
WHERE WE’RE AT

We have a denotational semantics:

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of well-typed terms Γ ⊢ 𝑡 : 𝜏 into continuous functions J𝑡K ∈ JΓK → J𝜏 K;
• a mapping of well-typed, closed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K.

such that:

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✗
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✗

1



WHERE WE’RE AT

We have a denotational semantics:

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of well-typed terms Γ ⊢ 𝑡 : 𝜏 into continuous functions J𝑡K ∈ JΓK → J𝜏 K;
• a mapping of well-typed, closed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K.

such that:

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✗
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✗

1



DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS



TYPING AND EVALUATION

If 𝑡 ⇓𝜏 𝑣 , then both ⊢ 𝑡 : 𝜏 and ⊢ 𝑣 : 𝜏 .
95



SOUNDNESS

For all PCF types 𝜏 and all closed terms 𝑡 , 𝑣 ∈ PCF𝜏 with 𝑣 a value, if 𝑡 ⇓𝜏 𝑣 is derivable,
then

�𝑡� = �𝑣� ∈ �𝜏 �

96











DIVERGENCE

If 𝑡 ∈ PCFnat and �𝑡� = ⊥, then 𝑡 ⇑nat.
97



ADEQUACY



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣

98



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open terms

98



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open terms
�
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥� = �fun 𝑥: 𝜏 . 𝑥� : �𝜏 � → �𝜏 �

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

98



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open terms

More serious:
�
fun 𝑥: nat. (if zero?(𝑓 𝑥) then true else true)�?= �fun 𝑥: nat. true�

98



ADEQUACY
FORMAL APPROXIMATION RELATION



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

99



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

But at non-base types, adequacy does not hold.

99



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation⊲𝜏⊆ �𝜏 � × PCF𝜏
99



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation⊲𝜏⊆ �𝜏 � × PCF𝜏
A logical relation.

99



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation⊲𝜏⊆ �𝜏 � × PCF𝜏
A logical relation.

99



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

100



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)∧(𝑑 = false ⇒ 𝑡 ⇓bool false)
Exactly what we need to get 1.

100



FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)∧(𝑑 = false ⇒ 𝑡 ⇓bool false)
Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.

100



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

101



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

101



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏⊢ 𝑡 𝑢 : 𝜏 ′

101



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏⊢ 𝑡 𝑢 : 𝜏 ′

Assume �𝑢� ⊲𝜏 𝑢 and �𝑡� ⊲𝜏->𝜏 ′ 𝑡 , how do we get �𝑡 𝑢� = �𝑡� (�𝑢�) ⊲𝜏 𝑡 𝑢?
101



FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡).

2.1 By induction on (the typing derivation of) 𝑡 ;
2.2 we need to interpret each typing rule.

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏⊢ 𝑡 𝑢 : 𝜏 ′

Assume �𝑢� ⊲𝜏 𝑢 and �𝑡� ⊲𝜏->𝜏 ′ 𝑡 , how do we get �𝑡 𝑢� = �𝑡� (�𝑢�) ⊲𝜏 𝑡 𝑢?
Define 𝑑 ⊲𝜏->𝜏 ′ 𝑡 def⇔ ∀𝑒 ∈ �𝜏 � , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏′ 𝑡 𝑢)

101



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

102



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

�𝑡� (�𝑢�) = �(𝑡[𝑢/𝑥])� Semantic application ≈ syntactic substitution

102



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.

�𝑡� (�𝑢�) = �(𝑡[𝑢/𝑥])� Semantic application ≈ syntactic substitution

Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).𝜌 ⊲Γ 𝜎 def⇔ ∀𝑥 ∈ dom(Γ), 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥)
102



THE FUNDAMENTAL THEOREM

For any

• context Γ and type 𝜏
• term 𝑡 such that Γ ⊢ 𝑡 : 𝜏
• environment 𝜌
• substitution 𝜎
• such that 𝜌 ⊲Γ 𝜎

we have
�𝑡� (𝜌) ⊲𝜏 𝑡[𝜎].

103



THE FUNDAMENTAL THEOREM

For any

• context Γ and type 𝜏
• term 𝑡 such that Γ ⊢ 𝑡 : 𝜏
• environment 𝜌
• substitution 𝜎
• such that 𝜌 ⊲Γ 𝜎

we have
�𝑡� (𝜌) ⊲𝜏 𝑡[𝜎].

Corollary: if ⋅ ⊢ 𝑡 : 𝜏 ,
�𝑡� ⊲𝜏 𝑡.

103




