DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part Il CST 2024/2025

PRACTICALITIES

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!

- Course notes will be updated, keep an eye on the course webpage.

mailto:mgapb2@cam.ac.uk

INTRODUCTION

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

- Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

- Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

- Programming language semantics: what is the (mathematical) meaning of a
program?

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning

for/about programming languages.
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

- Insight: exposes the mathematical “essence” of programming language ideas.

- Insight: exposes the mathematical “essence” of programming language ideas.

- Documentation: precise but intuitive, machine-independent specification.

- Insight: exposes the mathematical “essence” of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.

- Language design: feedback from semantics (functional programming, monads &
handlers, linearity...).

- Insight: exposes the mathematical “essence” of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.

- Language design: feedback from semantics (functional programming, monads &
handlers, linearity...).

- Rigour: powerful way to justify formal methods.

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: meaning of a program in terms of a program logic to reason about it (see
Part Il Hoare Logic & Model Checking).

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: meaning of a program in terms of a program logic to reason about it (see
Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL

-1 .
Syntax —> Semantics
Program P +— Denotation [P]

Number
Boolean function
Partial recursive function

Arithmetic expression
Boolean circuit
Recursive program

J 11

DENOTATIONAL SEMANTICS IN A NUTSHELL

_1])
Syntax —> Semantics
Program P +— Denotation [P]

Arithmetic expression = Number
Boolean circuit + Boolean function
Recursive program +— Partial recursive function
Type +— Domain
Program +— Continuous functions between domains

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction
- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;

- should relate to practical implementations, though...

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction
- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;

- should relate to practical implementations, though...

Compositionality
- The denotation of a whole is defined using the denotation of its parts;
- [P] represents the contribution of P to any program containing P;
- More flexible and expressive than whole-program semantics.

INTRODUCTION
A BASIC EXAMPLE

IMP SYNTAX

C € Prog == skip | L:= A|C;C | if B then C else C |while Bdo C

IMP SYNTAX

K ranges over a set L of [ocations

C € Prog == skip | L:= A|C;C | if B then C else C |while Bdo C

IMP SYNTAX

]Arith metic expressions‘

AcAexp:=n|L|A+A]|..

C € Prog == skip | L:= A|C;C | if B then C else C |while Bdo C

IMP SYNTAX

ranges over integers

]Arith metic expressions‘

AcAexp:=n|L|A+A]|..

C € Prog == skip | L:= A|C;C | if B then C else C |while Bdo C

IMP SYNTAX

]Arith metic expressions‘

AcAexp:=n|L|A+A]|..

|Boolean expressions|

B € Bexp := true | false | A= A|-B] ...

C € Prog == skip | L:= A|C;C | if B then C else C |while Bdo C

DENOTATION FUNCTIONS — NAIVELY

A: Aexp = 7

where

Z = {.,-1,0,1,..}

DENOTATION FUNCTIONS — NAIVELY

A: Aexp = 7
B: Bexp — B
where
Z = {.,-1,0,1,..}
B = {true,false}

ARITHMETIC EXPRESSIONS?

A[[Q]] = n

AlAr+4;] = AlAL +A[4,]

ARITHMETIC EXPRESSIONS?

A[[Q]] = n

AlAr+4;] = AlAL +A[4,]

AIL] 222

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

1

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

A : Aexp — (State — Z)
B : Bexp — (State — B)

where

Z=4.,-1,0,1,.}
B = {true, false}.

1

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

A : Aexp — (State — Z)
B : Bexp — (State — B)
C : Prog — (State — State)

where

Z=4.,-1,0,1,.}
B = {true, false}.

