§9.3 Hypothesis testing

Hypothesis testing asks whether a proposed probability model

H, could plausibly have generated the dataset.

histogram of t,
% The p-value is the probability that an outcome as extreme under H,

as what we actually saw might have come about by
chance, if Hy were true.

** Alow p-value suggests we should reject H,.

> Pog

o “Extreme” is measured by a test statistic t, which is up to
us to choose. the t we
actually saw

HypotheS|s testing Is good for questions that we can cast as HO : ¢ e dater W ?OMU’ bj @

“Does the evidence suggest rejecting Hy?” / mooked

= |s my probability model a good enough fit for the dataset? _
. 5 OWIN an’?é ﬁf\ mad r(ﬂj.s
= |s my new algorithm better than the standard one- oM p “‘j jr
. . . 3 m
Doe? this new Ul -allow users to do their task faster than before- i all jrm/,os co,,m frmm
= |s this drug effective, compared to placebo? b aume diseribution

There’s a common way to set out hypothesis tests for comparing groups (as well as for many similar tasks),
called the Neyman-Pearson approach.

B . . O-_Q_WMA wwo(b(.
Neyman-Pearson hypothesis testing ‘. ¢~ NCa,6?)

Let x be the dataset. Yo ~ N (b, UA)

2, A~ N(c,0*
Propose a general parametric model H;, and ¢ (e,)

express H, as a restriction on one or more . —b=c ke N(,a*‘\
parameters Ho: a=b . Bl sawples M
1. Choose a test statistic based on mle ’\—’ A - A - concat-(x, y, z)
: a =X M
estimates of the parameters of Hy and H; . yele s
b = y vwelw Hl
2. Define a random synthetic dataset X, what $ =z

we might see if Hy were true.
CoWN T ravent o "3(6 Sf'q.f'lsﬁc \15[(9 ML{(ﬁ\ll’

3. Let p be the probability (assuming H,, to be powomesey). which ¢ (bl fo be b”a of 6 s ﬁa/xe
true) of seeing t(X™) as or more extreme

than the observed t(x). More ﬂo\w%(/ly

al % (J’J'“ ’H)
A low p-value is a sign that H, should be ¢ = ,-gam H, f '

rejected.
J xﬂ:‘s‘“o P (ohedo |Ha

Exercise 9.3.2 (Equality of group means).
We are given three groups of observations from
three different systems

=[7.2,7.3,7.8,8.2,8.8,9.5]
y = [8.3,8.5,9.2]
= [7.4,8.5,9.0]

Do all three groups have the same mean?

his€. *‘ SQM(‘A ¢

observed €

»fa -cJ
/ § af:rf}(lfa:ndolﬂi
Test sl‘akslﬂc
__ + (—/ﬂ 4 (C L
k \/ o onecter Ha

1. Define test statistic

def t(x,y,z):
i = np.mean(np.concatenate([x,y,z1))
a,b,c = [np.mean(v) for v in [x,y,z]]
return (a-pu)**2 + (b-p)**2 + (c-p)**2

2. To generate a synthetic dataset, assuming H,

Xyz = np.concatenate([x,y,z])

f = np.mean(xyz)

6 = np.sqrt(np.mean((xyz-fi)*x2))

def rxyz_star():

return (np.random.normal(size=len(x), loc=fi, scale=4),

np.random.normal (size=1en(y), loc=fi, scale=d),
np.random.normal(size=1en(z), loc=fi, scale=d))

3. Sample the test statistic, find the p-value
t_ = np.array([t(*xrxyz_star()) for _ in range(10000)])

p = np.mean(t_>=t(x,y,z))

EXERCISE.
Consider the data for IA student marks. m

a. What's a sensible H, to test? F 17
b. What’s a natural test statistic?

F 14
c. How might we generate a random synthetic dataset? \ 18
- 0 11

@ | think everyone gets pretty much the
same marks, regardless of gender. M 17

@ \/[I think gender affects marks.]
(0) FatvoWe o (ichav Mol H, @ Mok ~ Magslen + N (0,6%) K
e o Bt pp = Mo = Mo

A P4 A A A
A A 2 A ..A 2) M M
) ez (e P (a0 T g S R

e MLE under M

) A A2
(() PMaMALfW‘(re‘““"f’c"'ﬁ ()mo&ur f‘L, MM"’&S A /\]\ 4+ N (Ol a) _

Conclusion: for the real marks from last year, p = 0.71% Sa wwe Njed- Ho -

NON-PARAMETRIC RESAMPLING

(a) Hy: marks for all three genders are drawn from the same distribution.

(c) If H, is true, then the best fit is the empirical distribution of all marks (concatenated together).
Let’s simply resample from this.

