
WHERE WE’RE AT

• The denotation of recursive definitions (e.g. loops) are fixed points: some 𝑤 such
that 𝐹(𝑤) = 𝑤 ;

• total functions are not a good fit, partial functions are better;
• there is some “information” order involved;
• we can compute fixed points by iterating 𝐹 on the least element ⊥ and taking a
“limit”.
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LEAST FIXED POINTS



LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

25



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.
REFL 𝑥 ⊑ 𝑥 TRANS

𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥𝑥 = 𝑦
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DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌
Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking

values in 𝑌 ;
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DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌
Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking

values in 𝑌 ;
Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. ifgraph(𝑓 ) ⊆ graph(𝑔).
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DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌
Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking

values in 𝑌 ;
Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. ifgraph(𝑓 ) ⊆ graph(𝑔).

Proof!
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MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).
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MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).
MON

𝑥 ⊑ 𝑦𝑓 (𝑥) ⊑ 𝑓 (𝑦)
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LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.
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LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.
If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆⊥𝑆 ⊑ 𝑥
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LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.
If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆⊥𝑆 ⊑ 𝑥 ASYM

LEAST
⊥′𝑆 ∈ 𝑆⊥𝑆 ⊑ ⊥′𝑆 LEAST

⊥𝑆 ∈ 𝑆⊥′𝑆 ⊑ ⊥𝑆⊥𝑆 = ⊥′𝑆
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FIXED POINT

A fixed point for a function 𝑓 : 𝐷 → 𝐷 is an element 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .
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(LEAST) PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .
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(LEAST) PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be writtenfix(𝑓 )
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(LEAST) PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be writtenfix(𝑓 )
It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑fix(𝑓 ) ⊑ 𝑑
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
The least pre-fixed point is a pre-fixed point.
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑fix(𝑓 ) ⊑ 𝑑

To prove fix(𝑓 ) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))𝑓 (fix(𝑓 )) = fix(𝑓 )
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))𝑓 (fix(𝑓 )) = fix(𝑓 )
31



LEAST FIXED POINTS
LEAST UPPER BOUNDS



LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … , written⨆𝑛≥0 𝑑𝑛 , satisfies the two following properties:

LUB-BOUND 𝑥𝑖 ⊑ ⨆𝑛≥0 𝑥𝑛 LUB-LEAST
∀𝑛 ≥ 0 . 𝑥𝑛 ⊑ 𝑥⨆𝑛≥0 𝑥𝑛 ⊑ 𝑥
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LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ … , written⨆𝑛≥0 𝑑𝑛 , satisfies the two following properties:

LUB-BOUND 𝑥𝑖 ⊑ ⨆𝑛≥0 𝑥𝑛 LUB-LEAST
∀𝑛 ≥ 0 . 𝑥𝑛 ⊑ 𝑥⨆𝑛≥0 𝑥𝑛 ⊑ 𝑥

• Other names: supremum, limit…
• Might write simply ⨆𝑛 𝑑𝑛 or even ⨆ 𝑑𝑛
• Only lubs of chains – but can be generalized
• ⨆𝑖≥0 𝑑𝑖 need not be one of the 𝑑𝑖 – this is the interesting case!
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PROPERTIES OF LUBS

Lubs are unique.
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .
LUB-MON

∀𝑖. 𝑑𝑖 ⊑ 𝑒𝑖⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .
For any 𝑑 , ⨆𝑛 𝑑 = 𝑑 .
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 .
For any 𝑑 , ⨆𝑛 𝑑 = 𝑑 .
For any chain and 𝑁 ∈ ℕ, ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 .
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PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for all 𝑛 ∈ ℕ. 𝑑𝑛 ⊑ 𝑒𝑛 , then ⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛 (if they exist).

For any 𝑑 , ⨆𝑛 𝑑 = 𝑑 (and in particular it exists).

For any chain and 𝑁 ∈ ℕ, ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑁 (if any of the two exists).
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DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ .
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DIAGONALISATION

Assume 𝑑𝑚,𝑛 ∈ 𝐷 (𝑚, 𝑛 ≥ 0) satisfies𝑚 ≤ 𝑚′ ∧ 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛′ . (†)

Then, assuming they exist, the lubs form two chains⨆𝑛≥0 𝑑0,𝑛 ⊑ ⨆𝑛≥0 𝑑1,𝑛 ⊑ ⨆𝑛≥0 𝑑2,𝑛 ⊑ …
and ⨆𝑚≥0 𝑑𝑚,0 ⊑ ⨆𝑚≥0 𝑑𝑚,1 ⊑ ⨆𝑚≥0 𝑑𝑚,2 ⊑ …
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and ⨆𝑚≥0 𝑑𝑚,0 ⊑ ⨆𝑚≥0 𝑑𝑚,1 ⊑ ⨆𝑚≥0 𝑑𝑚,2 ⊑ …
Moreover, again assuming the lubs of these chains exist,⨆𝑚≥0 (⨆𝑛≥0 𝑑𝑚,𝑛) = ⨆𝑘≥0 𝑑𝑘,𝑘 = ⨆𝑛≥0 (⨆𝑚≥0 𝑑𝑚,𝑛) .
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LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (𝐷, ⊑) in which all chains have least upper
bounds.

Beware: the lub need only exist if the 𝑥𝑖 form a chain!

A domain is a cpo with a least element ⊥.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise
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DOMAIN OF PARTIAL FUNCTIONS

Least element: ⊥ is the totally undefined function.

Lub of a chain: 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … has lub 𝑓 such that𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Beware: the definition of ⨆𝑛≥0 𝑓𝑛 is unambiguous only if the 𝑓𝑖 form a chain!
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FINITE CPOS

Finite posets are always domains – why?
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FINITE CPOS

Finite posets are always domains – why?

Are they always cpos?
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FINITE CPOS

Finite posets are always domains – why?

Are they always cpos? •• •← ←
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THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯⊥←←← ⋯ ←← ⋯
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VERTICAL NATURAL NUMBERS

𝑛 + 1𝑛10
←←←

No! (Why?)
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VERTICAL NATURAL NUMBERS

𝜔𝑛 + 1𝑛10
←←←←

Yes!

39



VERTICAL NATURAL NUMBERS 𝜔1 𝜔2⋮𝑛 + 1𝑛10
←← ← ←← ←←←

No! (Why?)

39