1

SEMANTICS OF ARITHMETIC EXPRESSIONS

A[[Q]] = As € State.n

A[[Al + Az]] As € State. .A[[Al]] (S) + A[[Az]] (S)

SEMANTICS OF ARITHMETIC EXPRESSIONS

A[[n]] = JAs € State.n

A[[Al + Az]] As € State. .A[[Al]] (S) + A[[Az]] (S)

A[L] As € State. s(L)

SEMANTICS OF BOOLEAN EXPRESSIONS

Bltrue]
B[false]

B[A; = Ay]

As € State. true
As € State. false

As € State. eq (A[A{] (s), A[A3] (s))
true ifa=a

where eq(a,a”) = { false ifa+#ad’

SEMANTICS OF PROGRAMS

C[skip] = As € State.s

14

SEMANTICS OF PROGRAMS

As € State. s

Clskip]

c[if B then C else C’] As € State. if (B[B] (s),C[C] (s),c[C’] (s))

' , x ifb=true
where lf(b, X, X) = { x' ifb = false

14

SEMANTICS OF PROGRAMS

As € State. s

Clskip] This is compositionality!

c[if B then C else C’] As € State. if (B[B] (s),CI[C] (s),c[C’] (s))

' , x ifb=true
where lf(b, X, X) = { x' ifb = false

14

SEMANTICS OF PROGRAMS

Clskip]

c[if B then C else C’]

C[L := A]

As € State. s

As € State. if (B[B] (s),C[C] (s),c[C’] (s))

' , x ifb=true
where lf(b, X, X) = { x' ifb = false

As € State. s|[L — A[A] (s)]

n ifL’ =L
where s[L = n](L") = { s(L) otherwise

14

SEMANTICS OF PROGRAMS

Clskip]

c[if B then C else C’]

C[L := A]

c[c;C’]

As € State. s

As € State. if (B[B] (s),C[C] (s),c[C’] (s))

' , x ifb=true
where lf(b, X, X) = { x' ifb = false

As € State. s|[L — A[A] (s)]

n ifL’ =L
where s[L = n](L") = { s(L) otherwise

c[c’] - clcl
As € State. c[C’] (¢[C] (s))

14

INTRODUCTION
A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

SEMANTICS OF LOOPS?

This is all very nice, but...

[while B do C] = ???

Remember:

- (while Bdo C,s) ~» (if B then (C;while Bdo C) else skip,s)
- we want a compositional semantic: [while B do C] in terms of [C] and [B]

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B], [while B do C] » [C] (s), s)

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if([B], [while B do C] » [C] (s), s)

Not a direct definition for [while B do C]... But a fixed point equation!

[while B do C] = Fipj cy([while B do C])

where F,.: (State — State) — (State — State)
w — As € State. if(b(s), w ° c(s), 5).

NOwW WE HAVE A GOAL

- Why/when does w = Fb,c(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ?

INTRODUCTION
A TASTE OF DOMAIN THEORY

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations (f € Z — Z):

fx)=f(x)+1 (1)
flx) = f(x) (2)

What about their fixed points?

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations (f € Z — Z):

fx)=f(x)+1 (1)
flx) = f(x) (2)

What about their fixed points?

- No function satisfies Eq. (1)!
- All functions satisfy Eq. (2)!

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

19

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: partial functions f € Z — 7

19

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: partial functions f € Z — Z

fG) =) +1

has a unique solution: the nowhere-defined function L

19

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: partial functions f € Z — Z

f)=f)+1
has a unique solution: the nowhere-defined function L
But
fx) = f(x)

Has even more solutions now...

19

AN ORDER ON PARTIAL FUNCTIONS

Partial order on Z — Z:

wEw if foralls€ Z, ifwisdefined atssoisw’ and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

20

AN ORDER ON PARTIAL FUNCTIONS

Partial order on Z — Z:

wEw if foralls€ Z, ifwisdefined atssoisw’ and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € Z — Z:
1 = totally undefined partial function

20

AN ORDER ON PARTIAL FUNCTIONS

Partial order on Z — Z:

wEw if foralls€ Z, ifwisdefined atssoisw’ and moreover w(s) = w’(s).
if the graph of wis included in the graph of w’.

Least element L € Z — Z:
1 = totally undefined partial function

1 is the least solution to f(x) = f(x), making it “canonical”.

20

BACK TO LOOPS

C : Prog — (State — State)

21

BACK TO LOOPS

C : Prog — (State — State)

[while X >0do (Y :=X*Y; X := X —-1)]

21

BACK TO LOOPS

C : Prog — (State — State)

[while X >0do (Y :=X*Y; X := X —-1)]

should be some w such that:

W = Fxs0],[y:=X+Y;X:=X—1](W).

