partially ordered set = poset

- partially ordered set = poset
- + lubs of all chains = cpo

- partially ordered set = poset
- + lubs of all chains = cpo
- + least element = domain

- partially ordered set = poset
- + lubs of all chains = cpo
- + least element = domain
- the least (pre)fixed point fix(f) of a monotone f is a fixed point:

 $f(\operatorname{fix}(f)) = \operatorname{fix}(f)$

LEAST FIXED POINTS CONTINUOUS FUNCTIONS

Given two cpos D and E, a function $f: D \rightarrow E$ is **continuous** if

- $\boldsymbol{\cdot}$ it is monotone, and
- \cdot it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0}d_n)=\bigsqcup_{n\geq 0}f(d_n)$$

Note: one direction is automatic.

Given two cpos D and E, a function $f: D \rightarrow E$ is **continuous** if

- $\boldsymbol{\cdot}$ it is monotone, and
- \cdot it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0}d_n)=\bigsqcup_{n\geq 0}f(d_n)$$

Note: one direction is automatic.

A function f is strict if $f(\perp_D) = \perp_E$.

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp			$\mapsto \bot$
0	0	0	0	4	1

 $0 \ 0 \ 0 \ 0 \ 1 \ \dots \qquad \mapsto 1$

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \overline{0} \qquad \qquad \mapsto 0$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp				$\mapsto \bot$
0	0	0	0	1		$\mapsto 1$
0	0	0	0	0		\mapsto ?
0	0	0	0	0	$\overline{0}$	$\mapsto 0$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \to \mathbb{B}) \to \mathbb{B}$

0	0	\perp							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\bot	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\bot	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

Typical non-continuous function: "is a sequence the constant 0"? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\bot	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

Later in the course: **show** the thesis... by giving a denotational semantics.

LEAST FIXED POINTS KLEENE'S FIXED POINT THEOREM

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

 $\operatorname{fix}(f) = \bigsqcup_{n \ge 0} f^n(\bot).$

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

 $\operatorname{fix}(f) = \bigsqcup_{n \ge 0} f^n(\bot).$

It is thus also the **least fixed point** of f!

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

 $\operatorname{fix}(f) = \bigsqcup_{n \ge 0} f^n(\bot).$

It is thus also the **least fixed point** of f!

Claim: Lip^m(It is a least pre fixed point of f. $U_{n}g^{n}(L)$ p2(1) prefixed point $f(L_{m}f''(L)) = U_{m}f(f''(L))$ JJS(1)) λ⁽¹⁾ $= \lim_{n \to \infty} f^{n+1}(J)$ g(L) g(g(L)) 24(I) $= (I_{\star})^{\star}(1)$ J(L)

4 last projected points Aroune d' At g(a) 5 d $L = \int O(L)$ LTD $J(L) \models J(d) \models d$ $f^{(L)} \models d$ $g(p|L)) \equiv g(d), \equiv ol \qquad g^{n+1}(L) - p(g^n(L)) \equiv f(d) \equiv d$: by induction 1 (L) E d for all n thus $U_{n} q^{n}(\underline{I}) \subseteq d$

CONSTRUCTIONS ON DOMAINS

CONSTRUCTIONS ON DOMAINS

Flat domain on X

The flat domain on a set X is defined by:

- its underlying set $X \biguplus \{\bot\}$;
- $\cdot x \sqsubseteq x'$ if either $x = \bot$ or x = x'.

Let $f: X \rightarrow Y$ be a partial function between two sets. Then

$$egin{array}{rcl} F_{\perp}: & X_{\perp} &
ightarrow & Y_{\perp} \ & d & \mapsto & egin{cases} f(d) & ext{if } d \in X ext{ and } f ext{ is defined at } d \ & \perp & ext{if } d \in X ext{ and } f ext{ is not defined at } d \ & \perp & ext{if } d = \bot \end{array}$$

defines a strict continuous function between the corresponding flat domains.