Conclusion: p = 0.80%

PERMUTATION TESTING

(a) Hy: you'd get the same mark regardless of your gender.

(c) Imagine a parallel universe where every student gets assigned a random gender (25 Women, 110 Men, 5 Other).
Simulate this parallel universe by randomly permuting the gender column.

Conclusion: p = 0.82%

IB Data Science syllabus

Models that depend on linear Parameter interpretation
combinations of features and identifiability

Fitting via least squares
(when appropriate)

Bayesian confidence intervals
Resampling

Frequentist confidence intervals
Hypothesis tests

Part Il

“Induction 1s the glory of Science and .
(*non-examinable)

the scandal of Philosophy.”

C.D. Broad, 1926

= Maximum likelihood estimation
gives us a model that fits the

training dataset

Laws of Nature

x T
g in-the- But how well will our model work on new data?
ataset wild (“The challenge of induction.”)

= Bayesianism and frequentism address this by
making careful claims about the Laws of Nature

that generated the dataset.
Laws of Nature

' T
. hold- in-the- = Alternatively, we could simply say
LI out wild “The performance on in-the-wild data is
N J

approximately the performance on holdout data.”

W
full dataset

Table 2: Results on HotpotQA distractor (dev). means usage of extra hyperlink data in
Wikipedia. Models beginning with *“—"" are ablation studies without the corresponding design. Most ML papers don’t state an

Model AnsEM Ans F;, SupEM Sup F; JointEM Joint F} inductive claim.

Baseline [53] 4560 59.02 2032 6449 1083 40.16 ,
DecompRC [29] 5520 69.63 N/A N/A N/A N/A Perhaps the authors haven’t thought

QFE [30] 53.86 68.06 57.75 84.49 34.63 59.61 hard enough to be able to state one?
DFGN [36] 5631 69.69 5150 81.62 3362 59.82

SAE [45] 6036 7358 5693 84.63 3881 64.96
SAE-large 6692 7962 6153 8686 4536 71.45 Perhaps they prefer to leave you, the

66.07 79.36 87.33 43.57 71.03 reader, to make the inference?
69.22 82.19 88.47 47.11 74.21

BERT (sliding window) variants

BERT Plus
LQR-net + BERT
GRN + BERT
EPS + BERT
LQR-net 2 + BERT

oo

69.76 42 8¢ 80.74 27.13 58.
70.66) 82.42 31.18 59.
68.98 325! 84.06 32.88 60.
73.31 32.5: 83.20 35.40 63.41
73.78 6.2 84.09 36.56 63.68

P-BERT 74.16]3¢ 82.76 3542 T
EPS + BERT(large) 76.36 5.2 85.60 413"

CoglTX 65.09 718.72

multi-step reasoning 62.00 75.39 y1.74 8§3.10
rehearsal & decay 61.44 74.99 e 47.37
train-test matching 63.20 17.21 2.5 84.21

LN

Lh
[I =N

7
9
3

Lh

5.
7.
5.
0.
0.
1.
3.

b = bd = = bJ

o O\
O 00 O W

¢
All science 1s either physics
Results. Table 2 shows that CogLTX outperforms most of previous method

¥ : . 9
solutions on the leaderboard.* These solutions basically follow the frame ” or Stamp—C()lleCtlng.

results from sliding windows by extra neural networks, leading to bounded

to insufficient interaction across pill'ilg['ilph.‘é. . ’ . > Ern e St Ruth e rfo rd ('I 8 7 '| — 'I 9 3 7)

confidence intervals

§10.3, 10.4 (*non-examinable)

confidence intervals

on holdout data

model selection for model parameters for predictions
BAYESIANIST Given two models, each with a
@ prior weight, use the data to
reweight the models \
EMPIRICIST Given two models, prefer
@ the one that works better cares? /

FREQUENTIST Given a model, is it a good

@ enough explanation of the
data?

/V
\,

A possible approach:

1.

2.
3.
4

If there’s anything for which | have a justified prior belief, put it into my model as a random variable
Choose between competing models empirically

Check my final model using frequentist tests

Read off confidence intervals, using Bayesianism or frequentistism as appropriate.

GPT is a model for sequences.

\/

% It sees text as a sequence of tokens x = xyx1x, =+ Xy

A/

% Its training dataset is a collection of sequences {x(1), x(?), ..., x(™)}

The following is a classic Chinese poem from the Tang dynasty, translated
into English.

