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Random process
a sequence 𝑋0, 𝑋1, 𝑋2, … of random 
variables, typically not independent

Markov chain
a random process in which each 𝑋𝑖  is 
generated based only on the preceding 
value 𝑋𝑖−1

𝑋0 → 𝑋1 → 𝑋2 → ⋯ 

by the chain rule for probability

If we have a dataset of sequences, and we have a probability model (e.g. a RNN or a 
Transformer neural network) that computes Pr𝑋𝑖

(𝑥𝑖|𝑥0 ⋯ 𝑥𝑖−1), then we can fit it using 

maximum likelihood estimation.

Pr 𝑥0, 𝑥1, … , 𝑥𝑛 = Pr𝑋0
𝑥0  Pr𝑋1

𝑥1 𝑥0  Pr𝑋2
(𝑥2|𝑥0, 𝑥1) × ⋯ × Pr𝑋𝑛

𝑥𝑛 𝑥0 ⋯ 𝑥𝑛−1

Pr 𝑥0, 𝑥1, … , 𝑥𝑛 = Pr𝑋0
𝑥0  Pr𝑋1

𝑥1 𝑥0  Pr𝑋2
(𝑥2|𝑥1) × ⋯ × Pr𝑋𝑛

𝑥𝑛 𝑥𝑛−1

§11



Let 𝑋𝑡 be the full state of the system at time 𝑡. 
We’d like to use historical data to learn the 
dynamics (𝑋𝑡|𝑋𝑡−1 = 𝑥𝑡−1), so that we can 
simulate it.

Applications of Markov chains: dynamical systems



Applications of Markov chains: stable diffusion

Given an image, create a sequence with progressively more and more noise, until we get pure noise. 
Do this for many images, to create a training dataset of sequences. 

If we apply these dynamics to a new pure-noise image, we will generate a novel image. 

Reverse the sequences. Train a Markov chain to learn the dynamics (𝑋𝑡|𝑋𝑡−1 = 𝑥). 

𝑋6𝑋5𝑋4𝑋3𝑋2𝑋1𝑋0



“Guess who’s back”

Eminem
“Guess who’s back”
“Guess who’s back”
“Guess who’s back”
“Guess who’s back”
“Guess who’s back”
“Guess who’s back”
“Guess who’s back”
“Ta na na”



Joseph Fourier (1768-1830)



Two main results:

any function of a variable, whether 
continuous or discontinuous, can be 
expanded in a series of sines of multiples 
of the variable → Fourier transform

partial differential equation for conductive 
diffusion of heat 

→ heat diffusion depends on the distance 
from the heat source



Example 12.1.1: fitting a Markov model
Let [𝑥0, 𝑥1, … , 𝑥𝑛] be a time series which we 
believe is generated by

𝑋𝑖+1 = 𝑎 + 𝑏 𝑋𝑖 + 𝑁 0, 𝜎2 .
Estimate 𝑎, 𝑏, and 𝜎 using maximum likelihood 
estimation.



It’s simple to fit using sklearn.

This is a regression (i.e. supervised learning with numerical response).
It’s called ‘auto’ because we’re predicting 𝑥 using 𝑥 itself as a predictor.

Autoregressive modelling

To fit our model, we need to maximize this expression over 𝑎, 𝑏, 𝜎.

But this is exactly the same maximization as for the 
supervised learning task of predicting 𝑥𝑖 given 𝑥𝑖−1

using the model 𝑋𝑖 ∼ 𝑎 + 𝑏𝑥𝑖−1 + 𝑁(0, 𝜎2)

predictor response

𝑥0 𝑥1

𝑥1 𝑥2

𝑥2 𝑥3

⋮ ⋮

𝑥𝑛−1 𝑥𝑛
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Calculations with 
Markov chains



rain

drizzle grey

0.2

0.3

0.7

0.6

0.2

0.5

0.5

There are three ways to specify a Markov chain model.

STATE SPACE DIAGRAM TRANSITION PROBABILITY MATRIX

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑃𝑖𝑗 = ℙ
next state

is 𝑗
in state

𝑖

CAUSAL DIAGRAM

𝑋1 → 𝑋2 → 𝑋3 → ⋯

Each 𝑋𝑖  is generated based only on 
the preceding state 𝑋𝑖−1: 

If the state space is ℝ we can’t write out the full 
matrix so we instead specify Pr𝑋𝑡

(𝑥𝑡|𝑋𝑡−1 = 𝑥𝑡−1)

This is particularly used to describe diffusion models

Wait, diffusion like thermodynamics?!?!?





Horizontal steam boiler, Augsburg 
machines, early 19th century Joseph Fourier (1768-1830)
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Example 11.2.1
(Multi-step transition probabilities)
If it’s grey today, what’s the chance of rain 
two days from now?

