
Introduction to Databases
Lectures 1 - 8

David J. Greaves

with grateful thanks to James Sharkey and Tim Griffin

Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2024-25

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 1 / 171

Lecture 1

What is a Database Management System (DBMS)?
In other words: what do we need beyond storing some data?
We’ll concentrate on the service provided - no implementation
details.
The diverse landscape of database systems.

I Traditional SQL-based systems
I Recent development of “NoSQL” systems.

Three data models covered in this course
I Relational,
I Document-oriented,
I Graph-oriented.

Trade-offs imply that no one model ideally solves all problems.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 2 / 171

Fields, records and CSV Data
Punched cards were used for weaving control in the Jacuqard Loom
and were an inspiration for Hollerith in the 1890 US census, leading to
the 80-column punched card.

Fixed-field record
Adam Jonathan Alexander Hawkes M20051969
David James Greaves M28111962
Peter James Greaves M28111932
Elizabeth Jane Yeti Goosecreature F02041965

Fixed-field used widely on punched cards and remains efficient for
gender and DoB etc..

Comma/character-separated value record
Adam,Jonathan,Alexander,Hawkes,M,20,05,1969
David,James,,Greaves,M,28,11,1962
Peter,James,,Greaves,M,28,11,1932
Elizabeth,Jane,Yeti,Goosecreature,F,2,4,1965

But how to store Charles Philip Arthur George Mountbatten-Windsor?
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 3 / 171

https://www.cl.cam.ac.uk/~djg11/howcomputerswork/#Jacquard-Loom

A simple, in-core associative store
(dictionary/collection)
Implementation in ML – Irrelevant (and not lectured yet!)
let m_stored:((string * string) list ref) = ref [] // The internal representation

let store (k, v) = m_stored := (k, v) :: !m_stored // Function to store a value under
// a given key.

let retrieve k = // Function to find the value stored
let rec scan = function // under a given key or else
| [] -> None // return ’None’.
| (h, v)::tt -> if h=k then Some v else scan tt
in scan !m_stored

API formal specification – Relevant to this course.
store : string * string -> unit
retrieve : string -> string option

The application program interface (API) is defined by its two
methods/functions.
They may be freely called in any order, so no invocation ordering
constraints exist (unlike, eg. ‘open . (read|write)* . close’).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 4 / 171

Further Database Jargon
Value: often just a character string, but could be a number, date, or even a

polygon in a spatial database.

Field: a place to hold a value, also known as an attribute or column in an RDB
(relational database).

Record: a sequence of fields, also known as a row or a tuple in an RDB.

Schema: the specification of how data is to be arranged, specifying table and field
names and types and some rules of consistency (eg. air pressure field
cannot be negative).

Key: the field or concatenation of fields normally used to locate a record.

Index: a derived structure providing quick means to find relevant records.

Query: a retrieve or lookup function, often requiring automated planning.

Update: a modification of the data, preserving consistency and often implemented
as a transaction.

Transaction: an atomic change of a set of fields with further ACID properties.

By the midpoint and enpoint of the course, even if not lectured explicitly, please make sure you
understand the meaning of all the terms in the two glossaries on the course web site.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 5 / 171

Abstractions, interfaces, and implementations

Many possible

applications

Interface

Many possible

implementations

Narrow waist model.

An interface liberates application
writers from low-level details.
An interface represents an
abstraction of resources/services
used by applications.
In a perfect world, implementations
can change without requiring
changes to applications.
Performance concerns often
challenge this idealised picture.
‘Mission-creep’ and specification
change typically ruin things too
(software misengineering!).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 6 / 171

Standard interfaces are everywhere, for example

a national electricity network,
a landline telephone that’s 100 years old can still be plugged in
today,
even money can be thought of as an interface.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 7 / 171

Typical Database Logical Arrangement

DBMS

Screen

Keyboard

SQL
REPL

application

Transaction processing

application

(eg. holiday booking)

Internet

Disk drives

and

filesystem

Database Management

System

Read-eval-print loop

create table

insert/update/delete

run query: SELECT * FROM ...

creat()

open()

close()

read()

write()

SQL

The DBMS provides an abstraction over the secondary storage
(disks/tapes [web:Video 3b]).
It hides data storage detail using a narrow, standardised interface
(eg. SQL) shared by concurrent applications.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 8 / 171

https://www.cl.cam.ac.uk/~djg11/howcomputerswork#Video-3b

O/S View of the Logical Arrangement

D
B

M
S

S
Q

L
re

a
d
-e

v
a
l-p

rin
t lo

o
p

a
p
p
lic

a
tio

n

T
ra

n
s
a

c
tio

n
 p

ro
c
e

s
s
in

g

a
p

p
lic

a
tio

n

(e
g

. h
o

lid
a

y
 b

o
o

k
in

g
)

Internet

Disk

drives

Operating system

DevDriver

File system

DevDriver

Disk

Controller
NIC

DevDriver

Graphics

card/etc

Screen

Keyboard

User space

software

(processes)

Kernel space

software

Hardware
TCP/ HTML etc.

SQL

P
rim

a
ry

 s
to

ra
g
e
 (R

A
M

)

Secondary
storage composed

of disks, tapes,SSD...

This set-up is covered in the operating systems course later in the
year, so you need take little notice of this slide today.
In many simple scenarios, the application is in the same process as
the DBMS.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 9 / 171

A partial specification of computer memory

Primary storage (main RAM, typically volatile):
type address_t = integer 0 to 2^16 - 1
type word_t = integer 0 to 255
method write : address_t * word_t -> unit
method read : address_t -> word_t

Secondary storage (disk/tape/SSD/USB-stick):
type blkaddress_t = integer 0 to 2^19-1
type block_t = array [0..4095] of integer 0 to 255
method write : blkaddress_t * block_t -> unit
method read : blkaddress_t -> block_t option
method trim (*forget*) : blkaddress_t -> unit
method sync (*synchronise*) : unit -> unit

Of course, this interface specification says nothing about the
semantics of memory, which are basically what you write should be
what you read back again! Such a specification needs to take time into
account and whether reboot happened in the meantime.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 10 / 171

Variations on the previous set-up and otherwise.

Where is the data stored?
In primary store (in core, on the heap),
or in secondary store,
or distributed.

When in-core (ie. in primary/main storage)
Ephemeral – data lost when program exits,
Persistent – data serialised to/from the O/S filesystem,
Persistent – DBMS directly makes access to secondary storage
devices (so need not all fit in core then!).

Data size
Big data – too big to fit in primary store,
In-core – it all fits in (NB: ‘core’ is a historic term; today DRAM).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 11 / 171

Variations continued ...

Amount of writing
Read-optimised (data never or rarely changes),
Transaction-optimised (many concurrent queries and updates),
Append-only journal (new data always added at the end, ledger
style).

Consistency Model – Lecture 5
Atomic updates (ACID transactions),
Eventual consistency (BASE).

Data Arrangement
Relational organisation (tables),
Semi-structured document (Lecture 6),
Graph (Lecture 8), or others...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 12 / 171

Consistency
Value range check:

Q1: “Dr. Greaves, we have your weight recorded as minus fifteen
kilograms – surely that’s not correct?”

Foreign key referential integrity:
Q2: “Mr Sartre, we have your GP down as Dr. Yeti Goosecrea-
ture, but we can’t find him/her on our database – do we have the
correct spelling of their name?”

Value Atomicity:
Q3: “Dr. Griffin, we seem to have two home addresses recorded
for you – can you clarify?”

Entity Integrity:
Q4: “Ms. du Pré, the flight is ready to board, but your cello
has no passport number, so I’m afraid it cannot take its seat.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 13 / 171

This course and the DBMS.

Data model,

query language

programming API,

access control,

...

App 1

(updates)
App 2

(queries)

App 3

(sales

reports)

Query planner,

low-level data

representation,

index generator,

journalling,

...

Physical storage media.

D
B

M
S

This course will present
databases from an application
writer’s point of view. It will stress
data models and query
languages.
We cover how a DBMS can provide
a tidy interface to the stored data.
We will not cover programming APIs
or network APIs,
or cover low-level implementation
details,
or detail how a query engine plans
how to service each query.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 14 / 171

DBMS operations

CRUD operations:
Create: Insert new data items into the database,

Read: Query the database,
Update: Modify objects in the database,
Delete: Remove data from the database.

Management operations - mostly beyond the scope of this
course:

Create schema (we might do some of this),
Change schema (Yuck!) (eg. add a table or an attribute),
Create view (eg. for access control) (we will be using some views),
Physical re-organisation of data layout or re-index,
Backup, stats generation, paying Oracle, etc. ...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 15 / 171

This course looks at three data models
Relational Model: Data is stored in tables. SQL is the main query

language. Optimised for high throughput of many
concurrent updates.

Document-oriented Model: Also called aggregate-oriented database.
Optimised for read-oriented databases with few updates
and using semi-structured data.

Graph-oriented Model: Much of the data is graph nodes and edges,
with extensive support for standard graph techniques.
Query languages tend to have ‘path-oriented’ capabilities.

The relational model has been the industry mainstay for the last 48 years.

The other two models are representatives of a stuttering revolution in database
systems often described under the “NoSQL” banner (Lectures 6&8).

All three primarily hold discrete data. Lent term course ‘ML & real-world data’
deals with soft/continuous decision making.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 16 / 171

This course uses three database systems

SQLite An open-source, simple relational DBMS.
Query language is SQL.

TinyDB An open-source, document-oriented DBMS
coded and queried in Python.

Neo4j A Java-based graph-oriented DBMS — the
query language is Cypher (named after a
character in The Matrix).

For examination purposes you are expected to learn everything in this slide deck (unless

specifically marked unexaminable). Also, you must learn in-detail, a core subset of SQL. For tick

2 you will use TinyDB.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 17 / 171

Relational Databases
A relational database consists of a number of 2-D tables. Here is one:

First name Surname Weight GP GP’s age
David Greaves -15 Dr Luna 36

Jean-Paul Sartre 94 Dr Yeti Goosecreature <null>
Timothy Griffin 105 Dr Luna 36

For each table, there is one row per record, technically known as a
tuple.
Each record has a number of fields, technically known as
attributes.
Each table may also have a schema, indicating the field names,
allowable data formats/ranges and which column(s) comprise the
key (underlined).
The ordering of columns (fields) is unimportant and often so for
rows.

[NB: A table is called a relation in some textbooks, but we shall see tables represent
entities too, so that is a confusing name.].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 18 / 171

Distributed databases
Database held over multiple machines or over multiple datacentres.

Why distribute data?
Scalability: The data set or the workload can be too large for a
single machine.
Fault tolerance: The service can survive the failure of some
machines.
Lower Latency: Data can be located closer to widely distributed
users.

Downside of distributed data: consistency
After an update, there is a massive overhead in providing a
consistent view.
There’s a multitude of successively-relaxed consistency models
(e.g. all viewers see all updates in the same order or not).
(Exactly the same problem arise within a single chip for today’s
multi-core processors.)
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 19 / 171

Distributed databases pose difficult challenges

CAP concepts
Consistency. All reads return data that is up-to-date.
Availability. All clients can find some replica of the data.
Partition tolerance. The system continues to operate despite
arbitrary message loss or failure of part of the system.

It is impossible, with current (pre-quantum) technology, to achieve
the CAP trio in a distributed database.
Approximating CAP is the subject of the second half of Ib
Concurrency and Distributed Systems lecture course.
Alternatively, do not invest much effort. Instead, offer a BASE
system with eventual consistency: if update activity ceases, then
the system will eventually reach a consistent state.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 20 / 171

Trade-offs often change as technology changes

Expect more dramatic changes in the coming decades ...

