• The denotation of recursive definitions (*e.g.* loops) are **fixed points**: some w such that F(w) = w;

- The denotation of recursive definitions (*e.g.* loops) are fixed points: some w such that F(w) = w;
- total functions are not a good fit, partial functions are better;

- The denotation of recursive definitions (*e.g.* loops) are fixed points: some w such that F(w) = w;
- total functions are not a good fit, partial functions are better;
- there is some "information" order involved;

- The denotation of recursive definitions (*e.g.* loops) are fixed points: some w such that F(w) = w;
- total functions are not a good fit, partial functions are better;
- there is some "information" order involved;
- we can compute fixed points by iterating F on the least element \bot and taking a "limit".

LEAST FIXED POINTS

Least Fixed Points

POSETS AND MONOTONE FUNCTIONS

A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ antisymmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$ A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ antisymmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

REFL
$$\frac{x \sqsubseteq y}{x \sqsubseteq x}$$
 TRANS $\frac{x \sqsubseteq y}{x \sqsubseteq z}$ $x \sqsubseteq y \qquad y \sqsubseteq x}{x \sqsubseteq y}$ ASYM $\frac{x \sqsubseteq y}{x = y}$

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y: **Order:** $f \sqsubseteq g$ if dom $(f) \subseteq$ dom(g) and $\forall x \in$ dom(f). f(x) = g(x), *i.e.* if $\operatorname{graph}(f) \subseteq \operatorname{graph}(g)$. Refl: f ⊑ f : don(f) ≤ dom(p) and ... Trano: f ⊑ g ⊑ h: don(f) ≤ dom(g) ≤ dom(k) xEdom(g) fGe) = a(Ge) = h(a) for (s) = den(g) = n(a) and $\forall x \in den(g)$. $for (s) = den(g) \leq den(f)$ and $f(G_{-}) = \varsigma(G_{-})$. Agym: 15951

26

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Order: $f \sqsubseteq g$ if dom $(f) \subseteq$ dom(g) and $\forall x \in$ dom(f). f(x) = g(x), *i.e.* if graph $(f) \subseteq$ graph(g).

Proof!

A function $f: D \rightarrow E$ between posets is monotone if

 $\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$

A function $f: D \rightarrow E$ between posets is **monotone** if

$$\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

$$Mon \ \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$

LEAST FIXED POINTS LEAST ELEMENTS AND PRE-FIXED POINTS

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

An element $d \in S$ is the **least** element of S if it satisfies

$\forall x \in S. \ d \sqsubseteq x.$

If it exists, it is unique , and is written \perp_S , or simply \perp .

$$LEAST \frac{x \in S}{\perp_S \sqsubseteq x}$$

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

If it exists, it is unique , and is written \perp_S , or simply \perp .

$$\underset{\text{LEAST}}{\text{LEAST}} \frac{x \in S}{\perp_{S} \sqsubseteq x} \qquad \qquad \underset{\text{ASYM}}{\text{ASYM}} \frac{\underset{L_{S} \sqsubseteq \perp'_{S}}{\perp_{S} \sqsubseteq \perp'_{S}}}{\underset{L_{S} = \perp'_{S}}{\text{LEAST}} \frac{\underset{L_{S} \in S}{\perp_{S} \sqsubseteq \perp_{S}}}{\underset{L_{S} = \perp'_{S}}{\text{LEAST}}$$

A fixed point for a function $f: D \to D$ is an element $d \in D$ satisfying f(d) = d.

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

fix(f)

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

C(1) ____

 $^{\text{LFP-FIX}} \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$

The least pre-fixed point is a pre-fixed point.

To prove $\operatorname{fix}(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

Application: least pre-fixed points of monotone functions are (least) fixed points.