CONSTRUCTIONS ON DOMAINS PRODUCTS OF DOMAINS

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

 $D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$

and partial order \sqsubseteq defined by

$$(d_1, d_2) \sqsubseteq (d_1', d_2') \stackrel{\mathrm{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \land d_2 \sqsubseteq_2 d_2'$$

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

 $D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$

and partial order \sqsubseteq defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \stackrel{ ext{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \wedge d_2 \sqsubseteq_2 d_2'$$

$$\underset{\mathsf{POX}}{\overset{} \underbrace{d_1 \sqsubseteq_1 d'_1 \quad d_2 \sqsubseteq_2 d'_2}} \underbrace{d_1 (d_1, d_2) \sqsubseteq (d'_1, d'_2)}$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

 $\forall n \cdot (d_{1,n}, d_{\epsilon,n}) \subseteq (d_{1,n}, d_{\epsilon})$ then the dr. n E dr. Undr. m I dr. Mm. dem Ide Un day Ide $(U_n d_{i_n}, U_n d_{i_n}) \leq (d_{i_n}, d_{i_n})$

lubs of chains are computed componentwise:

$$\bigsqcup_{n \ge 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \ge 0} d_{1,i}, \bigsqcup_{j \ge 0} d_{2,j}).$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) have least elements, so does $(D_1 \times D_2, \sqsupseteq)$ with $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$ lubs of chains are computed componentwise:

$$\bigsqcup_{n \ge 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \ge 0} d_{1,i}, \bigsqcup_{j \ge 0} d_{2,j}).$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) have least elements, so does $(D_1 \times D_2, \sqsupseteq)$ with $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$

Products of cpos (domains) are cpos (domains).

A function $f : (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e) \forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

A function $f : (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

UU J(dm, em) = C/U J(dm, en) = L/J(dm, en) $f(\bigcup(d_n,e_n)) = f(\bigcup(d_n,e_n))$ = { (Undm, Unem) = (1 f (dm, Uen) $= (I_m \bigcup_{i=1}^{n} f(d_m, c_m))$ - Und (dr, cn)

$$\max \frac{f \text{ monotone } x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x, y) \sqsubseteq f(x', y')}$$

$$f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right) = \bigsqcup_{m} \bigsqcup_{n} f(x_{m}, y_{n}) = \bigsqcup_{k} f(x_{k}, y_{k})$$

Let D_1 and D_2 be cpos. The **projections**

$$\begin{array}{rrrrr} \pi_1: & D_1 \times D_2 & \to & D_1 \\ & (d_1, d_2) & \mapsto & d_1 \end{array}$$

$$\begin{array}{rrrrr} \pi_2: & D_1 \times D_2 & \to & D_2 \\ & & (d_1, d_2) & \mapsto & d_2 \end{array}$$

are continuous functions.

Let D_1 and D_2 be cpos. The projections

are continuous functions.

If $f_1: D \to D_1$ and $f_2: D \to D_2$ are continuous functions from a cpo D, then the pairing function

$$\begin{array}{rccc} \langle f_1, f_2 \rangle : & D & \to & D_1 \times D_2 \\ & d & \mapsto & (f_1(d), f_2(d)) \end{array}$$

is continuous.

The **conditional** function

$$\begin{array}{rcl} \text{if} : & \mathbb{B}_{\perp} \times (D \times D) & \to & D \\ & & (x,d) & \mapsto & \begin{cases} \pi_1(d) & \text{if } x = \text{true} \\ \pi_2(d) & \text{if } x = \text{false} \\ \perp_D & \text{if } x = \perp \end{cases} \end{array}$$

is continuous.

Arssume (b_n, d_n) a chain in $B_1 \times (D \times D)$ dain in a flat domain : ultimately constant - by is ult. 2 > if (by, dy) is ultimately to 1)(1) 1) $if((\downarrow(b_n,d_n))=if(\bot,(J_n,d_n)=L_n)$ J-b_ is ult. the -> if (bm, dm) isa(dm)and no (ij (bm, dm)) = (1 tr, (dm) () (i) (von print) () (bn , dm) = () Th(dm) i) (U, th, dm) = i) (true () dm) = The (U, dm) = UTA(dm) = The (U, dm) = UTA(dm) Ibm is ult. folse - ...

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i\in I} X_i$

Two ways to see it:

• tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i \in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i \in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i \in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$. Projections (for any $i \in I$):

$$\pi_i : \left(\prod_{i \in I} X_i\right) \to X_i$$

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

• underlying set equal to $\prod_{i \in I} D_i$;

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p'_i.$$

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p'_i.$$

I-indexed products of cpos (domains) are cpos (domains), and projections are continuous.