5 megabytes of RAM in 1956 A modern server

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 21 / 171

IMDb: Our example data source

Raw data available from IMDb plain text data files at
http://www.imdb.com/interfaces.
Extracted from this: 1489 movies made between 1921 and 2023
together with 7348 associated people.
The same data set was used to generate three database
instances: relational, graph, and document-oriented.

The example database may be refreshed this year, adding some more
recent films.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 22 / 171

Course Structure and Timetable 2024

date topics
1 15/10 L1 What is a Database Management System (DBMS)?
2 22/10 L2 Entity-Relationship (ER) diagrams
3 29/10 L3 Relational Databases ...
4 5/11 L4 ... and SQL
5 12/11 L5 Redundancy, Consistency & Throughput
6 19/11 L6 Document-oriented Database
7 26/11 L7 Further SQL
8 3/12 L8 Graph Database

Tick deadlines are 19th Nov and 3rd Dec 2024. Help sessions may be
organised a few days before each deadline (14th and 28th Nov). Note
lecture room and time change for L5. Get started on the practicals
straight after L1.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 23 / 171

Recommended Text

Lemahieu, W., Broucke, S. van den, and Baesens, B. Principles of
database management. Cambridge University Press. (2018)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 24 / 171

Guide to relevant material in textbook

1 What is a Database Management System (DBMS)?
I Chapter 2

2 Entity-Relationship (ER) diagrams
I Sections 3.1 and 3.2

3 Relational Databases ...
I Sections 6.1, 6.2.1, 6.2.2, and 6.3

4 ... and SQL
I Sections 7.2 – 7.4

5 Indexes. Some limitations of SQL ...
I 7.5,

6 ... that can be solved with Graph Database
I Sections 11.1 and 11.5

7 Document-oriented Database
I Chapter 10 and Secion 11.3

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 25 / 171

Lecture 2 : Conceptual modelling with
Entity-Relationship (ER) diagrams

Peter Chen

It is very useful to have a
implementation independent
technique to describe the data that
we store in a database.
There are many formalisms for this,
and we will use a popular one —
Entity-Relationship (ER), due to
Peter Chen (1976).
The ER technique grew up around
relational databases systems but it
can help document and clarify
design issues for any data model.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 26 / 171

Entities (should) model things in the real world.

Movie

title
year

movie_id Person

birthYear
name

person_id

Entities (squares) represent the nouns of our model
Attributes (ovals) represent properties
A key is an attribute whose value uniquely identifies an entity
instance (here underlined)
The scope of the model is limited — among the vast number of
possible attributes that could be associated with a person, we are
implicitly declaring that our model is concerned with only three.
Very abstract, independent of implementation.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 27 / 171

Entity Sets (instances)
Instances of the Movie entity

movie_id title year
tt1454468 Gravity 2013
tt0440963 The Bourne Ultimatum 2007

Instances of the Person entity
person_id name birthYear

nm2225369 Jennifer Lawrence 1990
nm0000354 Matt Damon 1970

Keys must be unique.
They might be formed from some algorithm, like your CRSID. Q: Might some
domains have natural keys (National Insurance ID)? A: Beware of using keys
that are out of your control.
In the real-world, the only safe thing to use as a key is a synthetic key that is
automatically generated in the database and only has meaning within that
database.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 28 / 171

Relationships

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

Relationships (diamonds) represent the verbs of our domain.
Relationships are between entities.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 29 / 171

Relationship instances

Instances of the Directed relationship (ignoring entity attributes)
Kathryn Bigelow directed The Hurt Locker
Kathryn Bigelow directed Zero Dark Thirty
Paul Greengrass directed The Bourne Ultimatum
Steve McQueen directed 12 Years a Slave
Karen Harley directed Waste Land
Lucy Walker directed Waste Land
João Jardim directed Waste Land

Relationship Cardinality
Directed is an example of a many-to-many relationship.

Every person can direct multiple movies and every movie can
have multiple directors.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 30 / 171

A many-to-many relationship

No arrows:

S R T

Any S can be related to zero or more T ’s,
Any T can be related to zero or more S’s.
The relation can also be symmetric and/or relate an entity domain
to itself (eg. is_sibling), but these terms have slightly different
meanings compared with a mathematical relation.

Crow’s foot etc.: There are numerous arrowheads and other diagram
annotations for denoting non-symmetric relations and the allowable
cardinalities of a relationship. We can mostly leave them out when
designing a model since we know what makes sense.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 31 / 171

Relationships can also have attributes

Movie

title
year

movie_id Acted_In

role

Person

birthYear
name

person_id

Attribute role indicates the role played by a person in the movie.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 32 / 171

Instances of the relationship Acted_In

(ignoring entity attributes)
Ben Affleck played Tony Mendez in Argo
Julie Deply played Celine in Before Midnight
Bradley Cooper played Pat in Silver Linings Playbook
Jennifer Lawrence played Tiffany in Silver Linings Playbook
Tim Allan played Buzz Lightyear in Toy Story 3

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 33 / 171

Have we made a modelling mistake?
Attributes exist at-most once for any entity or relation.
So our model is restrictive in that an actor plays a single role in
every movie. This may not always be the case!

Jennifer Lawrence played Raven in X-Men: First Class
Jennifer Lawrence played Mystique in X-Men: First Class
Scarlett Johansson played Black Widow in The Avengers
Scarlett Johansson played Natasha Romanoff in The Avengers

So could we allow the role to be a comma-separated list of roles — a
multi-valued attribute (but not a composite attribute)?

More-than-likely we’ll need to break up that list at some point in
the future.
Perhaps fair enough to do this in an E/R design model,
But when stored in a real database, text processing at that level is
an unspeakable data modelling sin (it violates the rule of value
atomicity).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 34 / 171

Acted_In can be modelled as a Ternary Relationship

Let’s consider having ‘role’ as an entity.

Movie

Title
Year

movie_id Acted_In Person

birthYear
name

person_id

Role

description

Acted_In is now a ternary relationship, but
is a role a real-world entity in its own right,
and are ternary relations sensible?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 35 / 171

Can a ternary relationship be modelled with multiple
binary relationships?

MovieHasCastingCastingActsInPerson

RequiresRole

Role

Yes, but is the Casting entity too artificial? [Let’s hold a referendum.]

[NB: See textbook 3.2.6 (pen example) consequent data loss.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 36 / 171

Attribute or entity with new relationship?

Movie

title
id

Released MovieRelease

country
date

year

month

day

note

Should the release date be a composite attribute or an entity?
The answer may depend on the scope of your data model.
If all movies within your scope have at most one release date,
then an attribute will work well.
However, if you scope is global, then a movie can have different
release dates in different countries.
Is the MovieRelease entity too artificial?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 37 / 171

Many-to-one relationships

Suppose that every employee is related to at most one department.
We are going to denote with an arrow:

Employee Works_In Department

Does our movie database have any many-to-one relationships?
Do we need some annotation to indicate that every employee
must be assigned to a department?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 38 / 171

One-to-many, many-to-one and one-to-one.

Suppose every member of T is related to at most one member of S.
We will draw this as

T R S

The relation R is many-to-one between T and S
The relation R is one-to-many between S and T

On the other hand, if R is both many-to-one between S and T and
one-to-many between S and T , then it is one-to-one between S and
T . We’ll see two arrows. (These seldom occur in reality – why?)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 39 / 171

A “one-to-one cardinality” does not mean a "1-to-1
correspondence”

T X

Y

R

U

SZ

W

This database instance is OK
S R T

Z W
z1 w1
z2 w2
z3 w3

Z X U
z1 x2 u1

X Y
x1 y1
x2 y2
x3 y3
x4 y4

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 40 / 171

Diagrams can be annotated with cardinalities in many
strange and wonderful ways ...

Various diagrammatic notations used to indicate a one-to-many
relationship [Wikipedia: E/R model].

[NB: None of these detailed notations is examinable, but the concept of a relationship’s cardinality is important.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 41 / 171

https://en.wikipedia.org/wiki/Entity-relationship_model

Weak entities

Movie

Title
movie_id

Year Has_Alternative AlternativeTitle

Title
Country

Language
alt_id

AlternativeTitle is an example of a weak entity
The attribute alt_id is called a discriminator.
The existence of a weak entity depends on the existence of
another entity. In this case, an AlternativeTitle exists only in
relation to an existing movie. (This is what makes MovieRelease
special!)
Discriminators are not keys. To uniquely identify an
AlternativeTitle, we need both a movie_id and an alt_id.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 42 / 171

Entity hierarchy (OO-like)

Sometimes an entity can have “sub-entities”. Here is an example:

Employee

Name employee_id

IsA

Temporary_Employee

hourly_rate

Contract_Employee

contract_id

Sub-entities inherit the attributes (including keys) and relationships of
the parent entity. [Multiple inheritance is also possible.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 43 / 171

E/R Diagram Summary

Forces you to think clearly about the model you want to implement
in a database without going into database-specific details.
Simple diagrammatic documentation.
Easy to learn.
Can teach it to techno-phobic clients in less than an hour.
Very valuable in developing a model in collaboration with
clients who know nothing about database implementation
details.
With the following slide, imagine you are a data modeller working
with a car sales/repair company. The diagram represents your
current draft data model. What questions might you ask your client
in order to refine this model?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 44 / 171

Employee

Name
Number

IsA

Mechanic SalespersonDoes

RepairJobNumber

Description

CostParts

Work

Repairs Car

Number Plate

Model
Year

Manufacturer

Buys

Price

Date

Value

Sells

Date

Value

Commission

Client ID

Name Phone
Address

buyerseller

Example due to Pável Calado, author of the tikz-er2.sty package.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 45 / 171

Lectures 3 and 4 - The Relational Database

Lecture 3
The relational model,
SQL and the relational algebra (RA).

Lecture 4
Representing an E/R model,
Update anomalies,
Avoid redundancy.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 46 / 171

The dominant approach: Relational DBMSs

In the 1970s you could not write a
database application without knowing a
great deal about the data’s low-level
representation.
Codd’s radical idea: give users a model of
data and a language for manipulating that
data which is completely independent of
the details of its
representation/implementation. That
model is based on mathematical
relations.
This decouples development of the DBMS
from the development of database
applications.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 47 / 171

Let’s start with mathematical relations
Suppose that S and T are sets. The Cartesian product, S × T , is the
set

S × T = {(s, t) | s ∈ S, t ∈ T}

EG: {A,B} × {3,4,5} = {(A,3), (A,4), (A,5), (B,3), (B,4), (B,5)}

A (binary) relation over S × T is any set R with

R ⊆ S × T .

Database parlance
S and T are referred to as domains.
We are interested in finite relations R that are explicitly stored.
(ie. We shall not be solving integer linear programming puzzles or
the like.)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 48 / 171

n-ary relations
If we have n sets (domains),

S1, S2, . . . ,Sn,

then an n-ary relation R is a set

R ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

Tabular presentation

1 2 · · · n
x y · · · w
u v · · · s
...

...
...

n m · · · k

All data in a relational database is stored in tables. However, referring
to columns by number can quickly become tedious!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 49 / 171

Mathematical vs. database relations

Use named columns
Associate a name, Ai (called an attribute name) with each domain
Si .
Instead of tuples, use records — sets of pairs each associating an
attribute name Ai with a value in domain Si .