21

BACK TO LOOPS

C : Prog — (State — State)

[while X >0do (Y :=X*Y; X := X —-1)]

should be some w such that:
W = Fixso) [y:=X+Y:X:=x—-1](W).

That is, we are looking for a fixed point of the following F:
F : (State — State) — (State — State)

|

w(XHx—-1,Y>x-y]) ifx>0

21

APPROXIMATING THE LEAST FIXED POINT

wWo = AL

Define w,, = F*(w), that is { .
Wor1 = F(wy)

22

APPROXIMATING THE LEAST FIXED POINT

Wo = L

Define w, = F*(w), that is { .
" Wn+1 = F(Wn)

[X x,Y>y] ifx<0

WX = %Yoyl = FLX = %Y =) :gundeﬁned ifx>1

22

APPROXIMATING THE LEAST FIXED POINT

W = AL

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y>y] ifx<0
WX > x,Y >yl =Fw)[X —» x,Y > y] =4[X~» 0,Y » y] ifx=1
undefined ifx>2

22

APPROXIMATING THE LEAST FIXED POINT

W = AL

Define w,, = F*(w), that is { .
Wor1 = F(wy)

[X > x,Y — y] ifx <0
WX P x,Y > y]=4[X—0,Y > (x)-y] f0o<x<n
undefined ifx>n

22

APPROXIMATING THE LEAST FIXED POINT

=1
Define w,, = F*(w), that is wo .
Wor1 = F(wy)
[X > x,Y — y] ifx <0
WX P x,Y > y]=4[X—0,Y > (x)-y] f0o<x<n
undefined ifx>n

22

APPROXIMATING THE LEAST FIXED POINT

=1
Define w,, = F*(w), that is wo .
Wor1 = F(wy)
[X > x,Y — y] ifx <0
WX P x,Y > y]=4[X—0,Y > (x)-y] f0o<x<n
undefined ifx>n

22

APPROXIMATING THE LEAST FIXED POINT

=1
Define w,, = F*(w), that is wo .
Wor1 = F(wy)
[X > x,Y — y] ifx <0
WX P x,Y > y]=4[X—0,Y > (x)-y] f0o<x<n
undefined ifx>n

(X — x,Y > y] ifx <0

DOX ’Y = i = .
Weol X 1> .Y 1>] |—|Wl [X~ 0,Y—> (x!)-y] ifx>0

ieN

22

WE HAVE OUR SEMANTICS

F(weo)[X = x,Y > y]

23

WE HAVE OUR SEMANTICS

[X — x,Y > y] ifx <0

) (definition of F)
WolX P x—1,Y > x-y] ifx>0

Fweo)[X = x,Y = y] = {

23

WE HAVE OUR SEMANTICS

[X — x,Y > y] ifx <0

) (definition of F)
WolX P x—1,Y > x-y] ifx>0

Fweo)[X = x,Y = y] = {

X Y ifx<0
3 g[= x,Y - y] X (definition of W)

X 0Y (x—1D-x-y] ifx>0

23

WE HAVE OUR SEMANTICS

[X — x,Y > y] ifx <0

) (definition of F)
WolX P x—1,Y > x-y] ifx>0

Fweo)[X = x,Y = y] = {

X Y ifx<0
3 g[= x,Y - y] X (definition of W)

X 0Y (x—1D-x-y] ifx>0
= Weo| X P x,Y > y]

23

WE HAVE OUR SEMANTICS

[X - x,Y > y] ifx <0

) (definition of F)
WolX P x—1,YH>x-y] ifx>0

Fwe)[X = x,Y = y] = {

X x,Y Vsl
_{[- x,Y - y] " (definition of W)

X 0Y (x=1D-x-y] ifx>0
= Weo| X P x,Y 5 y]

- F(Wa) = Weo I.6. Weo IS a fixed point of F;
- actually, the least fixed point;

- which agrees with the operational semantics (1)

23

THE REST OF THIS COURSE

Part | domain theory = building mathematical tools

Part Il denotational semantics for Pcr

24

