
WHERE WE’RE AT

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✓

Full Abstraction: 𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒
q𝑡1y = q𝑡2y ∈ J𝜏 K !!

1



WHERE WE’RE AT

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✓

Full Abstraction: 𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒
q𝑡1y = q𝑡2y ∈ J𝜏 K !!

1



FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE



INTERPRETING FULL ABSTRACTION FAILURE

• PCF is not expressive enough to present the model?
• Contexts are too weak: they do not distinguish enough programs?
• The model does not adequately capture PCF?

117



PCF+porΓ ⊢ 𝑡 : 𝜏 … POR
Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏Γ ⊢ por(𝑡1, 𝑡2) : 𝜏𝑡 ⇓𝜏 𝑣

PORL
𝑡1 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true PORR
𝑡2 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true
PORF

𝑡1 ⇓bool false 𝑡2 ⇓bool false
por(𝑡1, 𝑡2) ⇓bool false

118



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

�por� = por
the resulting denotational semantics is fully abstract.

119



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

�por� = por
the resulting denotational semantics is fully abstract…

but is PCF+por still a reasonable model of programming language?

119



STRONGER CONTEXTS

let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in
let _ = f (fun x -> incr r ; x) in
!r
;;

print_int (taste (fun f -> f true)) (* 1 *) ;;
print_int (taste (fun f -> (f true) && (f true))) (* 2 *)

120



STRONGER CONTEXTS

let taste (f : (bool -> bool) -> bool) : int =
let r = ref 0 in
let _ = f (fun x -> incr r ; x) in
!r
;;

print_int (taste (fun f -> f true)) (* 1 *) ;;
print_int (taste (fun f -> (f true) && (f true))) (* 2 *)

With more contexts, you can distinguish more programs

120



REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow…) to a language, you can
distinguish more programs

121



REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow…) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier…

121



REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow…) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier…
but is contextual equivalence still a reasonable notion?

121



FULLY ABSTRACT SEMANTICS

• dI-domains & stable functions → no por any more, but still not fully abstract…

122



FULLY ABSTRACT SEMANTICS

• dI-domains & stable functions → no por any more, but still not fully abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

122



LOADER’S UNDECIDABILITY RESULT

PCF bool:

• variables, ⇀, application
• true, false, if
• a primitive undefined raise : bool

Extremely simple

123



LOADER’S UNDECIDABILITY RESULT

PCF bool:

• variables, ⇀, application
• true, false, if
• a primitive undefined raise : bool

Extremely simple

Yet, definability and contextual equivalence are undecidable…

123



WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

• linear logic
• logical relations
• game semantics
• bisimulations techniques
• …

124



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

125



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. λ-calculus → cartesian closed categories
2. domains and continuous functions are a CCC

125



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. λ-calculus → cartesian closed categories
2. domains and continuous functions are a CCC

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow �𝑡� : �Γ� → �𝜏 �.

125



DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml’s ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

It is a fixed point equation! We can use domain theory to solve it.

126



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

127



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

127



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)
Denotation of a computation: �Γ� → 𝑇(�𝜏 �)

127



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)
Denotation of a computation: �Γ� → 𝑇(�𝜏 �)
And more: adjunctions, effect handlers…

127



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

128



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

128