Column order does not matter
A database relation R is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

We specify R’s schema as R(A1 : S1, A2 : S2, · · · An : Sn).

NB: We’ll often say ‘field name’ instead of ‘attribute name’, Row order
often does not matter but sometimes we will sort using order by.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 50 / 171

Example: One table (a relational instance).
The relational schema for the table:
Students(name: string, sid: string, age : integer)

An instance of this schema:
Students = {

{(sid, fm21), (name, Fatima), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(age, 19), (name, James), (sid, jj25)}
}

Two equivalent renderings of the table:

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

sid name age
fm21 Fatima 20
ev77 Eva 18
jj25 James 19

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 51 / 171

What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk)

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...

[NB: RA is primarily used for queries. SQL suports other CRUD
aspects that we’ll hardly mention.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 52 / 171

The Relational Algebra (RA) abstract syntax

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a [simple] boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.
A query Q must be well-formed: all column names of result are
distinct. So in Q1 ×Q2, the two sub-queries cannot share any
column names while in in Q1 ∪Q2, the two sub-queries must
share all column names.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 53 / 171

SQL: a vast and evolving language
Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, ..., SQL:2023
SQL is made up of many sub-languages, including

I Query Language
I Data Definition Language
I System Administration Language

SQL will inevitably absorb many “NoSQL” features ...

Why talk about the Relational Algebra?
Due to the RA’s simple syntax and semantics, it can often help us
better understand complex queries.
Tradition and purity.
(The RA lends itself to endlessly amusing Tripos questions.)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 54 / 171

Selection operator (σ)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

Q
RA σA>12(R)

SQL SELECT DISTINCT * FROM R WHERE R.A > 12

[NB: Asterisk denotes all fields, so no projection going on.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 55 / 171

Projection operator (π)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

Q
RA πB,C(R)

SQL SELECT DISTINCT B, C FROM R

[NB: No ‘where’ clause, so no selection going on, despite the ‘SELECT’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 56 / 171

Renaming operator (ρ)

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

Q
RA ρ{B 7→E , D 7→F}(R)

SQL SELECT A, B AS E, C, D AS F FROM R

[NB: SQL implements renaming with the ‘AS’ keyword.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 57 / 171

Union operator (∪)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

Q
RA R ∪ S

SQL (SELECT * FROM R) UNION (SELECT * FROM S)

[NB: This is union of records. We’ll also use/abuse ∪ for field concatenation in
another slide.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 58 / 171

Intersection operator (∩)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

Q
RA R ∩ S

SQL (SELECT * FROM R) INTERSECT (SELECT * FROM S)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 59 / 171

Difference operator (-)

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

Q
RA R − S

SQL (SELECT * FROM R) EXCEPT (SELECT * FROM S)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 60 / 171

Product operator (×)

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Q
RA R × S

SQL SELECT A, B, C, D FROM R CROSS JOIN S

SQL SELECT A, B, C, D FROM R, S

[NB: The RA product is not precisely the mathematical Cartesian product
which would return pairs of tuples.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 61 / 171

Natural Join (augmented ×)
First, some bits of notation:

We will often ignore domain types and write a relational schema
as R(A), where A = {A1, A2, · · · , An} is a set of attribute names.
When we write R(A, B) we mean R(A ∪ B) and implicitly assume
that A ∩ B = φ (ie. disjoint fields).
u.[A] = v .[A] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.An = v .An.

Natural Join (SQL replace CROSS with NATURAL):
Given R(A, B) and S(B, C), we define the natural join, denoted
R on S, as a relation over attributes A,B,C defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[B] = v .[B] ∧ t = u.[A] ∪ u.[B] ∪ v .[C]}

In the Relational Algebra:

R on S = πA,B,C(σB=B′(R × ρ~B 7→ ~B′(S)))

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 62 / 171

Natural join example

Students
name sid cid
Fatima fm21 cl
Eva ev77 k
James jj25 cl

Colleges
cid cname
k King’s
cl Clare
q Queens’

=⇒

Students on Colleges
name sid cid cname
Fatima fm21 cl Clare
Eva ev77 k King’s
James jj25 cl Clare

Explicit join predicates are commonly used: replace
NATURAL(=equality) with a WHERE clause.
When NULL values exist, there are further join variations you
must know (left/right/inner/outer), but not shown in these slides
(Lemahieu 7.3.1.5).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 63 / 171

Lecture 4: How can we implement an E/R model
relationally?

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

The E/R model does not dictate implementation.
There are many options.
We will discuss some of the trade-offs involved.

Remember, we only have tables to work with!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 64 / 171

How about one big table?

DirectedComplete
movie_id title year person_id name birthyear
---------- ------------------------------ ---- --------- --------------------- ---------
tt9603212 Mission: Impossible - Dead Rec 2023 nm0003160 Christopher McQuarrie 1968
tt4873118 The Covenant 2023 nm0005363 Guy Ritchie 1968
tt15398776 Oppenheimer 2023 nm0634240 Christopher Nolan 1970
tt5971474 The Little Mermaid 2023 nm0551128 Rob Marshall 1960
tt6791350 Guardians of the Galaxy Vol. 3 2023 nm0348181 James Gunn 1966
tt0439572 The Flash 2023 nm0615592 Andy Muschietti 1973
tt2906216 Dungeons & Dragons: Honor Amon 2023 nm0197855 John Francis Daley 1985
tt2906216 Dungeons & Dragons: Honor Amon 2023 nm0326246 Jonathan Goldstein 1968
tt10366206 John Wick: Chapter 4 2023 nm0821432 Chad Stahelski 1968
tt12263384 Extraction II 2023 nm1092087 Sam Hargrave
tt12758060 Tetris 2023 nm1580671 Jon S. Baird 1972
tt1517268 Barbie 2023 nm1950086 Greta Gerwig 1983
.....

What’s wrong with this approach?

[Later we’ll be asking ourselves, ‘What is the key to this table and does all the
data stored in it naturally depend on the key?’]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 65 / 171

Problems with data redundancy

Data consistency anomalies:
Insertion: How can we tell if a newly-inserted record is consistent with existing

records? We may want to insert a person without knowing if they are a
director. We might want to insert a movie without knowing its
director(s).

Deletion: We lose information about a Director if we delete all of their films from
the table.

Update: What if a director’s name is mis-spelled? We may update it correctly
for one film, but not for another.

Performance issue:
A transaction implementing a conceptually simple update has a lot of work to do,

it could even end up locking (lecture 5) the entire table.

Lesson: In a database supporting many concurrent updates, we see that data
redundancy can lead to complex transactions and low write throughput.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 66 / 171

A better idea: break tables down in order to reduce
redundancy (1)

movies
MOVIE_ID TITLE YEAR
---------- ----------------------------- ----
tt0126029 Shrek 2001
tt0181689 Minority Report 2002
tt0212720 A.I. Artificial Intelligence 2001
tt0983193 The Adventures of Tintin 2011
tt4975722 Moonlight 2016
tt5012394 Maigret Sets a Trap 2016
tt5013056 Dunkirk 2017
tt5017060 Maigret’s Dead Man 2016
tt5052448 Get Out 2017
tt5052474 Sicario: Day of the Soldado 2018
.....

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 67 / 171

A better idea: break tables down in order to reduce
redundancy (2)

people
PERSON_ID NAME BIRTHYEAR
--------- ---------------- ---------
nm0011470 Andrew Adamson 1966
nm0421776 Vicky Jenson
nm0000229 Steven Spielberg 1946
nm1503575 Barry Jenkins 1979
nm0668887 Ashley Pearce
nm0634240 Christopher Nolan 1970
nm1113890 Jon East
nm1443502 Jordan Peele 1979
nm1356588 Stefano Sollima 1966
.....

[Later we’ll again ask, ‘What is are the keys for our new tables and does all
the data stored in a table naturally depend on its key?’]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 68 / 171

Now use a third table to hold the relationship.

Directed
MOVIE_ID PERSON_ID
---------- ---------
tt0126029 nm0011470
tt0126029 nm0421776
tt0181689 nm0000229
tt0212720 nm0000229
tt0983193 nm0000229
tt4975722 nm1503575
tt5012394 nm0668887
tt5013056 nm0634240
tt5017060 nm1113890
tt5052448 nm1443502
tt5052474 nm1356588
.....

What is the key to this table? Is it ‘all key’? Can films now have
multiple directors?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 69 / 171

Computing DirectedComplete with SQL

SELECT movie_id, title, year,
person_id, name, birthYear

FROM movies
JOIN directed ON directed.movie_id = movies_id
JOIN people ON people.person_id = person_id

Note: the relation directed does not exist in our database (more on
that later). We have to write something like this:

SELECT movie_id, title, year,
person_id, name, birthyear

FROM movies AS m
JOIN has_position AS hp ON hp.movie_id = m.movie_id
JOIN people AS p ON p.person_id = hp.person_id
WHERE hp.position = ’director’;

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 70 / 171

We can recover all information for the plays_role
relation
The SQL query

SELECT movies.movie_id AS mid, title, year,
people.person_id AS pid, name, role

FROM movies
JOIN plays_role ON movies.movie_id = plays_role.movie_id
JOIN people ON people.person_id = plays_role.person_id;

might return something like
mid title year pid name role
--------- ------------------ ---- --------- --------------- ----------------------------
tt0012349 The Kid 1921 nm0088471 B.F. Blinn His Assistant
tt0012349 The Kid 1921 nm0000122 Charles Chaplin A Tramp
tt0015864 The Gold Rush 1925 nm0000122 Charles Chaplin The Lone Prospector
tt0021749 City Lights 1931 nm0000122 Charles Chaplin A Tramp
tt0027977 Modern Times 1936 nm0000122 Charles Chaplin A Factory Worker
tt0032553 The Great Dictator 1940 nm0000122 Charles Chaplin Hynkel - Dictator of Tomania
tt0032553 The Great Dictator 1940 nm0000122 Charles Chaplin A Jewish Barber
tt0012349 The Kid 1921 nm0701012 Edna Purviance The Woman
tt0012349 The Kid 1921 nm0001067 Jackie Coogan The Child
tt0012349 The Kid 1921 nm0588033 Carl Miller The Man
...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 71 / 171

Observations

Both E/R entities and E/R relationships are implemented as
tables.
We call them tables rather than relations to avoid confusion!
Good: we avoid many update anomalies by breaking tables into
smaller tables.
Bad: we have to work hard to combine information in tables (joins)
to produce interesting results.

What about consistency/integrity of our relational
implementation?
Q. How can we ensure that the table representing an E/R relation
really implements a relationship? A. We use keys and foreign keys.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 72 / 171

Key: conceptual and formal definitions.

One aspect of a key should already be conceptually clear: a unique
handle on a record (table row).

Relational key – a definition from set theory:
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

The other aspect (we’ll study in L5) is that, in a normalised schema, all
row data semantically depends on the key.
[NB: A table/relation can have multiple keys, in either sense.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 73 / 171

Foreign keys and Referential integrity

Foreign key
Suppose we have R(Z, Y). Furthermore, let S(W) be a relational
schema with Z ⊆W. We say that Z represents a Foreign Key in S for R
if for any instance we have πZ(S) ⊆ πZ(R).

For instance W = A.B.Z.C (overline perhaps for a foreign key).

“Think of a foreign key as a sort of pointer.”

Referential integrity
A database is said to have referential integrity when all foreign key
constraints are satisfied.

