WHERE WE'RE AT

We have a denotational semantics:

- a mapping of PcF types 7 to domains [7];
- a mapping of well-typed terms I" =t : 7 into continuous functions [t] € [I'] — [z];
- a mapping of well-typed, closed PcF terms - =t : 7 to elements [t] € [z].
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- a mapping of well-typed terms I" =t : 7 into continuous functions [t] € [I'] — [z];
- a mapping of well-typed, closed PcF terms - =t : 7 to elements [t] € [z].

such that:
Compositionality: [t] = [t'] = [c[t]] = [c[¢']]. v
Soundness: forany type,t |, v = [t] = [v]. X

Adequacy: for y = bool or nat, if¢t € PcF, and [t] = [v] thent UY V. X
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TYPING AND EVALUATION
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SOUNDNESS

For all PcF types 7 and all closed terms t, v € PcF, with v a value, if t |, v is derivable,
then

[l = v] € [7]

O :N\Q)\MQ{-;\’W o t@/f\/
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REMINDER: ADEQUACY

For any closed Pcr term ¢ and value v of ground type y € {nat, bool}
T M <[] fl=Welyl =t v
AN
\
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REMINDER: ADEQUACY

For any closed Pcr term ¢ and value v of ground type y € {nat, bool}

[[l=Melyl=tl,v

Adequacy does not hold at function types or for open terms
[funx:z.(funy:z.y)x] = [funx:iz.x] :[r] — [r]

but
funx:z. (funy:z. y) xlf; 5, funx:7. x
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REMINDER: ADEQUACY

For any closed PcF term ¢ and value v of ground type y € {nat, bool}

l=Mely] =t v

Adequacy does not hold at function types or for open terms
More serious: \’ . -
[funx:nat. (if zero?(f x) then true else true)]

?
= [funx:nat. true]
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ADEQUACY
FORMAL APPROXIMATION RELATION



HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).
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FORMAL APPROXIMATION AT BASE TYPES

d<]natlL g (den\l:tunatd)

def
d Qoort < (d=true =1 o true)

A(d = false = t o1 false)
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FORMAL APPROXIMATION AT BASE TYPES

d<]natlL (‘ig (den\l:tunatd)

def
d Qoort < (d=true =1 o true)

A(d = false = t o1 false)

Exactly what we need to get 1.

Note though that L <,,¢ ¢ forany f € PCF4¢.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/
2. for any well-typed term t, R([t] , t).
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/

2. for any well-typed term t, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/
2. for any well-typed term t, R([t] , t).
21 By induction on (the typing derivation of) t; *Ly ' U’é]</ é
Lr s U

2.2 we need to interpret each typing rule.

e Fu:t UADGG‘M

Htu:t’ [m

APP
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/

2. for any well-typed term t, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

A e Fu:rt

ApP ;
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

Define
def
d<, st < Vee€|[r],uePcr,.(e<d, u=d(e) Q. tu)

101



FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tHt:7

ABS
' funx:it.t:7 > 1

To prove Item 2, we need to talk about open terms.
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OxitHt: 7 &réa(ﬂ“%@]ﬁgﬂ

' funx:it.t:7 > 1

ABS

To prove Item 2, we need to talk about open terms.

[t] ([u]) = [(t[u/x])] Semantic application = syntactic substitution
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FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tHt:7

ABS
' funx:it.t:7 > 1

To prove Item 2, we need to talk about open terms.

[t] ([u]) = [(t[u/x])] Semantic application = syntactic substitution

Parallel substitution: maps each x € dom(T') to (x) € PCFr(y).

p<ro = vx € dom(T), p(x) <r(y) o(x)
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THE FUNDAMENTAL THEOREM

k(O O
Forany V/T’C PRI .
- context " and type T e C \} - H_—] .
, — . T
- termtsuchthatI'~t¢: 7 rﬂ:—(’ e
- environment p QEY’D SIS D“Wja’lr

- substitution o jg/., '
- such that p < V—Zp (PCF’t
W

we have U
[£] (p) <; tlo].
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THE FUNDAMENTAL THEOREM

For any

- contextI" and type T

- termtsuchthatI' =t : 7
- environment p

- substitution o

- suchthat p <r o

we have

[t (p) <, tlo].

Corollary: if - =1 : T,
[t] <, t.
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