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑋1 → 𝑋2 → 𝑋3 → ⋯



Law of Total Probability Law of Total Probability with baggage {𝐶 = 𝑐}

ℙ 𝐴 = 𝑎 𝐶 = 𝑐)

 = 

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏, 𝐶 = 𝑐) ℙ 𝐵 = 𝑏 𝐶 = 𝑐)

ℙ 𝐴 = 𝑎

 = 

𝑏

ℙ 𝐴 = 𝑎 𝐵 = 𝑏) ℙ(𝐵 = 𝑏)

Definition of independence
If 𝐴 and 𝐵 are independent then

Definition of conditional independence
If 𝐴 and 𝐵 are conditionally independent given {𝐶 = 𝑐} then

ℙ 𝐴 = 𝑎 𝐵 = 𝑏, 𝐶 = 𝑐) = ℙ 𝐴 = 𝑎 𝐶 = 𝑐)ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏 = ℙ(𝐴 = 𝑎)

Laws of probability that can help when working with Markov chains

Bayes’s rule

ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏

 =
ℙ 𝐴 = 𝑎  ℙ(𝐵 = 𝑏|𝐴 = 𝑎)

ℙ 𝐵 = 𝑏

ℙ 𝐴 = 𝑎 | 𝐵 = 𝑏, 𝐶 = 𝑐

 =
ℙ 𝐴 = 𝑎|𝐶 = 𝑐  ℙ(𝐵 = 𝑏|𝐴 = 𝑎, 𝐶 = 𝑐)

ℙ 𝐵 = 𝑏|𝐶 = 𝑐

Bayes’s rule with baggage {𝐶 = 𝑐}
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Calculating with Markov Chains

The chain is memoryless
𝑋0 → 𝑋1 → ⋯

i.e. each item is generated based only on 
the previous item

Whenever we’re doing calculations with Markov chains, we have 
to wrangle our expression into a form where we can use 
memorylessness (plus the transition probability matrix).

Often, this will involve conditioning using the Law of Total 
Probability.

The memorylessness theorem:
conditional on the present, 
the future is independent of the past.

ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2, 𝑋1 = 𝑥1, 𝑋0 = 𝑥0 = ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2)

ℙ 𝑋3 = 𝑥3 𝑋2 = 𝑥2, 𝑋0 = 𝑥0 =
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Technicalities (*non-examinable)

Formally, a Markov chain is defined by specifying the form of its likelihood function: ∀𝑥0, … , 𝑥𝑛
Pr 𝑥0, 𝑥1, … , 𝑥𝑛 = Pr𝑋0

𝑥0  Pr𝑋1
𝑥1 𝑥0  Pr𝑋2

(𝑥2|𝑥1) × ⋯ × Pr𝑋𝑛
𝑥𝑛 𝑥𝑛−1

From this, one can prove memorylessness results such as
Pr𝑋3

𝑥3 𝑋2 = 𝑥2, 𝑋1 = 𝑥1, 𝑋0 = 𝑥0 = Pr𝑋3
𝑥3 𝑋2 = 𝑥2)

and indeed the full memorylessness theorem.

If you’re ever stuck trying to prove a result about Markov chains, and if you can’t see a way to 
use memorylessness, try going back to basics in the form of the likelihood function.
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Exercise
Given that yesterday was rain, and tomorrow 
is rain, what’s the chance that today is 
drizzle?

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑋1 → 𝑋2 → 𝑋3 → ⋯



Why I’m excited about this sort of result (* non-examinable)

In science, we don’t just want to learn associations, we want 
to learn causal mechanisms.
▪ For example, smoking is associated with getting cancer … but perhaps 

smoking is protective against cancer, and the association is because of 
some hidden causal factor (e.g. genetics) that encourages smoking and 
also predisposes towards cancer.

In machine learning, we’re often presented with a supervised 
learning task (“learn to predict 𝑦 given 𝑥1 and 𝑥2”), and we 
don’t even think about the underlying mechanisms.
▪ If the causal mechanism is 𝑋1 → 𝑌 → 𝑋2, we can still train a supervised 

learning model to predict 𝑌 (as per the previous exercise)

▪ Open research question: how can we train ML systems to learn the 
causal mechanisms, rather than just associations?

𝒙𝟏 𝒙𝟐 𝒚

⋮ ⋮ ⋮



𝑍1 𝑍2 𝑍3

𝑋1 𝑋2 𝑋3

⋯

⋯

‘true’ state

noisy observed sequence

Hidden Markov models

▪ Uber collects precise logs (both 𝑧 and 𝑥) from a few drivers, so it 
can learn the full probability model for how 𝑍 and 𝑋 are generated 
using straightforward supervised learning

▪ Then, for regular trips (only 𝑥 data available), 
they can infer the posterior (𝑍|𝑋 = 𝑥) using Bayes’s rule

▪ (Alternatively, they can simply find the most likely 𝑧𝑇  
using the Viterbi algorithm)

For a hidden Markov model, the likelihood function Pr𝑋(𝑥) is nasty, and 
it’s pretty much impossible to learn the model from 𝑥 data. 

So why are hidden Markov models useful?

https://www.uber.com/en-GB/blog/mapping-accuracy-with-catchme/
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