Q1: “Mr Sartre, we have your GP down as Dr. Yeti Goosecrea-
ture, but we can’t find him/her on our database – do we have the
correct spelling of their name?”

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 74 / 171

Referential integrity example.

The schema/table

Has_Genre(movie_id ,genre_id)

will have referential integrity constraints

πmovie_id(Has_Genre) ⊆ πmovie_id(Movies)

πgenre_id(Has_Genre) ⊆ πgenre_id(Genres)

[NB: Has_Genre is said to be ‘all key’, which is quite common for
schemas/tables representing relations.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 75 / 171

Schema and key definitions in SQL.

A schema with a simple key:

CREATE TABLE genres (
genre_id integer NOT NULL,
genre TEXT NOT NULL,
PRIMARY KEY (genre_id));

A schema that is all-key and that has two foreign keys:

CREATE TABLE has_genre (
movie_id varchar(16) NOT NULL -- up to 16 chars

REFERENCES movies (movie_id),
genre_id integer NOT NULL

REFERENCES genres (genre_id),
PRIMARY KEY (movie_id, genre_id));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 76 / 171

Relationships in tables (the “clean” approach).

T X

Y

R

U

SZ

W

Relation R is Schema

many to many (M : N) R(X , Z , U)

one to many (1 : M) R(X , Z , U)

many to one (M : 1) R(X , Z , U)

[NB. Copy out three times and add arrows if you are eager.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 77 / 171

Implementation can differ from the “clean” approach

T X

Y

R

U

SZ

W

Suppose R is one-to-many (reading left to right)
Rather than implementing a new table R(X , Z , U) we could expand
table T (X , Y) to T (X , Y , Z , U) and allow the Z and U columns to be
NULL for those rows in T not participating in the relationship.

Pros and cons?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 78 / 171

Implementing multiple relationships with a single
table?

Suppose we have two many-to-many relationships:

T X

Y

SZ

W R

U

Q

V

Our two relationships are called R and Q.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 79 / 171

Implementing multiple relationships with one table is
possible.
Rather than using two tables

R(X , Z , U)

Q(X , Z , V)

we might squash them into a single table

RQ(X , Z , type, U, V)

using a tag domain(type) = {r,q} (for some constant values r and q).
represent an R-record (x , z,u) as an RQ-record (x , z, r,u,NULL)
represent an Q-record (x , z, v) as an RQ-record (x , z,q,NULL, v)

Redundancy alert!
If we know the value of the type column, we can compute the value of
either the U column or the V column (one must be NULL).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 80 / 171

We have stuffed 5 relationships into the
has_position table!

SELECT position, COUNT(*) as total
FROM has_position
GROUP BY position
ORDER BY total DESC;

Using our database, this query produces the output
position total
-------- -----
actor 5955
writer 2907
producer 2509
director 1588
composer 848

Was this a good idea?
Discuss!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 81 / 171

Implementing weak entities.

T DISC

Y

R

U

SZ

W

One (clean) approach:
S(Z , W)

R(Z , DISC, U) with πZ (R) ⊆ πZ (S)

T (Z , DISC, Y) with πZ (T) ⊆ πZ (S)

A more concise (clean) approach:
S(Z , W)

R(Z , DISC, U, Y) with πZ (R) ⊆ πZ (S)

This is how Has_Alternative is implemented.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 82 / 171

A 3-table implementation of entity hierarchy.

S

W Z

IsA

T

Y

U

V

One (clean) approach:
S(Z , W)

T (Z , Y) with πZ (T) ⊆ πZ (S)

U(Z , V) with πZ (U) ⊆ πZ (S)

Could we combine these tables into one with type tags? Yes but
unclean. Try it yourself.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 83 / 171

End of the first half of the course.

Jargon to know: even if not lectured explicitly, please make sure you
understand the meaning of all the terms in the glossary on the course
web site. It is also recommended to read the recommended chapters
in the recommended textbook.

(http://xkcd.com/327)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 84 / 171

Lecture 5 - Transactions, Reliability, Throughput &
Consistency.

What is a transaction?
Locks and their effect on transaction rate (throughput).
Data redundancy and update anomalies.
Relational normalisation to reduce/eliminate redundancy.
Normalisation vs. transaction throughput.

I Databases can be designed to maximise the number of concurrent
users executing update transactions.

But what if your applications never or rarely update data?
I Read-oriented vs. update-oriented databases.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 85 / 171

Transaction Processing
A transaction on a database is a series of queries and changes that
externally appear to be atomic.

Internal transactions:
Some number of values are read, perhaps more values conditionally read, and
then various values are changed based on the values read.

All of the values read or written are inside the same database.

External ‘transactions’ (do not really exist):
Some of the values changed or other side effects (like sending an SMS
acknowledgement) are external to the DBMS.

The DBMS cannot help make these atomic. Instead the system designers have
to think carefully about undoing them (e.g. “The flight booking we just confirmed
has now been cancelled since it turns out you are broke.”).

Many DBMS systems allow the application to abort a transaction before it is
committed, but this is a topic for Part Ib Concurrent Systems.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 86 / 171

Transaction client flow.
Start

Transaction
commited

Transaction
aborted

th = transaction_start();

av :=
SELECT balance FROM A ...

UPDATE A
SET balance = av+bv ...

bv :=
SELECT balance FROM B ...

UPDATE B
SET balance = 0 ...

rc = transaction_commit(th);

th : transaction handle.

rc : return code.

Transaction ‘start’ and ‘commit’ calls
bracket the body.
The body consists of any number of
queries and updates in any order.
The client may chose to abort at any time:
all updates are then undone by the DBMS.
In some (optimistic) systems, the updates
or commit may also abort and the client is
forced to restart the transaction.
DBMSs support concurrent transactions.

[NB: This slide’s contents are not examinable on this course; they form part of Part Ib CDS.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 87 / 171

ACID transaction properties
Atomicity: All changes to data are performed as if they are a single operation. That is, all

the changes are performed, or none of them are. For example, in an
application that transfers funds from one account to another, the atomicity
property ensures that, if a debit is made successfully from one account, the
corresponding credit is made to the other account.

Consistency: Every transaction applied to a consistent database leaves it in a consistent
state. For example, in an application that transfers funds from one account to
another, the consistency property (invariant) is conservation of money: the total
value of funds held over all accounts remains constant.

Isolation: The intermediate state of a transaction is invisible to other transactions. As a
result, transactions that run concurrently appear to be serialized . For example,
in an application that transfers funds from one account to another, the isolation
property ensures that another concurrent transaction sees the transferred
funds in one account or the other, but not in both, nor in neither.

Durability: After a transaction successfully completes, changes to data persist and are not
undone, even in the event of a system failure. For example, in an application
that transfers funds from one account to another, the durability property
ensures that the changes made to each account will not be reversed.

[web: IBM definition]

[NB: Implementing ACID transactions is lectured in Ib Concurrent and Distributed Systems]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 88 / 171

https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions

ACID vs BASE

As we’ll see next lecture, many NoSQL systems weaken ACID
properties. The result is often called BASE transactions (pun
intended).

BA: Basically Available,
S: Soft state,
E: Eventual consistency.

Exactly what this means varies from system to system. This is an area
of ongoing research. It’s certainly ideal for some applications, but some
proponents have lost their faith and fallen back to a relational system.

[Wikipedia: BASE]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 89 / 171

https://en.wikipedia.org/wiki/Eventual_consistency

Implementing ACID transactions requires locking data

A lock is a special software or hardware primitive that provides mutual exclusion. A
resource (section of code, data or file) can be locked for exclusive access by one
concurrent application which must unlock it again after use. Other contending
applications have to wait, which delays their completion.

Locks are acquired and released by transactions.
Locks can be placed along a spectrum of granularity from very
coarse-grained (lock the entire database!) to very fine-grained
(lock a single data value).
How locks are used to implement ACID is not part of any DBMS
API. Rather, this is part of the “secret sauce” implemented by
each vendor.
Observation: If transactions lock large amounts of data, or lock
frequently used data, fewer concurrent updates can be supported,
degrading throughput.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 90 / 171

What is redundant data? Is it bad?

Our definition:
Data in a database is redundant if it can be deleted and then
reconstructed from the data remaining in the database.

Why is redundant data problematic?
If data is held in more than once place, copies can disagree.
In a database supporting a high rate of update transactions, high
levels of data redundancy imply that correct transactions may
have to acquire many locks to consistently update redundant
copies.

Redundant data goody:
If updates are rare, having multiple copies can increase read
bandwidth and speed up lookup.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 91 / 171

What do we mean by ‘multiple copies’ ?

Two components of a simple lookup:
1 The lookup cost arises from finding the appropriate record(s)

using searching and key matching.
2 The data movement costs arises from sending the query and

receiving the result.

Which of these schemas might increase performance:
1 R1(K,V) R2(K,V) versus R0(K,V) ?
2 A1(K,V1) A2(K,V2) versus A0(K,V1,V2) ?

Andy says ‘We should not need to know; the DBMS is clever enough to optimise for us
in all cases.’
Betty says ‘Having two copies stored increases read throughput.’
Charles says ‘Yes, but redundant data models should always be avoided.’
Doris says ‘Combining A1 and A2 into A0 reduces lookup costs.’

[NB: Time-stamped, journalled or backup copies are used to provided durability, but this is not
what we mean by redundancy in the last slide.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 92 / 171

‘Closure’ — a widely used term in Computer Science.
Closure: an iteration is repeated until there are no further changes (a
fixed-point is found).

Least F/P iteration example: division.

let divider(num, den, quot) = // Non-recursive!
if den * quot >= num then (num, den, quot)
else (num, den, quot+1)

The least fixed-point of a function is the first argument value that is
also its return value (intersects y=x).
To divide, say 100 by 8 we ask for the LFP of divider(100, 8, 0)
which will be (100, 8, 13).
We’ll talk about transitive closure in Lecture 7, adding further
edges to a graph until no further are needed for all paths to be
achievable in one step.
Normal-form conversion is also a closure iteration.

[NB: This slide is mostly an aside to discuss general principles.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 93 / 171

Normal form representation — Generic definition.

For many forms of data, a unique normal form for that information
can be defined.
To achieve it, information-preserving, reorganisation/rewriting
rules (transforms) are applied until closure.
A typical rule might be: swap a commutative operator’s arguments
over if lexographical ordering of the arguments is not observed.
For example (x + 2)(x + y + x) might be normalised as
2x2 + 2x + xy + 2y based on multiplying out, sorting terms in
order of power and then sorting alphabetically.

[NB: Independently rewriting both the l.h.s. and r.h.s. of an equation until both
are in normal form and then checking for textual identity (ie. they are the
same) is one standard approach to mathematical proof.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 94 / 171

Normal form database schemas.
A normalised database is essentially one that has little or no redundant
data.

Typically, redundant relational databases have tables with too many attributes.
A good rule is that all table data should either be key or semantically depend on
the key.
If you can spot data that does not directly depend on the key (recall GP’s age
field), that part of the table should be split off into a separate table. This
procedure is then repeated on the new tables until closure.
‘Splitting off’ is essentially a division transform (ie. information-preserving
rewrite) that can be reversed using a join, which behaves like a multiplication.
Automated procedures have been mooted to convert databases into such
normal forms (3rd normal form or Boyce-Codd∗ normal form etc.).
But computers cannot really understand what ‘semantically depends’ means so
doing a good job of Entity-Relationship modelling in the first place, or
manual decomposition, is generally preferable.
Reducing redundancy facilitates higher update throughput.

