WHERE WE'RE AT

Compositionality: [t] = [¢'] = [c[t]] = [c[t’]]. v
Soundness: forany type,t |, v = [t] = [v]. ‘/

Adequacy: for y = bool or nat, ift € PcF, and [t] = [v] thent U), V. ‘/

WHERE WE'RE AT

Compositionality: [t] = [¢'] = [c[t]] = [c[t’]]. v
Soundness: forany type,t |, v = [t] = [v]. ‘/
Adequacy: for y = bool or nat, ift € PcF, and [t] = [v] thent U), V. ‘/

Full Abstraction: t; =y by : 7 = [t1] = [t2] € [7]

FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- Contexts are too weak: they do not distinguish enough programs?
- The model does not adequately capture PCF?

117

best

T it r [l) 7

POR
I+ por(y,tp) /45@]
t; Upoor true ty Upoor true
PORL PORR
por(ty,tz) Upoor true por(ty,tz) Upoor true

t; Upoor false ty lpoor false

PORF
por(ty,ty) Upoor false

118

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PcF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract.

119

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PcF to PCF+por with
[por] = por

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

119

STRONGER CONTEXTS

let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in

let _ = f (fun x -> incr r ; x) in

I'r

print_int (taste (fun f -> f true)) (% 1 *) ;;
print_int (taste (fun f -> (f true) && (f true))) (% 2 *)

120

STRONGER CONTEXTS

let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in

let _ = f (fun x -> incr r ; x) in

I'r

print_int (taste (fun f -> f true)) (% 1 *) ;;
print_int (taste (fun f -> (f true) && (f true))) (% 2 *)

With more contexts, you can distinguish more programs

120

REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can
distinguish more programs

121

REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier...

121

REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier...
but is contextual equivalence still a reasonable notion?

121

FULLY ABSTRACT SEMANTICS

- dl-domains & stable functions — no por any more, but still not fully abstract...

122

FULLY ABSTRACT SEMANTICS

- dl-domains & stable functions — no por any more, but still not fully abstract...

- only proper answers in the late 90s (!): logical relations and game semantics

122

LOADER’S UNDECIDABILITY RESULT

PcF bool:

- variables, —, application
- true, false, if
- a primitive undefined raise : bool

Extremely simple

123

LOADER’S UNDECIDABILITY RESULT

PcF bool:

- variables, —, application
- true, false, if
- a primitive undefined raise : bool

Extremely simple

Yet, definability and contextual equivalence are undecidable...

123

WHERE TO GO FROM HERE?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic

- logical relations

- game semantics

- bisimulations techniques

124

CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)

2. how to construct this structure in particular examples (specific)

125

CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)

2. how to construct this structure in particular examples (specific)
Example:

1. A-calculus — cartesian closed categories
2. domains and continuous functions are a CCC

125

CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)

2. how to construct this structure in particular examples (specific)
Example:

1. A-calculus — cartesian closed categories

2. domains and continuous functions are a CCC
Interpret:

- a type T as an object in a category;

catermI' =t : 7 as a morphism/arrow [t] : [T — [z].

125

DOMAIN THEORY FOR ABSTRACT DATATYPES

(1
OCaml's ADT: 1“% - s q Q’i’/\@@ x (%ﬁ%

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

It is a fixed point equation! We can use domain theory to solve it.

126

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

127

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad T (example: T(A) o (A x State)State)

127

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad T (example: T(A) & (A x State)State))

7 @@m L TPk

Denotation of a computation: [I'] — T([z]) EJ”(} < Sh«fﬁ _ qT.RKS (3.5‘&-
(py = TR

127

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad T (example: T(A) o (A x State)State)
Denotation of a computation: [I] — T([z])

And more: adjunctions, effect handlers...

127

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

128

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

128

