WHERE WE'RE AT

We have a denotational semantics:

- a mapping of PcF types 7 to domains [7];
- a mapping of well-typed terms I" =t : 7 into continuous functions [t] € [I'] — [z];
- a mapping of well-typed, closed PcF terms - =t : 7 to elements [t] € [z].

WHERE WE'RE AT

We have a denotational semantics:

- a mapping of PcF types 7 to domains [7];
- a mapping of well-typed terms I" =t : 7 into continuous functions [t] € [I'] — [z];
- a mapping of well-typed, closed PcF terms - =t : 7 to elements [t] € [z].

such that:
Compositionality: [t] = [t'] = [c[t]] = [c[¢']]. v
Soundness: forany type,t |, v = [t] = [v]. X

Adequacy: for y = bool or nat, if¢t € PcF, and [t] = [v] thent UY V. X

DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS

TYPING AND EVALUATION

e L

tw bV

Ift |, v,thenboth—=t:7and~v: 7.

95

SOUNDNESS

For all PcF types 7 and all closed terms t, v € PcF, with v a value, if t |, v is derivable,
then

[l = v] € [7]

O :N\Q)\MQ{-;\’W o t@/f\/

96

P

T oy =Ta

L Vg v
i —
e e TWCcH nuee (€Tl S et
- WCCJ D’\‘)
\0\/ tue ff\wt v - [mee “P
T j,H; Wb?:q’r/*&ﬂ :C‘MaéB_g
/&\o%“t J,XM\/,\J/ ~ BET=Tvd) € Tz
T& € Calp 1=
. TP)LXB*%) géfbﬁ 4ﬁt7 f@>>

A
XAJOU«;L ,\(IJCDY\;J 35’ ﬁtb}

=H
E’fTL_ EWWJC i—lﬁ

SN e - Qde Ts) T Tlrd))
- Lﬂd\@sbﬁé?(d‘,)

([ET]{ [*CIGD%HCD @Ué'ﬂ
Vsl WV/QW = v

Q. TECH]D - TATA

ke Qaw TR = TE VAR
\
T\ ///

—H: Q=g)] = To0

| v
[AND
Ped e gt el Tl
Tl 1= %w i
: WMW\&D)

{m§>(T~)

Jlm»(<!=Q % o bl .

fagons T B
s) S

rayund V>
o H’w") k%:ﬁt? o=~

L =M ’QN.L é(; \b
%&N\A‘?U . QWth w “‘X‘.umc/kk Q,,,f N

2 ’A A@\JL .TQMHY/ %dCM_L’

= LN‘”}JLW

Ift € PCFnat and [t] = L, then t fhat.

ADEQUACY

REMINDER: ADEQUACY

For any closed Pcr term ¢ and value v of ground type y € {nat, bool}
T M <[] fl=Welyl =t v
AN
\

98

REMINDER: ADEQUACY

For any closed Pcr term ¢ and value v of ground type y € {nat, bool}

[[l=Melyl=tl,v

Adequacy does not hold at function types or for open terms

98

REMINDER: ADEQUACY

For any closed Pcr term ¢ and value v of ground type y € {nat, bool}

[[l=Melyl=tl,v

Adequacy does not hold at function types or for open terms
[funx:z.(funy:z.y)x] = [funx:iz.x] :[r] — [r]

but
funx:z. (funy:z. y) xlf; 5, funx:7. x

98

REMINDER: ADEQUACY

For any closed PcF term ¢ and value v of ground type y € {nat, bool}

l=Mely] =t v

Adequacy does not hold at function types or for open terms
More serious: \’ . -
[funx:nat. (if zero?(f x) then true else true)]

?
= [funx:nat. true]

98

ADEQUACY
FORMAL APPROXIMATION RELATION

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).

99

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).

But at non-base types, adequacy does not hold.

99

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

<, C [r] x PcF;

99

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation
<, C [r] x PcF;

A logical relation.

99

HOw TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. ift € PCFpaq, 1 € N, and R(n, t), thent |, n (same for booleans);
2. for any well-typed term ¢, R([t] , t).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation
<, C [r] x PcF;

A logical relation.

99

FORMAL APPROXIMATION AT BASE TYPES

d<]natlL g (den\l:tunatd)

def
d Qoort < (d=true =1 o true)

A(d = false = t o1 false)

100

FORMAL APPROXIMATION AT BASE TYPES

d<]natlL g (den\l:tunatd)

def
d Qoort < (d=true =1 o true)

A(d = false = t o1 false)

Exactly what we need to get 1.

100

FORMAL APPROXIMATION AT BASE TYPES

d<]natlL (‘ig (den\l:tunatd)

def
d Qoort < (d=true =1 o true)

A(d = false = t o1 false)

Exactly what we need to get 1.

Note though that L <,,¢ ¢ forany f € PCF4¢.

100

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/
2. for any well-typed term t, R([t] , t).

101

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/

2. for any well-typed term t, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

101

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/
2. for any well-typed term t, R([t] , t).
21 By induction on (the typing derivation of) t; *Ly ' U’é]</ é
Lr s U

2.2 we need to interpret each typing rule.

e Fu:t UADGG‘M

Htu:t’ [m

APP

101

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/

2. for any well-typed term t, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

A e Fu:rt

ApP ;
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

101

FORMAL APPROXIMATION AT FUNCTION TYPES

1. ift € PCFhat, n € N, and R(n, t), then t Uyn (same for booleans); ‘/

2. for any well-typed term t, R([t] , t).

21 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

A e Fu:rt

ApP ;
Htu:t

Assume [u] <, u and [t] <,_, t, how do we get [t u] = [t] ([ul) <, t u?

Define
def
d<, st < Vee€|[r],uePcr,.(e<d, u=d(e) Q. tu)

101

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tHt:7

ABS
' funx:it.t:7 > 1

To prove Item 2, we need to talk about open terms.

102

FORMAL APPROXIMATION FOR OPEN TERMS

OxitHt: 7 &réa(ﬂ“%@]ﬁgﬂ

' funx:it.t:7 > 1

ABS

To prove Item 2, we need to talk about open terms.

[t] ([u]) = [(t[u/x])] Semantic application = syntactic substitution

102

FORMAL APPROXIMATION FOR OPEN TERMS

Ix:tHt:7

ABS
' funx:it.t:7 > 1

To prove Item 2, we need to talk about open terms.

[t] ([u]) = [(t[u/x])] Semantic application = syntactic substitution

Parallel substitution: maps each x € dom(T') to (x) € PCFr(y).

p<ro = vx € dom(T), p(x) <r(y) o(x)

102

THE FUNDAMENTAL THEOREM

k(O O
Forany V/T’C PRI .
- context " and type T e C \} - H_—] .
, — . T
- termtsuchthatI'~t¢: 7 rﬂ:—(’ e
- environment p QEY’D SIS D“Wja’lr

- substitution o jg/., '
- such that p < V—Zp (PCF’t
W

we have U
[£] (p) <; tlo].

103

THE FUNDAMENTAL THEOREM

For any

- contextI" and type T

- termtsuchthatI' =t : 7
- environment p

- substitution o

- suchthat p <r o

we have

[t (p) <, tlo].

Corollary: if - =1 : T,
[t] <, t.

103

Ft et Me/r« fé?@wk ¢

Ty TE) =Tl =2 Mfm!'t

J olef
</'L€)Ué é\[}/vwl’mj
k}

(A
J

Ele ™