*You only need to know that data should ideally be ‘functionally’ or ‘semantically’
dependent on the primary key. The subtleties of 3NF vs. BCNF etc. are off the
syllabus.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 95 / 171

Redundancy/Consistency/Throughput trade off.

Little/no
redundancy

Highly
redundant

Atomic
consistency

Eventual
consistency

High read/query
throughput

High write/update
throughput

ACID BASE

Imprecise
notion of
writing!

Unlocked
reads?

Low redundancy gives good update
throughput (need only lock a few
data items).
High redundancy gives good query
times (fewer files/blocks need be
accessed).

Data redundancy can lead to stored data inconsistency if updates are not
thorough.

Unlocked reading can give the impression of inconsistent data stored (eg. packet
tracked as at depot and on van).

Precomputing answers to common queries (either fully or partially) can greatly
speed up query response time: introduces redundancy, but useful for some
read-intensive applications. This is an approach common in aggregate-oriented
databases.

[NB: DBMS design is multi-dimensional and no 2-D projection defines the whole space.

eg. Suppose only one updater?]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 96 / 171

Throughput: Why read-oriented databases?

A fundamental tradeoff
Introducing data redundancy can speed up read-oriented transactions
at the expense of slowing down write-oriented transactions.

Something to ponder
How do database indexes demonstrate this point?

Situations where we might want a read-oriented database
1 Your data is seldom updated, but very often read.
2 Your reads can afford to be mildly out-of-synch with the

write-oriented database. Then consider periodically extracting
read-oriented snapshots and storing them in a database system
optimised for reading. The following two slides illustrate examples
of this situation.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 97 / 171

Example : Hinxton Bio-informatics

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 98 / 171

Example: Embedded databases

Embedded Database

Read−optimized
Normalized Database

fast updates

Extract

table−driven applications

Device

An embedded database system is a database management system
which is tightly integrated with an application software; it is embedded
in the application — web: Wikipedia.
For instance: a different SELECT from the main staff table might be
held in each electronic door lock.
FIDO = Fetch Intensive Data Organisation

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 99 / 171

https://en.wikipedia.org/wiki/Embedded_database

OLAP vs. OLTP.
OLAP — Online Analytical Processing

Write once or journal/ledger updates.

Commonly associated with terms like Decision Support, Data
Warehousing, etc..

OLTP — Online Transaction Processing

A rich mix of queries and updates to live data.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimised for reads updates
data redundancy high low

database size humongous large

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 100 / 171

OLAP vs. OLTP (continued).
Processing power:

Historically, available computing power motiviated a clear distinction between OLAP and
OTAP. Bridge using ETL — Extract from OLTP, Transform, Load into OLAP).

Today, both OLAP and OLTP applications often are supported by one DBMS [web: IBM].

Update history:
An update to a relational database occludes the previous value of a field.

A revision control system (eg. git) stores the update history — an additional dimension to
the stored data/documents.

Even for OLTP, an update history within a limited time horizon is always stored for ACID
durability (and audit trails etc. ...).

Further dimensions∗:
Looking at historic versions of a 2-D table makes it a cube.

The data (hyper-)cube model∗ adds further dimensions where the indivdual contributions
to a value in a table (eg. a total of something) can be seen.

Summing (group-by then scalar reduction) in different dimensions gives the same result
(eg. summing by region, salesperson or paint colour).

* = no longer on the syllabus or examinable.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 101 / 171

https://www.ibm.com/cloud/blog/olap-vs-oltp

Example: Data Warehouse (Decision support)

fast updates

Data Warehouse

business analysis queries

Operational Databases

ETL

ETL = Extract, Transform, and Load

[This looks very similar to slide 99!]
Slide 99 stored data optimised for a priori known queries. Size
would be an issue for embedded use.
Here data is pre-processed in many/every conceivable way for
visualisation and exploration by (typically) human agents.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 102 / 171

Lecture 6 - Semi-structured Document Databases

Semi-structured data.
NoSQL movement.
Document-oriented databases.
Denormal and BASE possible advantages.

An example database: TinyDB .
Path query languages and ad hoc HLL access.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 103 / 171

Semi-structured data.

[web: ONLINE]

A textbook such as the one illustrated is a
document written in natural language (English)
but it has some structure:

There are chapters with names that
contain numbered sections and
sub-sections.
There are figures and diagrams that have
their own numbering system.
There are extensive cross references
between one section and another, etc..
But it would be far too much work to
manually index every word of text: a task
unlikely to be useful and also
poorly-defined.

What can sensibly or usefully be stored in a database?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 104 / 171

https://www.cl.cam.ac.uk/~djg11/pubs/modern-soc-design-djg

Two approaches
Either

Store in two parts:
Keep the document in its native form (LaTeX, Word, PDF...),
Store the indexable features in relational tables.

or

Store just once, perhaps shredded, and use something instead
of SQL for queries:

Keep the document largely in native form (especially XML, JSON),
Develop database tools that can navigate semi-structured data.
These must return best-effort query answers, given that ‘schema’
violations could be frequent.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 105 / 171

Adding Structure to Unstructured Documents
Real-world data is often analogue and/or noisy

Natural Language

Processing (NLP)

Thriller

Textbook

Murder-mystery

Sitcom

Romcom

Children’s

...

French

English

Java

Polish

...

Document

type

Book

Screenplay

Poem

Contract

Invoice

Recipe

News report

Restaurant menu

...

Genre enumeration

Ingredients

Cooking time

Allergy warnings

Main meal/snack/breakfast

Character names
Locations: country and town
Season and episode

... the four children are sent to Smuggler’s Top, the home

of Mr. Lenoir, a fellow-scientist of George’s father,

Uncle Quentin. Smuggler’s Top is a queer house at

the summit of an old hilltop coastal ...

Language

Plain

text

doc

- Human curators or automatic tools can remove noise, discard
spurious data, index and classify, correct spellings etc..

- The document is carved up and marked up for storage.
- Simple keyword-based analysis or LLM/advanced NLP analysis.
- The original can be unshredded, as and when necessary.

[NB: Such NLP techniques are not examinable for this course.]
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 106 / 171

BASE - Soft state & Eventual consistency

Orthogonal aspects:
- Tables vs. Documents.
- Distributed vs. centralised (monolithic).
- ACID vs. BASE.

Despite orthogonality, document databases are typically designed
to be easy to distribute and to not support ACID transactions.
Any or all ACID properties are relaxed, giving BASE:

I BAse: Basically available: availability promoted over consistency.
Any change in data made at one point is promulgated to all the
different nodes.

I Soft State: stored values may change without any application
intervention owing to eventual consistency updates or network
partition.

I Eventual Consistency: all readers throughout the system will
eventually see the same state as each other.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 107 / 171

Key/Value Store

Recall the associative store (dictionary) from Lecture 1: the values
stored could be generalised from strings to blobs, which are just
sequences of bytes.

Any structure inside the blobs is opaque to the key/value store.
Many implementations are distributed, spreading the data
randomly over all participating machines as shards.
Opaqueness implies the DBMS knows nothing about what is
stored – it would not mind if values were encrypted and it never
saw the encryption keys.
Distribution provides redundancy∗ and load balancing (eg. by a
hash of the key).
Implementations can range between ACID and BASE semantics.

[* The redundancy here is to help provide ACID durability and is nothing to do
with schema redundancy.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 108 / 171

Serialising (marshalling or pickling) an object.

Serialising: converting a data structure into a series of bytes for
transfer over a network or storing in a file.

JSON was originally designed for serialising data.
XML was designed for serialising and marking up a
human-readable document so different parts could be located or
processed in different ways.
Both are frequently used for transferring data between databases
or apps (CSV also commonly used).
But NoSQL may use them as the primary form of a document to
be stored.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 109 / 171

Abstract Syntax (formal spec) of XML and JSON
Formal specifications using ML-like concrete syntax where ulist is the same as list except the order is unimportant and keys
cannot be repeated (ie a dictionary).

Examples
XML: <PERSON name="Greaves"><DOB month="May" year="1902"/></PERSON>
JSON: "person":{"name":"Greaves","dob":{"month":"May","year":"1902"}}

Slightly simplified abstract syntaxes (grammars):
type xml_t = // XML stands for eXtensible Markup Language
| ELEMENT of string * (string * string) ulist * xml_t list
| LEAF of string

type json_t = // JSON stands for JavaScript Object Notation
| LEAF_S of string
| LEAF_N of integer
| ARRAY of json_t list
| OBJECT of (string * json_t) ulist
| NULL

Important fact: they both contain tree-structured text with named
nodes and hence are broadly similar.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 110 / 171

XML – Structured or Unstructured?
Structure spectrum:

1 All data in one large element,
2 Semi-structured: some elements contain a lot of text (clob ?), others contain an

atomic value (as per RDBMS),
3 Every atomic value in its own element (unrealistic).

XML documents may associated with a (DTD or W3C [not exminable]) schema:

Schema rigorousness spectrum:
1 A schema, named with a URL exists. The schema dictates precisely the element

names and which elements may be allowed inside which others along with
occurrence limits, Allowable attributes are also named.

2 The schema is relaxed: eg. the order of elements inside a parent element is
unimportant,

3 Other attribute or elements, beyond those in the schema are also allowed
(eg. application-specific extensions),

4 There’s no schema at all.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 111 / 171

Document-oriented database systems
- A document-oriented database stores data in the form of

semi-structured objects. Such database systems are also called
aggregate-oriented databases.

Un-structured data:
The key/value DBMS just mentioned could store unstructured documents.

In any application, there is likely to be some application-level structure within the
blobs,

but this cannot be exploited by the DBMS.

- Query of a distributed database encounters a round-trip time.

- Denormalised data is not directly semantically-related to the key it is
stored under (as we hinted for rDBMS).

- A denormal DBMS enables us to rapidly pull much or all of the data
likely to be needed using one key.

- One or two fetches of denormal data should enable all sorts of fast, local
operations (select, join etc.) in an application-specific way.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 112 / 171

Document query languages

All sorts of queries are possible:
Query unstructured text (eg. How many words? What is the
FOG factor? Does it mention Kevin Bacon?)
Query tags (eg. What are the ‘eye-colour’ attributes to each of the
‘Vizier’ elements under the second ‘Chapter’ element?)
Application-specific compositions of these.

- So although there are standards such as Xpath [web], instead using general
high-level languages to formulate queries is common.

- Ideally write queries in a declarative language since imperative programming
defeats future automated query optimisation.

- The ‘database’ itself may support a variety of inverted indices or re-normalised
data (example shortly).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 113 / 171

https://en.wikipedia.org/wiki/Gunning_fog_index
https://www.w3schools.com/xml/xpath_syntax.asp

Typical document query languages: eg. XPath
We need to navigate a semi-structured tree, aggregating various bits:

type pathexp_t = // Typical query abstract syntax
| SelectRoot // Whole thing
| SelectAttribute of pathexp_t * string // v in string="v"
| SelectElement of pathexp_t * predicate // <EL> ... </EL>
| NextElement of pathexp_t * int // Fwd or back by n
| SelectData of pathexp_t * ranges // Chunks of raw text
| Concatenate of pathexp_t * pathexp_t // Aggregation
| ...

If we have more than one tree, something equivalent to a join is also
needed.

What is the return type of a query? SelectRoot clearly gives a whole
tree whereas SelectAttribute just gives one string...

Some say “Shucks, who needs types!” , but algebraic data types can
help [Part Ib Concepts Course]. We’ll use TinyDB ().

