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WHERE WE'RE AT

- The denotation of recursive definitions (e.g. loops) are fixed points: some w such
that F(w) = w;

- total functions are not a good fit, partial functions are better;

- there is some “information” order involved:;

- we can compute fixed points by iterating F on the least element L and taking a
“limit”,
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PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is

reflexive: Vd € D. d C d
transitive: Vd,d’,d” € D.dCd’ Cd” =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.
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PARTIALLY ORDERED SET

A partial order on a set D is a binary relation C that is
reflexive: vd € D.d C d

transitive: Vd,d’,d” € D.dCd’' Cd” =dCd”
antisymmetric: Vd,d’ € D.dCd’'Cd=d=d’.

Cy c
REFL TRANS ASYM
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY:
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom(f) C X and taking
valuesinY:

order: f C g if dom(f) C dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).
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DOMAIN OF PARTIAL FUNCTIONS X — Y

Underlying set: partial functions f with domain of definition dom( f) € X and taking
valuesinY:

order: f C g ifdom(f) € dom(g) and Vx € dom(f). f(x) = g(x), i.e. if
graph(f) < graph(g).

Proof!
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dCd’ = f(d)C f(d").
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MONOTONICITY

A function f: D — E between posets is monotone if

vd,d’ € D.dCd’ = f(d)C f(d").

xLCy
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LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique, and is written Lg, or simply L.
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LEAST ELEMENT

An element d € S is the least element of S if it satisfies

vx €S.dC x.

If it exists, it is unique, and is written Lg, or simply L.

15€S 1lgs€S
LEAST ———— LEAST ————
1gE 15 15C 1g
x€eS ASYM
LEAST lg =15

lsEx
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FIXED POINT

A fixed point for a function f: D — Dis an elementd € D satisfying f(d) = d.
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(LEAST) PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.
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(LEAST) PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)
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(LEAST) PRE-FIXED POINT

An element d € D is a pre-fixed point of f if it satisfies f(d) C d.

The least pre-fixed point of f if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

fd)cd
LFP-FIX LFP-LEAST

FCEXC)) C fix(f) fix(f) Cd
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PROOFS WITH LEAST FIXED POINTS

LFP-FIX

f(fix(f)) C fix(f)

The least pre-fixed point is a pre-fixed point.
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PROOFS WITH LEAST FIXED POINTS

fd)cd

LFP-FIX LFP-LEAST

FEx() € i) fix(f) C d
To prove fix(f) C d, it is enough to show f(d) C d.
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PROOFS WITH LEAST FIXED POINTS

f(d)Ed

LFP-FIX LFP-LEAST

FEx() T Fix(f) fix(f) Cd

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-F

" FEix(P) C fix(f) Fix(f) C f(ix(f))
F(Eix(f)) = fix(f)

ASYM
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PROOFS WITH LEAST FIXED POINTS

>&aa(4\b-\ N x 4'/ 51 i
MW“J*\;;‘* > b\mMmﬁ( > fldcd

/ LFP-FIX LFP-LEAST

FEx() T Fix(f) fix(f) Cd

Application: least pre-fixed points of monotone functions are (least) fixed points.

LFP-FIX

T () ()
PG T fEx(f)
CRER(C R o fix(f) € fEix(f)
FEix(F)) = fix(f)

LFP-F

ASYM

31



LEAST FIXED POINTS
LEAST UPPER BOUNDS



LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chainsdy C d; C dy C ..., written
|_|n20 d,,, satisfies the two following properties:

Vvn>0.x,Cx

L] [Jec>

n=>0 n>0

LUB-BOUND LUB-LEAST
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LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chainsdy C d; C dy C ..., written
|_|n20 d,,, satisfies the two following properties:

Vvn>0.x,Cx
LUB-BOUND ——— LUB-LEAST

L] [Jec>

n=>0 n>0

- Other names: supremum, limit...

- Might write simply |_|,, d,, or even | |d,

- Only lubs of chains - but can be generalized

* |li>o @ need not be one of the d; - this is the interesting case!
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PROPERTIES OF LUBS

Lubs are unique.
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PROPERTIES OF LUBS
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Lubs are monotone: if for alln € N. d, E e,, then | |, d, T | |, en.
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for alln € N. d, E e,, then| |, d, T | |, ep.

Vi. di C €

|_|dn cC |_|en
n n

LUB-MON
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PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for alln € N. d, E e,, then | |, d, T | |, en.

Foranyd, | |,d=d.
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PROPERTIES OF LUBS

dtbfolf - ‘D\)q e an/,h

Lubs are unique.

Lubs are monotone: if for alln € N. d, E e,, then | |, d, T | |, en.

Foranyd, | |,d=d. v”‘ Cﬁ gjhrd ¥ aﬁ

Forany chainand N € N, | |, d, = | |, dpinN. N “m
4 = U




PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for alln € N. dy, C ey, then | |, d, E|_|, e, (if they exist).

Foranyd, | |, d = d (and in particular it exists).

For any chain and N € N, | |, d, = ||, ds+n (if any of the two exists).
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies

m<m'an<n’ = dy, Cdy,y.
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m'an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0sn = |_|d1,n C |_|d2,n [

n=0 n>0 n>0

|_|dm>0 = |_|dm,1 C |_|dm,2 E oo

m>0 m>0 m>0

and
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Then, assuming they exist, the lubs form two chains

|_|d0sn = |_|d1,n C |_|d2,n [

n>0 n>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,z C ..
m>0 m>0 m>0

Moreover, again assuming the lubs of these chains exist,

LI dmn ) = | e = ]| [ ] dmn

m>0 \n>0 k>0 n>0 \m>0
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DIAGONALISATION

Assume dp, , € D (m,n > 0) satisfies
m<m'an<n’ = dy, Cdy,y. (1)

Then, assuming they exist, the lubs form two chains

|_|d0sn = |_|d1,n C |_|d2,n [

n>0 n>0 n>0
and
|_| dm,O C |_| dm,l C |_| dm,z C ..
m>0 m>0 m>0

Moreover, again assuming the lubs of these chains exist,

LI dmn ) = | e = ]| [ ] dmn

m>0 \n>0 k>0 n>0 \m>0
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LEAST FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, E) in which all chains have least upper
bounds.
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, E) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!
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CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, E) in which all chains have least upper
bounds.

Beware: the lub need only exist if the x; form a chain!

A domain is a cpo with a least element L.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy E f; E f, £ ... has lub f such that

fn() if x € dom( f,) for some n
undefined otherwise

fx) =
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DOMAIN OF PARTIAL FUNCTIONS

Least element: L is the totally undefined function.

Lub of a chain: fy E f; E f, £ ... has lub f such that

fn() if x € dom( f,) for some n
undefined otherwise

fx) =

Beware: the definition of |_|,5¢ f; is unambiguous only if the f; form a chain!
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FINITE CPOS

Finite posets are always doma#s — why?
s A

Are they always cpos?
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FINITE CPOS

Finite posets are always domains — why?

denonn~

Are they always cpes?

N
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THE FLAT NATURAL NUMBERS D\IJ_
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VERTICAL NATURAL NUMBERS

No! (Why?)

DI+ S

(=) =) [ =0
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VERTICAL NATURAL NUMBERS
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Yes!
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VERTICAL NATURAL NUMBERS

No! (Why?)
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