We have a denotational semantics:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$
- a mapping of well-typed terms $\Gamma \vdash t : \tau$ into continuous functions $\llbracket t \rrbracket \in \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$;
- a mapping of well-typed, closed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$.

We have a denotational semantics:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$
- a mapping of well-typed terms $\Gamma \vdash t : \tau$ into continuous functions $\llbracket t \rrbracket \in \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$;
- a mapping of well-typed, closed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$.

such that:

Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$. Soundness: for any type $\tau, t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$.

Adequacy: for $\gamma = bool$ or nat, if $t \in PCF_{\gamma}$ and [t] = [v] then $t \downarrow_{\gamma} v$.

DENOTATIONAL SEMANTICS FOR PCF Soundness

TYPING AND EVALUATION

t \$ 6 - 5 fun . 5. t t [42] 1/2 r tu WV

If $t \downarrow_{\tau} v$, then both $\vdash t : \tau$ and $\vdash v : \tau$.

For all PCF types τ and all closed terms $t, v \in PCF_{\tau}$ with v a value, if $t \downarrow_{\tau} v$ is derivable, then

 $[\![t]\!] = [\![\nu]\!] \in [\![\tau]\!]$

てのこころ \sim NUT N

~

IH: [t] = [v] ~ NL E Wrat V Bucc E W mat Mac V [Joucet] = succ_ [[t] (e) e:0. = nucc, [In] = [Mccu] by twe they IH: [b]= [tme]=tmeEB, if be Hent elsen Un \longrightarrow $TET = TVD \in TTT$ Ty btintelseul= ife BIX DXD -D il < [b], < [t], [u]>> = 1 < tme, < [t], [u]>>= [t] = [v]

IH: [t]= [femn:o.t] the funxis.t' t'["] UV = (ade To). (t) (arod)) tu the N = (Ad. [o]. [[t']()) $\mathbb{T}t'\mathbb{I}\in\mathbb{T}^{\infty}:\mathbb{T}^{\mathcal{D}}\to\mathbb{T}^{\mathcal{D}}$ T t' $T_{\sigma I}$ $T_{\sigma I} = T_{\sigma I}$ Rem: [[t[m/s]]] - [[t]][u] Rout Hen Tt'["/27] = TEITUJ ETEU] her

$$\frac{f(fixf)}{fixf} = T \circ T$$

$$Ff: T \to T$$

$$\frac{f(fixf)}{fixf} = fix T f T$$

$$= T f T (fix T f T)$$

$$= T f T (fix T f T)$$

$$= T f T (fix f T)$$

$$= T f (fixf)$$

$$= T f (fixf)$$

DIVERGENCE

$$t \stackrel{f}{\operatorname{not}} \underset{t=1}{\overset{f}{\operatorname{not}}} \stackrel{f}{\operatorname{not}} \stackrel{f}{\operatorname$$

Adequacy

$$\texttt{twe filse } \leftarrow \texttt{[v]} \quad [t] = [v] \in [y] \Rightarrow t \downarrow_{y} v$$

```
\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v
```

Adequacy does not hold at function types or for open terms

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

Adequacy does **not** hold at function types or for open terms

$$\llbracket \mathsf{fun} x : \tau. (\mathsf{fun} y : \tau. y) x \rrbracket = \llbracket \mathsf{fun} x : \tau. x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

fun
$$x: \tau$$
. (fun $y: \tau$. y) $x \not\downarrow_{\tau \to \tau}$ fun $x: \tau$. x

$$\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v$$

Adequacy does **not** hold at function types or for open terms More serious: $f = \begin{cases} 1 & \text{mat} \\ 1 & \text{mat} \end{cases}$ [fun *x*: nat. (if zero?(*f x*) then true else true)] $\stackrel{?}{=}$ [fun *x*: nat. true]

Adequacy

FORMAL APPROXIMATION RELATION

sbetween It] and PCF

Proof idea: introduce a relation R such that

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}$, $n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}$, $n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_V \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

 $\lhd_\tau \subseteq \llbracket \tau \rrbracket \times \mathsf{Pcf}_\tau$

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

 $\lhd_\tau \subseteq \llbracket \tau \rrbracket \times \mathsf{PcF}_\tau$

A logical relation.

- 1. if $t \in PCF_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

 $\lhd_\tau \subseteq \llbracket \tau \rrbracket \times \mathsf{Pcf}_\tau$

A logical relation.

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false})$$

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false}$$

Exactly what we need to get 1.

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false}$$

Exactly what we need to get 1.

Note though that $\perp \triangleleft_{nat} t$ for any $t \in \mathsf{PCF}_{nat}$.

- 1. if $t \in \mathsf{PcF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$APP \xrightarrow{\vdash t : \tau \to \tau' \qquad \vdash u : \tau}_{\vdash t \ u : \tau'}$$

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$\operatorname{App} \frac{\vdash t: \tau \to \tau' \quad \vdash u: \tau}{\vdash t \; u: \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$?

- 1. if $t \in \mathsf{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$\mathsf{APP} \xrightarrow{\vdash t: \tau \to \tau' \qquad \vdash u: \tau}_{\vdash t \ u: \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$? **Define**

$$d \triangleleft_{\tau \to \tau'} t \stackrel{\text{def}}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket, u \in \mathsf{PCF}_{\tau} . (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u)$$

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau \cdot t: \tau \to \tau'}$$

To prove Item 2, we need to talk about open terms.

FORMAL APPROXIMATION FOR OPEN TERMS

ABS
$$\frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \rightarrow \tau'}$$

To prove Item 2, we need to talk about open terms.

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application pprox syntactic substitution

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau \cdot t: \tau \to \tau'}$$

To prove Item 2, we need to talk about open terms.

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u/x \rrbracket) \rrbracket$ Semantic application \approx syntactic substitution Parallel substitution: maps each $x \in \text{dom}(\Gamma)$ to $\sigma(x) \in \text{PcF}_{\Gamma(x)}$.

$$\rho \triangleleft_{\Gamma} \sigma \stackrel{\text{def}}{\Leftrightarrow} \forall x \in \text{dom}(\Gamma), \rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$$

THE FUNDAMENTAL THEOREM

For any

- \cdot context Γ and type au
- \cdot term t such that $\Gamma \vdash t : \tau$
- environment $\rho \in T \Gamma$
- · substitution σ for Γ
- \cdot such that $\rho \triangleleft_{\Gamma} \phi$

we have

 V,x:c+C:τ
 V+1t#27:7

 V+M: ζ'
 ·+t[σ]:τ
 Jis a publit. Jor T

 $\begin{array}{c} \nabla \tau \mathcal{P} & \mathcal{P} \mathcal{F} \\ \mathcal{U} & \mathcal{U} \\ \llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]. \end{array}$

THE FUNDAMENTAL THEOREM

For any

- $\cdot\,$ context Γ and type au
- \cdot term t such that $\Gamma \vdash t : au$
- \cdot environment ho
- \cdot substitution σ
- \cdot such that $ho \lhd_{\Gamma} \sigma$

we have

$\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma].$

Corollary: if $\cdot \vdash t : \tau$,

 $\llbracket t \rrbracket \lhd_{\tau} t.$