[NB: pathexp_t details not examinable.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 114 / 171

NoSQL Movement (1)

‘Horizontally scalable’ — expand by adding further machines (not
upgrading existing machines).
[Is there a typo in their last line?]
Can there really be schema-free, typeless programming?
“There’s a sketch on the whiteboard in Fred’s office. It is slightly wrong because

every tenth item in the list is actually a height and not a pointer to a wombat. Oh
dear, I didn’t know building management had installed new whiteboards over the
summer!”
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 115 / 171

Different key nestings of (semi-)structured data.
- Here is some relation data [web] with composite key A B.
- To support rapid retrieval of all likely related data using different

keys, we precompute and store several of them.
- This replication factor multiplies with any replication arising from

the data being denormal.
Here the "A" value is unique and at the top of tree.

{ "A": a1, "X": x1,
"R": [{"B": b1, "Z": z1, "Y": y1},

{"B": b2, "Z": z2, "Y": y2},
{"B": b3, "Z": z3, "Y": y3}],

"Q": [{"B": b4, "Z": z4, "W": w1}]
}

{ "A": a2, "X": x2,
"R": [{"B": b1, "Z": z1, "Y": y4},

{"B": b3, "Z": z3, "Y": y5}],
"Q": []

}

{ "A": a3, "X": x3,
"R": [],
"Q": [{"B": b2, "Z": z2, "W": w2},

{"B": b3, "Z": z3, "W": w3}]
}

Same data, "B" value is now above "A" in the tree.

{ "B": b1, "Z": z1,
"R": [{"A": a1, "X": x1, "Y": y2},

{"A": a2, "X": x2, "Y": y4}],
"Q": [] }

{ "B": b2, "Z": z2,
"R": [{"A": a1, "X": x1, "Y": y2}],
"Q": [{"A": a3, "X": x3, "Y": w2}] }

{ "B": b3, "Z": z3,
"R": [{"A": a1, "X": x1, "Y": y3},

{"A": a2, "X": x2, "Y": y5}],
"Q": [{"A": a3, "X": x3, "Y": w3}]}

{ "B": b4, "Z": z4, "R": [],
"Q": [{"A": a1, "X": x1, "Y": w1}] }

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 116 / 171

https://www.cl.cam.ac.uk/teaching/2223/Databases/djg-materials/denormal-data-has-nulls.pdf

TinyDB database IMDB snapshot

This will be used for the 2nd Assessed Exercise (tick).
- In-core, using JSON (not XML) and queried using Python.
- No support for transactions, hence easy(?) to implement a

distributed/sharded version (we won’t).
- Two primary, denormal tables (Movies and People).
- Unstructured text for Goofs, Trivia, Quotes etc. (now present).
- Data needs to indexed on various keys (keys must still be unique).
- Some fields are foreign keys, so key integrity is still expected, but

it is not enforced.

Note: the database wouldn’t stop you or even notice if you decided to put a person in
the Movie table/collection; they are just names to help the programmer and provide
logical separation, unlike SQL tables that enforce structure.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 117 / 171

TinyDB : Example person record.

person_id nm0031976 maps to
{ ’person_id’: ’nm0031976’,

’name’: ’Judd Apatow’,
’birthYear’: ’1967’,
’acted_in’: [

{’movie_id’: ’tt7860890’, ’roles’: [’Himself’],
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’directed’: [
{’movie_id’: ’tt0405422’,
’title’: ’The 40-Year-Old Virgin’, ’year’: ’2005’}],

’produced’: [
{’movie_id’: ’tt0357413’,
’title’: ’Anchorman: The Legend of Ron Burgundy’, ’year’: ’2004’},

{’movie_id’: ’tt5462602’,
’title’: ’The Big Sick’, ’year’: ’2017’},

{’movie_id’: ’tt0829482’, ’title’: ’Superbad’, ’year’: ’2007’},
{’movie_id’: ’tt0800039’,
’title’: ’Forgetting Sarah Marshall’, ’year’: ’2008’},

{’movie_id’: ’tt1980929’, ’title’: ’Begin Again’, ’year’: ’2013’}],
’was_self’: [

{’movie_id’: ’tt7860890’,
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’wrote’: [
{’movie_id’: ’tt0910936’,
’title’: ’Pineapple Express’, ’year’: ’2008’}]

}

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 118 / 171

TinyDB : Example movie record.

movie_id tt1045658 maps to
{ ’movie_id’: ’tt1045658’,

’title’: ’Silver Linings Playbook’,
’type’: ’movie’,
’rating’: ’7.7’,
’votes’: ’651782’,
’minutes’: ’122’,
’year’: ’2012’,
’genres’: [’Comedy’, ’Drama’, ’Romance’],
’actors’: [

{’name’: ’Robert De Niro’, ’person_id’: ’nm0000134’,
’roles’: [’Pat Sr.’]},
{’name’: ’Jennifer Lawrence’, ’person_id’: ’nm2225369’,
’roles’: [’Tiffany’]},
{’name’: ’Jacki Weaver’, ’person_id’: ’nm0915865’,
’roles’: [’Dolores’]},
{’name’: ’Bradley Cooper’, ’person_id’: ’nm0177896’,
’roles’: [’Pat’]}],

’directors’: [
{’name’: ’David O. Russell’, ’person_id’: ’nm0751102’}],

’producers’: [
{’name’: ’Jonathan Gordon’, ’person_id’: ’nm0330335’},
{’name’: ’Donna Gigliotti’, ’person_id’: ’nm0317642’},
{’name’: ’Bruce Cohen’, ’person_id’: ’nm0169260’}],

’writers’: [{’name’: ’Matthew Quick’, ’person_id’: ’nm2683048’}]
}

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 119 / 171

But how do we query TinyDB ?

... write python code:

>tdb_people.get(Query().person_id == ’nm0000002’)
{’person_id’: ’nm0000002’,
’name’: ’Lauren Bacall’,
’birthyear’: 1924,
’deathyear’: 2014,
’acted_in’: [{’movie_id’: ’tt0276919’,

’title’: ’Dogville’,
’year’: 2003,
’roles’: [’Ma Ginger’]}]}

This is a Python dictionary representing a person JSON document. It’s
not quite JSON: note the single-quotes.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 120 / 171

Quick, in-lecture

Things to think about (for Tick 2):
- When we write our Python we’re doing query planning. What did

we take into account? Did we make an index first?
- Imagine an actor’s name has been systematically misspelled.

What is the cost of correcting it in a document database? Should
it even be corrected?

- An RDBMS query involves 3 joins. What affects the cost of the
same query in TinyDB ?

- What sort of checks should be associated with inserting new
data?

- Which of the ACID properties might be relatively easy to
implement? [You’ll be better placed to answer this after the Part Ib CCDS
course.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 121 / 171

Branded types – an opposite to semi-structured.
- Databases hold a lot of strings and numbers.

- Many are members of enumerations: eg. colour, gender ...

- Many are units of measure (UoM): eg. date, weight_kg, weight_lbs ...

- Should we make types overt?

type velocity_t = branded float;
val speed_of_light:velocity_t = 2.998e8;

type distance_t = branded float;
val bognor_to_romsey:distance_t = 45.2;
val romsey_to_paris:distance_t = 212.4;
val bognor_to_paris = bognor_to_romsey + romsey_to_paris;

val journey_time = bognor_to_paris / speed_of_light;
(* All ok so far *)

val nonsense_value = journey_time + bognor_to_romsey;

*** Error: dimensionally-unsound expression input!

- Many silly operations on data can be prevented.

- Being the key to another table is a sort of type.

[NB: I’ve used a made-up language that is not examinable.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 122 / 171

The NoSQL schema-free ideal (grail) ?

- “No schema” really means “not stored as part of the database or
checked during update”.

- For most activities, there will inevitably still be a schema - perhaps
on a whiteboard, scrap of paper or stored in somebody’s head.

- New joiners to a software project have to learn the schema
somehow. The DBMS does not help.

- Poor education? — “Typeless languages don’t use a keyboard to
type them in” [web: Have the tables turned on NoSQL?].

Commercial success(?) of Javascript, Ruby, Python, PHP, and
other dynamically-typed languages:

- Javascript is often just a compilation target and is being displaced
by WASM.

- Python types are now being used de rigueur (pioneered by J
Lehtosalo of this department).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 123 / 171

https://stackoverflow.blog/2021/01/14/have-the-tables-turned-on-nosql

Semi-structured, Aggregate and NoSQL Summary
There has been a lot of churn in this area:

+ Lemahieu, Broucke & Baesens pp. 275 notes Xpath’s ability to
return items at different levels requires recursive SQL to express
(next lecture).

+ In the noughties, a large number of new, XML- and web-related
standards were defined, eg. RDF, OWL, YAML, SOAP, XMLRPC...

- Although computing power and network bandwidth were
becoming cheaper, the move to human-readable representations
has lead to an order-of-magnitude inflation in data size and
parsing overhead compared with binary data exchange.

- Many traditional SQL-based systems were extended with NoSQL
features. Likewise, many NoSQL systems were extended with
traditional SQL features.

- Is ChatGPT a database?
NB: For document database Tripos questions, a well-argued answer can garner full
credit, even if completely disagreeing with the expected answer.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 124 / 171

Lecture 7 - Further SQL

Declarations always hold:

Recursive declarations
sometimes make sense:

(Hmm, no fixed point.)

Another look at SQL
Complexity of join.
What is a database index?
Two complications for SQL semantics

I Multi-sets (bags)
I NULL values

Transitive computations: Erdős (Kevin
Bacon) numbers.
Recursive SQL.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 125 / 171

Complexity of a Join?

Given tables R(A, B) and S(B, C), how much work is required to
compute the join R on S?

// Brute force appaoch:
// scan R
for each (a, b) in R {

// scan S
for each (b’, c) in S {

if b = b’ then create (a, b, c) ...
}

}

Worst case: requires on the order of | R | × | S | steps. But note that
on each iteration over R, there may be only a very small number of
matching records in S — only one if R’s B is a foreign key into S.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 126 / 171

We have already spoken of a table having an index.

An index is a data structure — created and maintained within a
database system — that can greatly reduce the time needed to locate
records.

// scan R
for each (a, b) in R {

// don’t scan S, use an index
for each s in S-INDEX-ON-B(b) {

create (a, b, s.c) ...
}

- Ia Algorithms presents useful data structures for implementing
database indices (search trees, hash tables and so on).

- The foreign key lookup can be performed in ∝ log |S| instructions
instead of ∝ |S| (linear).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 127 / 171

Remarks

Typical SQL commands for creating and deleting an index:

CREATE INDEX index_name on S(B)

DROP INDEX index_name

There are many types of database indices and the commands for
creating them can be complex.
Index creation is not defined in the SQL standards. It can
sometimes be done by a specialist team or automated.
While an index can speed up reads, it will slow down updates.
This is one more illustration of a fundamental database tradeoff.
The tuning of database performance using indices is a fine art.
In some cases it is better to store read-oriented data in a separate
database optimised for that purpose.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 128 / 171

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 129 / 171

Why Multisets?
Duplicates are important for aggregate functions (min, max, ave, count,
and so on). These are typically used with the GROUP BY construct.

sid course mark
ev77 databases 92
ev77 spelling 99
tgg22 spelling 3
tgg22 databases 100
fm21 databases 92
fm21 spelling 100
jj25 databases 88
jj25 spelling 92

group by
=⇒

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 130 / 171

Visualizing the aggregate function min

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

min(mark)
=⇒

course min(mark)
spelling 3

databases 88

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 131 / 171

Looking at this in SQL

select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
| spelling | 3 | 100 | 73.5000 |
+-----------+-----------+-----------+-----------+

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 132 / 171

What is NULL?