The dawn light strikes the head of my bed
I see leaves

[464, 1708, 318, 257, 6833, 3999, 21247, 422, 262, 18816, 30968, 11,
14251, 656, 3594, 13, 198, 198, 464, 17577, 1657, 8956, 262, 1182, 286,
616, 3996, 198, 40, 766, 5667, 220]

TOKEN IDS

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

GPT is a probability model for sequences of tokens

4

L/

L)

* Let X = XX X, - Xy be a random sequence of tokens, of random length N

4

L)

1)

* What's a good probability model for X
and how do we fit it to a training dataset {x(1, x(?), ..., x(W}?

** Once we have a trained probability model, we can use it for completion.
We give it an input prompt x = xgx4 :** X;,, and it generates a sample from

(X |Xo = %0, o) Xon = %)

GPT playground: https://platform.openai.com/playground?mode=complete

https://platform.openai.com/playground?mode=complete

§12. What’s a gooad
orobability model for sequences,
and how can we fit it?

Goal: generate Shakespeare-like text

%hadt may .

ath must
golvoegd
}Qe 10! e |
o2 f i Bag-of-words text generation

Choose each word randomly, independently.

O 1% wellmarf
-t: “us the incite o'er a land-damn are peace

incardinate take him worthy quick generals O”

love mm,;
end-of-
sentence
token
Probability model: generate X by producing random words until we produce .

Xy, Xy, o, Xy, O

Pry(x1x3 -+ x5,) = Pr(xy) Pr(x;) X --- X Pr(xy) Pr(0)

Let’s let Pr(w) = p,, where p = [py, , Pw,, -, Pw,, Po] is a probability vector
with an entry for each word in the vocabulary.

We can learn the p vector by maximizing the likelihood of the dataset {x("), x(?) ... x(™)],
The mle is simple: p,, = fraction of occurrences of word w in the dataset

Goal: generate Shakespeare-like text §12.2

be —

el
I\ Markov model

Based on a graph of word-to-word transitions.

" afeard
SIeep “to foreign princes lie in your blessing god who
X'____I shall have the prince of rome O”
end-of-
sentence
token

Probability model: generate X by starting at 0 and jumping from word to word until we hit O again.

O0->X{ 2> X, > >Xy—0O

Pry(x1x5 -+ xn) = Pr(xq|0) X Pr(xz|x;) X -+ X Pr(xy,|x,-1) X Pr(0lx,)

Let’s let Pr(w|v) = P, for some matrix P that denotes the word-to-word transition probabilities.
The maximum likelihood estimate for P is easy to find, by simple counting of word pairs.

1922)

|
O
LN
0@
—
>
@)
~
-
T
=
[
-
O
-
<

be contented to be what they Markov’s trlgram model
who is to be executed this
in him to be truly touched “to be wind-shaken we will be glad to receive at

took occasion to be quickly woo'd once for the example of thousands 0O”

Probability model: Generate X by starting with OO and repeatedly generating the next
word based on the preceding two, until we produce 0O.

Prg(ﬁxz - Xp) = Pr(xg|00) Pr(x;|Oxq) Prxs|xgx;) X - X Prx,|x,_2xn—1) Pr(0)x,_1x,)

/><><><><\/*><\

O O 4’X14'X24'X3%X4 . N

Let’s let Pr(w|uv) = Py
It’s easy to estimate P, the (word,word)-to-word transition probabilities, by simple counting.
(Before counting, preprocess the dataset by putting OO at the start and O at the end of every sentence.)

Different ways to write the trigram model:

O O Xi—X;——X3—X, —Xy—— O
o0 ——0X;—— X X, —— Xy Xs—— - —Xy_1Xy——XyO
r‘anolc’;‘r"at_lw\
X
D\u fffff Dm\ﬁ ****** WX :szi% ****** SR IR

X, X, X; X, 0

A Markov Chain is a sequence in which
each item is generated based only on
the preceding item.

The trigram model is a Markov chain,
whose items are word-pairs.

deterministic bookkeeping
function f((x,y),2) = (y,2)

(x,y)

\ random generation

Xnew

Can we get a better model by
using more history?

______ deterministic bookkeeping
. [ox, XX, X X5 Xy_1Xy function £((x,y),2) = (v, 2)
\ X X \ X (x,¥) .
X1 X5 X3 X4 O \ random generation
Trigram character-by-character model trained on Shakespeare: XneW

“on youghtlee for vingiond do my not whow’d no crehout withal
deepher forand a but thave a doses?”

O0O0oa DDDDXl DDDX1X2 DDX1X2X3 °e DXN—3XN—2XN—1XN
X, X, Xz X, O

5-gram character-by-character model trained on Shakespeare:
“once 1s pleasurely. though the the with them with
comes in hand. good. give and she story tongue.”

