun:
$$Tfm x.z'.t D(e) = (A det z? . t t t t t (et x d))$$

(fune wit'.t) to? = fun wit'.tto)
Need $Tfun wit'.t t (e) do re (fun x:z'.t) to?
Take $d \in tz'$, $u \in KFz'$, need
 $Tfun x:z'.t D(e)(d) a_z (fun x:z'.t) to) u$
 $TE D(et a rod) (fun x:z'.t to) u$
 $TE D(et a rod) (fun x:z'.t to) u$
 $fun x:z'.t to) (to) (u) = t t o (x rou)$
 $fun x:z'.t to) (to) (u) oud (fun x:z'.t to) u$$

Illow t: $Tt \overline{l}(eta - d) - (fm x:t', (to))$ 4. $Tt \overline{l}(eta - d) = (fm x:t', (to))$ Eix: Moume dat f med fixed afixf Scottind. Jeleating? e a fix f contains 1 1. Appine de allfit () is erough down-closed 3. f(fixf) no Fith AND

e a fit f de 7 f (firg) d Jul d fixf he/exfingly statute by d fix of <i fix f