PROOFS WITH LEAST FIXED POINTS

$$\lim_{L \in \mathcal{P}^{-} \mathsf{FIX}} \frac{f(d) \sqsubseteq d}{f(\mathsf{fix}(f)) \sqsubseteq \mathsf{fix}(f)} \xrightarrow{L \in \mathcal{P}^{-} \mathsf{LEAST}} \frac{f(d) \sqsubseteq d}{\mathsf{fix}(f) \sqsubseteq d}$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$ASYM \xrightarrow{\text{LFP-FIX}} \frac{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)} \xrightarrow{\text{LFP-LEAST}} \frac{\frac{\text{MON}}{f(f(\text{fix}(f))) \sqsubseteq f(\text{fix}(f))}}{f(f(\text{fix}(f)))} \xrightarrow{f(\text{fix}(f))}{f(f(\text{fix}(f)))}$$

LEAST FIXED POINTS LEAST UPPER BOUNDS

LEAST UPPER BOUND OF A CHAIN

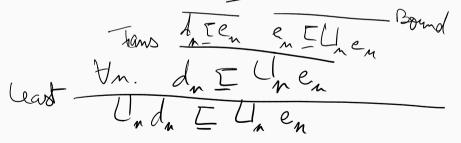
The **least upper bound** of countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$, written $\bigsqcup_{n>0} d_n$, satisfies the two following properties:

LEAST UPPER BOUND OF A CHAIN

The **least upper bound** of countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$, written $\bigsqcup_{n>0} d_n$, satisfies the two following properties:

- Other names: supremum, limit...
- Might write simply $\bigsqcup_n d_n$ or even $\bigsqcup d_n$
- Only lubs of chains but can be generalized
- $\cdot \bigsqcup_{i \ge 0} d_i$ need not be one of the d_i this is the interesting case!

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.



Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\text{LUB-MON} \frac{\forall i. \ d_i \sqsubseteq e_i}{\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n}$$

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$. For any $d, \bigsqcup_n d = d$. For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$. For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$. $d_n \sqsubseteq d_n \sqsubset d_n = \bigsqcup_n d_{n+N}$. $d_n \sqsubseteq d_n \sqsubset d_n = \bigsqcup_n d_{n+N}$. $d_n \sqsubseteq d_n \sqsubset d_n = \bigsqcup_n d_{n+N}$. $d_n \bigtriangleup d_n \sqsubseteq d_n \land d_n = \bigsqcup_n d_{n+N}$. Lubs are unique (if they exist).

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$ (if they exist).

For any d, $\bigsqcup_n d = d$ (and in particular it exists).

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$ (if any of the two exists).

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \leq m' \wedge n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(+)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(+)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m \ge 0} \left(\bigsqcup_{n \ge 0} d_{m,n} \right) = \bigsqcup_{k \ge 0} d_{k,k} = \bigsqcup_{n \ge 0} \left(\bigsqcup_{m \ge 0} d_{m,n} \right)$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(+)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m \ge 0} \left(\bigsqcup_{n \ge 0} d_{m,n} \right) = \bigsqcup_{k \ge 0} d_{k,k} = \bigsqcup_{n \ge 0} \left(\bigsqcup_{m \ge 0} d_{m,n} \right)$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(+)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

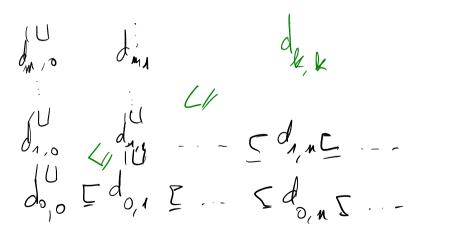
and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m \ge 0} \left(\bigsqcup_{n \ge 0} d_{m,n} \right) = \bigsqcup_{k \ge 0} d_{k,k} = \bigsqcup_{n \ge 0} \left(\bigsqcup_{m \ge 0} d_{m,n} \right)$$

Undama E Undama



Least Fixed Points

COMPLETE PARTIAL ORDERS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

A **domain** is a cpo with a least element \perp .

Least element: \perp is the totally undefined function.

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Beware: the definition of $\bigsqcup_{n\geq 0} f_n$ is unambiguous only if the f_i form a chain!

FINITE CPOS

 $e_i = k_0 \leq d_0 \leq \dots \leq d_1 \leq d_1 \dots \leq d_n \leq d_n \dots$ Finite posets are always domains - why? $Ue_i = Lle_{i+N} = U_i k_n = d_n$

are Finite posets are always domains – why?

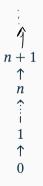
Are they always cpos?

Finite posets are always domains – why?

Are they always cpos?

The flat natural numbers \mathbb{N}_+

VERTICAL NATURAL NUMBERS

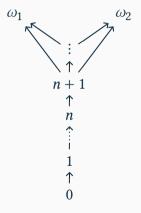


No! (Why?)

VERTICAL NATURAL NUMBERS

Yes!

VERTICAL NATURAL NUMBERS



No! (Why?)