NULL is not the empty string “”.
NULL is a place-holder, not a value!
NULL is not a member of any domain (type),
This means we need three-valued logic.

Let ⊥ represent we don’t know!

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

v ¬v
T F
F T
⊥ ⊥

[NB: Similar logic systems and lattices are used in many areas of computer
science, such as digital logic simulation (Part Ib Verilog) or checking whether
an expression is constant (Part II Optimising Compilers).]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 133 / 171

NULL can lead to unexpected results
select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
ev77	Eva	18
fm21	Fatima	20
jj25	James	19
ks87	Kim	NULL
+------+--------+------+

select * from students where age <> 19;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
+------+--------+------+

select ... where P

The select statement only returns those records where the where
predicate evaluates to true.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 134 / 171

The ambiguity of NULL
Possible interpretations of NULL

There is a value, but we don’t know what it is.
No value is applicable.
The value is known, but you are not allowed to see it.
...

A great deal of semantic muddle is created by conflating all of these
interpretations into one non-value.

“I don’t have a sister, and nor does my friend. If "NULL =
NULL" then we have a common sister, and are therefore re-
lated!” — Matt Hamilton, 2009.

Avoided by SQL equality definition: ‘NULL is not equal (=) to anything
— not even to another NULL.’

On the other hand, introducing distinct NULLs for each possible
interpretation leads to very complex logics ...

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 135 / 171

SQL’s NULL has generated endless controversy

C. J. Date [D2004], Chapter 19
“Before we go any further, we should make it very clear that in our
opinion (and in that of many other writers too, we hasten to add),
NULLs and 3VL are and always were a serious mistake and have no
place in the relational model.”

In defense of Nulls, by Fesperman
“[...] nulls have an important role in relational databases. To remove
them from the currently flawed SQL implementations would be
throwing out the baby with the bath water. On the other hand, the
flaws in SQL should be repaired immediately” [web: Are Nulls Evil?].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 136 / 171

https://www.cl.cam.ac.uk/teaching/2223/Databases/djg-materials/MWragg_Are_Nulls_Evil_A_Discussion.pdf

How can we select on null then?

With our small database, the query

SELECT note FROM credits WHERE note IS NULL;

returns 4892 records of NULL.

The SQL ‘IS NULL’ predicate:
Being a predicate, the expression ‘foo IS NULL’ is either true or
false

- true when foo is the NULL value,
- false otherwise.

[NB: There is also the ‘IS NOT NULL’ predicate in SQL, which returns the
opposite value (negated answer).]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 137 / 171

Flaws? One example of SQL’s inconsistency.

Furthermore, the query

SELECT note, count(*) AS total
FROM credits
WHERE note IS NULL GROUP BY note;

returns a single record

note total
---- -----
NULL 4892

We have one group. This seems to mean that NULL is equal to NULL.
But we have defined that NULL is not equal to NULL!

[NB: Infact, ‘NULL = NULL’ returns ‘NULL’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 138 / 171

[Erdős or] Bacon Number

P. Erdős (maths) and K. Bacon (acting) are the origins. We’ll ignore
maths.

Kevin Bacon has Bacon number 0.
Anyone acting in a movie with Kevin Bacon has Bacon number 1.
For any other actor, their Bacon number is calculated as follows.
Look at all of the movies the actor acts in. Among all of the
associated co-actors, find the smallest Bacon number k . Then the
actor has Bacon number k + 1.

Let’s try to calculate Bacon numbers using SQL.

First, what is Kevin Bacon’s person_id?
select person_id from people where name = ’Kevin Bacon’;

Result is “nm0000102”.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 139 / 171

Function composition and relation composition
Function composition operator:
Given two functions, f and g,

- If f (g(x)) = y then (f ◦ g)(x) = y (mathematics definition).
- let compose (f, g) = fun x -> f(g x) (ML definition).

Relation composition operator:
Given two binary relations

R ⊆ S × T
Q ⊆ T × U

their composition is Q ◦ R ⊆ S × U where

Q ◦ R ≡ {(s, u) | ∃t ∈ T .(s, t) ∈ R ∧ (t , u) ∈ Q}

[Aside: In some ML dialects, the circle operator is built in, for example ‘o’ in
standard ML and ‘»’ in F#.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 140 / 171

Partial functions as relations

Functions of one argument are special cases of relations:
- A relation R where, if (s, t1) ∈ R and (s, t2) ∈ R implies that

t1 = t2, defines a function (could be total or partial).

- Hence, the composition of functions is a special case of the
composition of relations.

- The definition of ◦ for relations and functions is equivalent for
relations that represent functions.

If we write Q ◦ R as R on2=1 Q we see that joins are a generalisation
of function composition; generalised in that they cope with relations
and not just functions.
[NB: When mathematicians speak of ‘functions’ they mean total functions: those

which give a single result for every value in their domain. A partial function, on the
other hand, may not be defined for some input values. A relation can give multiple
‘answers’ for the same ‘input’.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 141 / 171

Directed Graphs

G = (V , A) is a directed graph, where
V a finite set of vertices (also called nodes).
A is a binary relation over V . That is A ⊆ V × V .
If (u, v) ∈ A, then we have an arc from u to v .
The arc (u, v) ∈ A is also called a directed edge, or a
relationship of u to v .

V = {E ,B,C,D}
A = {(E , B), (E , D), (B, C), (C, C)}

BE C D

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 142 / 171

Composition example
A = {(E, B), (E, D), (B, C), (C, C)}

BE C D

A ◦ A = {(E , C), (B, C), (C, C)}

BE C D

Elements of A ◦ A represent paths of length 2
(E , C) ∈ A ◦ A by the path E → B → C

(B, C) ∈ A ◦ A by the path B → C → C

(C, C) ∈ A ◦ A by the path C → C → C

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 143 / 171

Iterated composition and paths.

Suppose R is a binary relation over S, R ⊆ S × S. Define iterated
composition as

R1 ≡ R
Rn+1 ≡ R ◦ Rn

Let G = (V , A) be a directed graph. Suppose v1, v2, · · · vk+1 is a
sequence of vertices. Then this sequence represents a path in G of
length k when (vi , vi+1) ∈ A, for i ∈ {1,2, · · · k}. We will often write
this as

v1 → v2 → · · · vk

Observation
If G = (V , A) is a directed graph, and (u, v) ∈ Ak , then there is at least
one path in G from u to v of length k . Such paths may contain loops.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 144 / 171

Shortest path

Definition of R-distance (hop count)
Suppose s0 ∈ π1(R) (ie. there is a pair (s0, s1) ∈ R).

The distance from s0 to s0 is defined as 0.
If (s0, s1) ∈ R, then the distance from s0 to s1 is 1.
For any other s′ ∈ π2(R), the distance from s0 to s′ is the least n
such that (s0, s′) ∈ Rn.

We will think of the Bacon number as an R-distance where s0 is Kevin
Bacon. But what is R?

[NB: By π1 we mean extracting the first field, since πk is the k th projection
function.]
[NB: This is the ‘single-source’ shortest path problem. Algorithms Ia also
considers all-sources shortest path problem.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 145 / 171

Let R be the co-actor relation

DROP VIEW IFEXISTS coactors;

CREATE VIEW coactors AS
SELECT DISTINCT p1.person_id AS pid1,

p2.person_id AS pid2
FROM plays_role AS p1
JOIN plays_role AS p2 ON p2.movie_id = p1.movie_id

;

On a recent copy of our database, this relation contained 18,252 rows.
Note that this endorelation is reflexive and symmetric.

[NB: Recall the DISTINCT keyword eliminates duplicates from the default
multi-set.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 146 / 171

SQL: Bacon number 1

DROP VIEW IF EXISTS bacon_number_1;

CREATE VIEW bacon_number_1 AS
SELECT DISTINCT pid2 AS pid,

1 AS bacon_number
FROM coactors
WHERE pid1 = ’nm0000102’ AND pid1 <> pid2;

Remember Kevin Bacon’s person_id is nm0000102.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 147 / 171

SQL: Bacon number 2

DROP VIEW IF EXISTS bacon_number_2;

CREATE VIEW BACON_number_2 AS
SELECT DISTINCT ca.pid2 AS pid,

2 AS bacon_number
FROM bacon_number_1 AS bn1
JOIN coactors AS ca ON ca.pid1 = bn1.pid
WHERE ca.pid2 <> ’nm0000102’ AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_1));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 148 / 171

SQL: Bacon number 3

DROP VIEW IF EXISTS bacon_number_3;

CREATE VIEW bacon_number_3 AS
SELECT DISTINCT ca.pid2 AS pid,

3 AS bacon_number
FROM bacon_number_2 AS bn2
JOIN coactors AS ca ON ca.pid1 = bn2.pid
WHERE ca.pid2 <> ’nm0000102’ AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_1))

AND
NOT(ca.pid2 IN (SELECT pid FROM bacon_number_2));

You get the idea...
Let’s do this all the way up to bacon_number_9.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 149 / 171

SQL: Bacon number 9

DROP VIEW IF EXISTS bacon_number_9;

CREATE VIEW bacon_number_9 AS
SELECT DISTINCT ca.pid2 AS pid,

9 AS bacon_number
FROM bacon_number_8 AS bn8
JOIN coactors AS ca ON ca.pid1 = bn8.pid
WHERE ca.pid2 <> ’nm0000102’
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_1))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_2))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_3))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_4))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_5))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_6))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_7))
AND NOT(ca.pid2 in (SELECT pid FROM bacon_number_8));

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 150 / 171

SQL: Bacon numbers
DROP VIEW IF EXISTS bacon_numbers;

CREATE VIEW bacon_numbers AS
SELECT * FROM bacon_number_1
UNION
SELECT * FROM bacon_number_2
UNION
SELECT * FROM bacon_number_3
UNION
SELECT * FROM bacon_number_4
UNION
SELECT * FROM bacon_number_5
UNION
SELECT * FROM bacon_number_6
UNION
SELECT * FROM bacon_number_7
UNION
SELECT * FROM bacon_number_8
UNION
SELECT * from bacon_number_9 ;

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 151 / 171

Bacon Numbers, counted

SELECT bacon_number, count(*) AS total
FROM bacon_numbers
GROUP BY bacon_number
ORDER BY bacon_number;

Results
BACON_NUMBER TOTAL
------------ -----

1 12
2 110
3 614
4 922
5 381
6 123
7 86
8 16

bacon_number_9 is empty!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 152 / 171

Transitive closure
Suppose R is a binary relation over S, R ⊆ S × S. The transitive
closure of R, denoted R+, is the smallest binary relation on S such
that R ⊆ R+ and R+ is transitive. R+ being transitive means:

(x , y) ∈ R+ ∧ (y , z) ∈ R+ =⇒ (x , z) ∈ R+.

Then
R+ =

⋃
n∈{1, 2, ··· }

Rn.

Happily, all of our relations are finite, so there must be some k
with

R+ = R ∪ R2 ∪ · · · ∪ Rk .

Sadly, k will depend on the contents of R!
Conclude: we cannot compute transitive closure in the Relational
Algebra (or SQL without recursion).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 153 / 171

A ‘let rec’ for SQL enables recursion.

The WITH keyword in SQL allows a recursive declaration:
Does this have a least-fixed-point?