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

Recurrent Neural Network (RNN)

Let’s use a neural network to learn an appropriate history digest. This is
more flexible than choosing a fixed history window.

s s S S learnable function
fffffffff > 1 —p EREEEEE 2 e R et o R
0 e P1 a p22 a pg o 7 PzI\\/I fo(s,x) = (p, Snew)

\ random generation
Xnew ~ Cat(p)

Xnew

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:
Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.”

A Recurrent Neural Network (RNN) is a probability model for generating a random
sequence X.

O RS R CEE - X~ Catp)
\ X X \ (Si+1,Pit1) = fo(si, Xi)

0 X, X, X, 0

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:

Pry(xq, ..., xn) = Pry (x1) Pry (x3]xq) X -« X Pry_(xp|%q - xp_1) Pry__ (Qlxq -+ xp)

by the chain rule for probability

= [p1lx, [P2li, X = X [Pul, [Prsalo def loglik(xstr):

res = 0

S,X = 0,0

for X,.. in xstr + “O”:
S,P = fo(s,X)
res += 10g(P[Xpex])

rP(Ale B ol C) = P(A) P(&(A) fP(C(ArB) X = Xoont

return res

where each p; is a function of x; -~ x;_4

The history of random sequence models

Hidden
Markov Markov
chains models RNN LSTM Transformers
Better models of the data
1913 1966 1986 1997 2017 All trained by maximizing the
log likelihood of the data
linguistic non- larger prompt
theories probabilistic scale engineering

metrics

Transformer architecture

This is a probability model for a random sequence X.
Like the RNN, there’s a simple explicit formula for the log likelihood Pry (), so it’s easy to train.

It’s more powerful than an RNN, because f has access to the full sequence;

it doesn’t have to squeeze history into a “history digest” at each step. some
cunning

function P1| probability

— P2 distribution
P3| over tokens

tokens,
encoded as
vectors
_ next token
}ischosen
= o - at random

H —
> =1
) (@)

woJy
a2y}
due]

J1SSe|d
9sauIY)D

waod
Ayseulp

oL ot
=3 o

o
g @
5 =

()
o o

The following is a classic Chinese poem from the Tang dynasty, translated

into English.

What does f look like? How is it built out of differentiable functions?

The following is a classic Split the text into tokens t; € {1, ..., W}
464 1708 318 257 6833 Turn each token into a vector e; € R
” ” ” ” ” by looking up an embedding matrix E € RW*4
: : : : : - sini)
For each position i € {1, ..., n} cos(i)
1 2 3 4 > s - d sin(i/2)
create a position-embedding vector t; € R
(NIRRT
ol S Y R Sl
® ©, ® ® ® letx; = e; + t; € R?

Xi

For each position i € {1, ...,n},
let q; = Qx;, letk; = Kx;, letv; = Vx;
€ R € R€ e R4

For each position j € {1, ..., n} we’ll produce
an output vector y; € R, as follows:

aj; is the attention
that we should give

1. lets;; = q; - k; and a;. = softmax(s;./ve) to input x, wher
2. let yj = Eiajivi computing output y;

«— Q

From the final value y,,, compute p = g(y,) € RY
where g is some straightforward neural network

—

Xn41 Generate the next token by X,,,; ~ Cat(p)

~ - F
- di .-
] -
&

\1’.’. .

Carer towet

1 e

& Ny

| JE——
-

l .

Markov step 0
2005 distnbution of
global nickel ore

Markov step 1 -+~
Mining

Export of concentrate ;
Losses to environment

 Markov step 3

Refining
Import of matte
Export of refined

Markov step 5 -~
Manufactuning and use
Wide distribution of nickel

Markov step 30 -~

Several cycles of recycling
Use concentrated in China
Notable trade still occuring

_ Significant loss to CS

Markov step 50+,
Remaining use China™,
Insignificant trade B
Loss to env. (75%)
Loss in CS (21%)

0% S0% 100%

¥
.
.

|
N\
\
§

share of 2005 Ni

Exploring the Global Journey of Nickel

with Markov Chain Models

J of Industrial Ecology, Volume: 16, Issue: 3, Pages:

334-342, First published: 04 April 2012, DOLI:
(10.1111/].1530-9290.2011.00425.x)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: IB Data Science syllabus
	Slide 8
	Slide 9
	Slide 10
	Slide 11: GPT is a model for sequences.
	Slide 12: GPT is a probability model for sequences of tokens
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Different ways to write the trigram model:
	Slide 19: Can we get a better model by using more history?
	Slide 20: Recurrent Neural Network (RNN)
	Slide 21
	Slide 23: The history of random sequence models
	Slide 24: Transformer architecture
	Slide 25: What does f look like? How is it built out of differentiable functions?
	Slide 26: What does f look like? How is it built out of differentiable functions?
	Slide 28

