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WHERE WE'RE AT

- partially ordered set = poset
- + lubs of all chains = cpo
- + least element = domain

- the least (pre)fixed point fix(f) of a monotone f is a fixed point:

fEix(f)) = fix(f)



LEAST FIXED POINTS
CONTINUOUS FUNCTIONS
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CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- itis monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f(LJ‘LJ = L_Jj(d%)

n>0 n>0

Note: one direction is automatic.
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CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is continuous if

- itis monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

f(LJ‘LJ = L_Jj(d%)

n>0 n>0

Note: one direction is automatic.
A function f is strict if f(Lp) = L.

41
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All computable functions are continuous.

42



THESIS

All computable functions are continuous.

42



THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0"? (N — B) — B
0 0 1L .. — 1
00 0 0 1 .. 1

000 0 0 0 - 0
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THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0"? (N = B) — B

0O o0 L .. —
000 0 1 .. - 1
000 00O OO0 L > 1
000 00O OO O > ?
000 0 0 O - 0
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THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0"? (N — B) — B
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Intuition: non-continuity = “jump at infinity” = non-computability
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THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0"? (N — B) — B

0O 0 L .. — 1
000 0 1 .. - 1
000 00O OO0 L > 1
000 00O OGO O > ?
000 0 0 O - 0

Intuition: non-continuity = “jump at infinity” = non-computability
Later in the course: show the thesis... by giving a denotational semantics.

42
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KLEENE’'S FIXED POINT THEOREM

Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = |_| (0.
n>0
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CONSTRUCTIONS ON DOMAINS



CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS



FLAT DOMAIN ON X

The flat domain on a set X is defined by:

- its underlying set X +}{_};
- xCx’ifeitherx=_Lorx=x".

4l



FLAT DOMAIN LIFTING

Let f : X — Y be a partial function between two sets. Then

i X = Y,
f(d) ifde Xand fis defined atd
d - {1 ifd € X and f is not defined at d

1 ifd =1

defines a strict continuous function between the corresponding flat domains.

45



CONSTRUCTIONS ON DOMAINS

PRODUCTS OF DOMAINS



BINARY PRODUCT

The product of two posets (Dy,E1) and (D,, E5) has underlying set
Dy x Dy = {(d1,dy) | dy € Dy Ady € Dy}

and partial order E defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Ty dy
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BINARY PRODUCT

The product of two posets (Dy,E1) and (D,, E5) has underlying set
Dy x Dy ={(dy,dp) | dy € D; ndy € Dy}

and partial order E defined by

def
(dy,dy) C (d{,dy) & dy Cy d{ ndy Ty dy

diCidi dyCydj

(d1,dy) C (df,d3)

POX

46



COMPONENTWISE LUBS AND LEAST ELEMENTS

L\A lubs of chains are computed componentwise:
'3

W\ d
WS |_|(dl,n’d2,n) = (|_| dij, |_|d2,j)'

n=0 i>0 j=0

47
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COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdop) = |disi| | o))

n=0 i>0 j=0

If (D1,C1) and (D5, C5) have least elements, so does (Dq x Dy, C) with

Lpxp, = (Lp,sLp,)
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COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

| |W@ipdop) = |disi| | o))

n=0 i>0 j=0

If (D1,C1) and (D5, C5) have least elements, so does (Dq x Dy, C) with

Lpxp, = (Lp,sLp,)

Products of cpos (domains) are cpos (domains).
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FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dCd" = f(d,e) C f(d’,e)
vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).
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FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone if and only if it is monotone in each argument
separately:

vd,d’ € D,e€ E.dCd" = f(d,e) C f(d’,e)
vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

F 0= L e 3(%(%)@»))

m>0 m>0

fd, U0> = ’I&I)f(d, €n)- Uk g (J/u(% )

48



Ll &(dm,’wj QU o) - o (j)(/(l o)

Be) = (YU )
- %( l;)o(’ UM e,M>

oy (4, L)
- U/mga&(&{%a"‘\
SERCHN

£
N
$(_'\



DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

’

f monotone xC x’ yCy

fG, ) C (X, y")

MONX

f(l_lxmaI_IYn> = |_||_|f(xm’yn) = I_If(xk’yk)
m n m n k

49



PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

VS DlxDz —> Dl Ty : DlxDZ - D2
(di.dy) — 4 (di,dy) +— dy

are continuous functions.
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PROJECTION AND PAIRING

Let D; and D, be cpos. The projections

VS DlxDz —> Dl Ty : DlxDZ - D2
(di.dy) — 4 (di,dy) +— dy

are continuous functions.

If f{: D — D;jand f, : D — D, are continuous functions from a cpo D, then the
pairing function
(f. o) D — Dy xD,
d = (fi(d), fo(d)

is continuous.
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DOMAIN CONDITIONAL

The conditional function

if: Byx(DxD) — D
m(d) if x = true
(x,d) — {my(d) if x = false
1p ifx=1

is continuous.

51
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GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the X; is

[]x

i€l
Two ways to see it:

- tuples: (..., x;, ... )jeJ such that x; € X;;
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GENERAL PRODUCT

Given a set I, suppose that for each i € I we are given a set X;. The (cartesian) product of
the X; is

[]x

i€l
Two ways to see it:

- tuples: (..., x;, ... )jeJ such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

Special case: [ [;cg D; corresponds to Dypye X Dialse-

Projections (for any i € I):

mz(HXi)aXi

i€l
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GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to HieI D;
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- underlying set equal to HieI D;
- componentwise order

C , def [ 0 C pf
pEp evielpk,;p.
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GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each i € I we are given a cpo (D;, ;). The product of this
whole family of cpos has

- underlying set equal to HieI D;
- componentwise order

C , def [ 0 C pf
pEp evielpk,;p.

I-indexed products of cpos (domains) are cpos (domains), and projections are
continuous.
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