Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type $\tau, t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PcF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \Downarrow_{\gamma} v$. Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type τ , $t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for γ = bool or nat, if $t \in \mathsf{PCF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \Downarrow_{\gamma} v$. Full Abstraction: $t_1 \cong_{\mathrm{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$

FULL ABSTRACTION

BEYOND FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- · Contexts are too weak: they do not distinguish enough programs?
- The model does not adequately capture PCF?

PcF+por

... POR
$$\frac{\Gamma \vdash t_1 : \mathcal{P} \quad \Gamma \vdash t_2 : \mathcal{P}}{\Gamma \vdash \mathsf{por}(t_1, t_2) : \mathcal{P} \mid_{\mathcal{O}} \quad \mathcal{O}}$$

 $t \Downarrow_{\tau} v$

If we extend the semantics of PCF to PCF+por with

 $[\![\texttt{por}]\!] = \text{por}$

the resulting denotational semantics is fully abstract.

If we extend the semantics of PCF to PCF+**por** with

 $[\![\texttt{por}]\!] = \text{por}$

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

```
let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in
let _ = f (fun x -> incr r ; x) in
!r
;;
print int (taste (fun f -> f true)) (* 1 *) ;;
```

```
print_int (taste (fun f -> (f true) && (f true))) (* 2 *)
```

```
let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in
let _ = f (fun x -> incr r ; x) in
!r
;;
print_int (taste (fun f -> f true)) (* 1 *) ;;
print_int (taste (fun f -> (f true) && (f true))) (* 2 *)
```

With more contexts, you can distinguish more programs

If you add effects (references, control flow...) to a language, you can **distinguish more programs**

If you add effects (references, control flow...) to a language, you can **distinguish more programs**

Full abstraction becomes different: somewhat easier...

If you add effects (references, control flow...) to a language, you can **distinguish more programs**

Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable notion? \cdot dI-domains & stable functions \rightarrow no por any more, but still not fully abstract...

 \cdot dI-domains & stable functions \rightarrow no por any more, but still not fully abstract...

• only proper answers in the late 90s (!): logical relations and game semantics

PCF bool:

- \cdot variables, \rightarrow , application
- \cdot true, false, if
- \cdot a primitive undefined raise:bool

Extremely simple

PCF bool:

- \cdot variables, \rightarrow , application
- \cdot true, false, if
- \cdot a primitive undefined raise:bool

Extremely simple

Yet, definability and contextual equivalence are undecidable...

WHERE TO GO FROM HERE?

Source of a very rich literature:

- linear logic
- logical relations
- \cdot game semantics
- bisimulations techniques

• ...

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

Example:

- 1. λ -calculus \rightarrow cartesian closed categories
- 2. domains and continuous functions are a CCC

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

Example:

- 1. λ -calculus \rightarrow cartesian closed categories
- 2. domains and continuous functions are a CCC

Interpret:

- \cdot a type au as an object in a category;
- a term $\Gamma \vdash t : \tau$ as a morphism/arrow $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$.

It is a fixed point equation! We can use domain theory to solve it.

Modelled as a monad *T* (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Modelled as a monad T (example:
$$T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$$

Denotation of a computation: $[\Gamma] \to T([\tau])$
 $T(A) = E + A$
 $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$

127

Modelled as a monad *T* (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $\llbracket \Gamma \rrbracket \to T(\llbracket \tau \rrbracket)$

And more: adjunctions, effect handlers...

Easter: axiomatic semantic (Hoare Logic and Model Checking)

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the **interaction** between different approaches.