WITH R AS (SELECT 1 AS n)
SELECT n + 1 FROM R;

How about this one?

WITH countUp AS (SELECT 1 AS n
UNION ALL SELECT n + 1 FROM countUp WHERE n<3)

SELECT * FROM countUp;

[Recusive SQL not examinable in 22/23]. [web:SWLH]).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 154 / 171

https://medium.com/swlh/recursion-in-sql-explained-graphically-679f6a0f143b

Recursive Bacon SQL query

A fine student answer from jp2002 (22nd Nov 2022):

WITH RECURSIVE bacon(n,pid) AS
(SELECT 0 AS n, pid2 AS pid FROM coactors

WHERE pid1=’nm0000102’ AND pid1=pid2
UNION
SELECT n+1 AS n, c.pid2 AS pid FROM bacon
JOIN coactors AS c ON c.pid1 = pid WHERE

NOT(c.pid2 IN (SELECT pid FROM bacon)) AND n < 20
) SELECT n, COUNT(*)

FROM (SELECT min(n) AS n, pid FROM bacon GROUP BY pid)
GROUP BY n;

Boggle! Efficiency? This will be much easier in a graph database.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 155 / 171

Lecture 8: Graph-oriented Databases

Typically one big graph is stored (instance of an E/R diagram?)
Nodes have a type, a unique label (or several in Neo4J) and
properties.
Edges are directed between two nodes. They have a type,
optional label and properties.
Can collate by type to convert to rDBMS tables.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 156 / 171

We could simply store graphs in relational tables?

Rome

Verona

Bognor

Paris

Romsey

Italy

UK

France

L1 Rome

L2

L3

L4

L5

Bus

Plane

12

181

Null

33

Distance

Italy

UK

Verona

Verona

Bognor Romsey

Paris

Romsey Paris

Paris Bognor

Teleport

Plane

Bus

125

FormV2V1EIDTown Country

NODES EDGES

This is a small example.

Think of a million nodes

and considerably more

edges.

This is a unary relation:

the schema range and

domain type are both

towns.

One table for nodes and one for edges?
Need to name the edges (EID often artificial?).
Inefficient:

I All edges must be scanned to find the neighbour of a node.
I The ends are interchangable for undirected searches, so two fields

to examine.
I Queries involving many hops are painful in SQL (especially Kleene

star [Part Ia Algorithms]).
I Will typically need to store two inverted indexes to the edges

relation.
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 157 / 171

Binary and higher relations: one rDBMS table per
node type?

To avoid an EID, here the edges table is all-key.
rDBMS is not ideal for enormous, many-to-many relations.
For OLAP, a denormal representation would probably be used.
This binary relation is bipartite: two types of node; all edges go from one type to the other.

Rome

Verona

Bognor

Paris

Brussels

343

2

312

Rome

Genders

33

201

Core VocabLanguageTownTown Population

TOWNS OFFICIAL_LANGUAGE LANGUAGES

Bognor

Paris

Brussels

Brussels

Italian

English

French

French

Flemish

Brussels German

Language

Flemish

German

Italian

English

French

ItalianItalian 500,000 2

1,600,000 3

135,000 2

300,000 2.5

200,000 3

Edges relation

Modelling ternary relations?
Edges have two ends.

Earlier we stored Terry Nation as an attribute value.

Was the screenplay author a person? An attribute value may be a foreign key.

- Is this a good schema? Edges from edge attributes?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 158 / 171

Neo4j: Cypher immediate data entry.

Data is typically imported from external sources, but ...

Immediate Node Data:
CREATE (nm0000102:Person {name: ’Kevin Bacon’, birthyear:1958, deathyear:Null})
CREATE (nm0002002:Person {name: ’Sean Connery’, birthyear:1954, deathyear:2007})
CREATE (nm0012032:Person {name: ’Roger Moore’, birthyear:1927, deathyear:2017})
CREATE (tt0299478:Movie {title:’Dr No’, screenplay=’Richard Maibaum’, Time=’109 mins’})
CREATE (tt0299479:Movie {title:’Thunderball’, screenplay=’Richard Maibaum’, Time=’130 mins’})

Immediate Edge Data:
CREATE (nm0002002)-[:ACTED_IN {Role:’James Bond’}]->(tt0299478)
CREATE (nm0002002)-[:ACTED_IN {Role:’James Bond’}]->(tt0299479)

Edges and nodes have <primary name>:<type> and then
key/value properties.
All edges have a direction as stored.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 159 / 171

Graph data normalisation.

Do we want the role name to be the arc name?

(nm0000084)-[’Su Li-zhen’:PLAYS_ROLE]->(tt0212712)
(nm0000090)-[’Semyon’:PLAYS_ROLE]->(tt0765443)
(nm0000093)-[’Mickey O’Neil’:PLAYS_ROLE]->(tt0208092)

Hmm!
Arc names must be unique.
Modelling mistake since the same role name will appear in
remakes between different actors and movies.

Better:

(nm0000084)-[:PLAYS_ROLE {role:’Su Li-zhen’}]->(tt0212712)

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 160 / 171

Databases and Graph Databases
General points:

An arc type essentially models an E-R binary (or unary) relation.

Pattern matching on paths is supported.

Transitive closure is free ...

... many other common graph algorithms supported ...

Neo4J specific:
Edges, when created, need have no identifiers, so create is not idempotent?

Edges, as entered, are directed, but queries can treat them as un-directed.

Queries can be expressed as reusable functions with formal parameters (equally
possible for rDBMS).

Suffered some serious security vulnerabilities two year’s ago (equally possible
for rDBMS).

Regular expression matching on values violates value atomicity (yes, widely
done in SQL too!).

(Idempotent operation) ⇐⇒ (repeating it has no effect).
djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 161 / 171

Neo4j — example pattern-matching queries:
Path patterns contain constants and/or bind local variables a, b ...

(a)-->(b)
All pairs of nodes with
an edge from one to the
other.

(a:Person)-->(b:Movie)
Any type of edge between
any person and any film.

(*)-[:ACTED_IN]->(b)
Nodes at the end of any
edge of type ACTED_IN.

(a)--(b)
Any pair of nodes with an
edge between them in ei-
ther direction.

(a)--(b)--(c)-->(d)
Four (distinct? a=c?) con-
nected nodes.

(a)-[:ACTED_IN]->(b)
All pairs related by
ACTED_IN.

(*)-->(a)<--(*)
Any node with two or
more incoming edges.

(a:Person
{name:’Madonna’})-->
(*:Movie {title:t})
Node attribute matching
and binding.

(a:Person)-
[:ACTED_IN*]->(b)

Transitive matching.

The Kleene star matches a path of any length. Further syntax upper and/or lower
bounds the path length: eg. (a)-[*3..5]->(b).

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 162 / 171

Pattern matching. Example 1:

MATCH
(john {name: ’John’})-[:FRIEND]->()-[:FRIEND]->(fof)

RETURN john.name, fof.name

Resulting in:

+----------------------+
| john.name | fof.name |
+----------------------+
| "John" | "Maria" |
| "John" | "Steve" |
+----------------------+
2 rows

Friendship should surely be symmetric; shouldn’t John be his own FOF?

[neo4j.com/docs/cypher-manual/current/introduction].

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 163 / 171

https://neo4j.com/docs/cypher-manual/current/introduction

Pattern matching. Example 2: co-actors
Get all co-actors with

MATCH (p1:Person) -[:ACTED_IN]-> (m:Movie),
(p2:Person) -[:ACTED_IN]-> (m:Movie)

WHERE p1.person_id <> p2.person_id
RETURN p1.name AS name1, p2.name AS name2, count(*) AS TOTAL
ORDER BY total desc, name1, name2
LIMIT 10;

OR

MATCH (p1:Person) -[:ACTED_IN]-> (m:Movie) <-[:ACTED_IN]- (p2:Person)
WHERE ...

OR

MATCH (p1:Person) -[:ACTED_IN*2]- (p2:Person)
WHERE ...

Resulting in:

+---+
| name1 | name2 | total |
+---+
"Daniel Radcliffe"	"Rupert Grint"	8
"Kohl Sudduth"	"Tom Selleck"	8
"Rupert Grint"	"Daniel Radcliffe"	8
"Tom Selleck"	"Kohl Sudduth"	8

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 164 / 171

Graph Algorithms (are important)
Desire efficient support for a large number of graph algorithms and metrics.

- Breadth-first search, depth-first, shortest path, Page Rank, spanning trees,
articulation point, strongly-connected components, cliques, max flow ...

Metrics:
Community: Edge/node ratio, diameter,
how are nodes clustered, tree count...

Centrality: How important is each node or
link to the structure of the entire graph.

Similarity: How alike are two or more
nodes?

Prediction: How likely is it that a new arc
will be formed between two nodes?

Path finding: What is the “best” path
between two nodes?

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 165 / 171

Graph DBMS optimised for Big Data (will not fit in
core∗)“Data Science” queries.

This is a small metabolic network from Urinary metabolic signatures of human
adiposity (2015) [web].

Many biological networks derived from experiments have millions of nodes and edges.

Biologist interested in drug development “query” such graphs to find important structures.

* = An historic term for data being entirely stored in primary memory.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 166 / 171

https://stm.sciencemag.org/content/7/285/285ra62

Social networks

From Building Social Network Visualizations [web:sfm-ui].
Graph algorithms are used to recommend new friend links.

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 167 / 171

https://gwu-libraries.github.io/sfm-ui/posts/2017-09-08-sna

Neo4j: Example of path-oriented query in Cypher
MATCH path=allshortestpaths((m:Person {name : ’Jennifer Lawrence’})

-[:ACTED_IN*]-
(n:Person {name : ’Matt Damon’}))

RETURN path

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 168 / 171

Let’s count Bacon numbers with Neo4j/Cypher
MATCH paths=allshortestpaths(

(m:Person {name : "Kevin Bacon"})
-[:ACTED_IN*]-

(n:Person))
WHERE n.person_id <> m.person_id
RETURN length(paths)/2 AS bacon_number,

COUNT(distinct n.person_id) AS total
ORDER BY bacon_number;

bacon_number total
------------ -----
1 15
2 314
3 977
4 685
5 145
6 60
7 20
8 28
9 6

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 169 / 171

Graph-oriented DBMS optimisations:
In-core∗ databases can use pointers to implement referential links.
Big-data implementations will stream the edges past processing
elements (Pregel).

Convergence: Many SQL systems are optimising in-core table sets in
the same similar ways (fighting back) and users typically want SQL-like
access to node data.

[NB: This ‘Graph Algorithms’
[book] is available via the course
web site. Many algorithms overlap
with Ia Algorithms, but most content
is irrelevant for this course.]

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 170 / 171

https://www.cl.cam.ac.uk/teaching/2122/Databases/Neo4j_Graph_Algorithms.pdf

Last Slide!
What have we learned?

Having a conceptual model of data is very useful, no matter which
implementation technology is employed.
Investment in data model planning pays off well.
There is a trade-off between fast reads and fast writes.
There is no database system that satisfies all possible
requirements.
Staging between a principle storage model used for updates and
optimised views, clones or other alternatives for rapid query is
commonly used.
It is best to understand pros and cons of each approach and
develop integrated solutions where each component database is
dedicated to doing what it does best.
The future will see enormous churn and creative activity in the
database field!

djg11 (cl.cam.ac.uk) Introduction to DatabasesLectures 1 - 8 Ia DB 24/25 171 / 171

