
§9.3 Hypothesis testing

Hypothesis testing asks whether a proposed probability model 

𝐻0 could plausibly have generated the dataset.

❖ The 𝑝-value is the probability that an outcome as extreme 

as what we actually saw might have come about by 

chance, if 𝐻0 were true.

❖ A low 𝑝-value suggests we should reject 𝐻0.

❖ “Extreme” is measured by a test statistic 𝑡, which is up to 

us to choose.

histogram of 𝑡, 
under 𝐻0

the 𝑡 we 
actually saw

𝑝-value



Hypothesis testing is good for questions that we can cast as 

“Does the evidence suggest rejecting 𝐻0?”

▪ Is my probability model a good enough fit for the dataset?

▪ Is my new algorithm better than the standard one?

▪ Does this new UI allow users to do their task faster than before?

▪ Is this drug effective, compared to placebo?

There’s a common way to set out hypothesis tests for comparing groups (as well as for many similar tasks),
called the Neyman-Pearson approach.



Fisher’s hypothesis testing

Let 𝑥 be the dataset.

State a null hypothesis 𝐻0, i.e. a probability 
model for the dataset

1. Choose a test statistic 
𝑡 ∶ dataset ↦ ℝ

2. Define a random synthetic dataset 𝑋∗, what 
we might see if 𝐻0 were true.

3. Let 𝑝 be the probability (assuming 𝐻0 to be 
true) of seeing 𝑡 𝑋∗  as or more extreme 
than the observed 𝑡(𝑥).

A low 𝑝-value is a sign that 𝐻0 should be 
rejected.

Propose a general parametric model 𝐻1, and 
express 𝐻0 as a restriction on one or more 
parameters

Choose a test statistic based on mle 
estimates of the parameters of 𝐻0 and 𝐻1

Neyman-Pearson hypothesis testing

§9.3



Exercise 9.3.2 (Equality of group means).
We are given three groups of observations from 
three different systems

𝑥 = 7.2, 7.3, 7.8, 8.2, 8.8, 9.5
𝑦 = 8.3, 8.5, 9.2
𝑧 = [7.4, 8.5, 9.0]

Do all three groups have the same mean?

1  # 1. Define test statistic
 2  def t(x,y,z):
 3      μ = np.mean(np.concatenate([x,y,z]))
 4      a,b,c = [np.mean(v) for v in [x,y,z]]
 5      return (a-μ)**2 + (b-μ)**2 + (c-μ)**2

 6  # 2. To generate a synthetic dataset, assuming H0 ...
 7  xyz = np.concatenate([x,y,z])
 8  Ƹ𝜇 = np.mean(xyz)
 9  ො𝜎 = np.sqrt(np.mean((xyz- Ƹ𝜇)**2))
10  def rxyz_star():
11      return (np.random.normal(size=len(x), loc= Ƹ𝜇, scale= ො𝜎),
12              np.random.normal(size=len(y), loc= Ƹ𝜇, scale= ො𝜎),
13              np.random.normal(size=len(z), loc= Ƹ𝜇, scale= ො𝜎))

14  # 3. Sample the test statistic, find the p-value
15  t_ = np.array([t(*rxyz_star()) for _ in range(10000)])
16  𝑝 = np.mean(t_>=t(x,y,z))



EXERCISE.
Consider the data for IA student marks.
a. What’s a sensible 𝐻0 to test?
b. What’s a natural test statistic?
c. How might we generate a random synthetic dataset?

I think gender affects marks.

I think everyone gets pretty much the 
same marks, regardless of gender.

gender mark

F 17

F 14

M 18

O 11

M 17

⋮ ⋮

Conclusion: for the real marks from last year, 𝑝 = 0.71%



NON-PARAMETRIC RESAMPLING

(a) H0: marks for all three genders are drawn from the same distribution.

(c) If H0 is true, then the best fit is the empirical distribution of all marks (concatenated together).
Let’s simply resample from this.

PERMUTATION TESTING

(a) H0: you’d get the same mark regardless of your gender.

(c) Imagine a parallel universe where every student gets assigned a random gender (25 Women, 110 Men, 5 Other).
Simulate this parallel universe by randomly permuting the gender column.

Conclusion: 𝑝 = 0.80%

Conclusion: 𝑝 = 0.82%



Models that depend on linear 
combinations of features

Parameter interpretation 
and identifiability

Fitting via least squares
(when appropriate)

IB Data Science syllabus

Using a probability model 
to describe data

Fitting a model’s unknown 
parameters using MLE

Reasoning about 
uncertainty

Bayesian confidence intervals
Resampling
Frequentist confidence intervals
Hypothesis tests



“Induction is the glory of Science and 

the scandal of Philosophy.”
C.D. Broad, 1926

in-the-
wilddataset

But how well will our model work on new data?
(“The challenge of induction.”)

▪ Bayesianism and frequentism address this by 
making careful claims about the Laws of Nature 
that generated the dataset.

▪ Alternatively, we could simply say 
“The performance on in-the-wild data is 
approximately the performance on holdout data.”

dataset
▪ Maximum likelihood estimation 

gives us a model that fits the 
training dataset

Laws of Nature

in-the-
wildtraining hold-

out

full dataset

Laws of Nature

Part III
(*non-examinable)



“ All science is either physics 

or stamp-collecting.”

Ernest Rutherford (1871–1937)

Most ML papers don’t state an 
inductive claim.

Perhaps the authors haven’t thought 
hard enough to be able to state one? 

Perhaps they prefer to leave you, the 
reader, to make the inference?



BAYESIANIST

FREQUENTIST

confidence intervals

for model parametersmodel selection

EMPIRICIST Given two models, prefer 
the one that works better 
on holdout data 

Given two models, each with a 
prior weight, use the data to 
reweight the models

Given a model, is it a good 
enough explanation of the 
data?

confidence intervals

for predictions

Who 
cares?

A possible approach:
1. If there’s anything for which I have a justified prior belief, put it into my model as a random variable
2. Choose between competing models empirically
3. Check my final model using frequentist tests
4. Read off confidence intervals, using Bayesianism or frequentistism as appropriate.

§10.3, 10.4 (*non-examinable)



GPT is a model for sequences.

❖ It sees text as a sequence of tokens 𝑥 = 𝑥0𝑥1𝑥2 ⋯ 𝑥𝑁

❖ Its training dataset is a collection of sequences {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


GPT is a probability model for sequences of tokens

❖ Let 𝑋 = 𝑋0𝑋1𝑋2 ⋯ 𝑋𝑁 be a random sequence of tokens, of random length 𝑁

❖ What’s a good probability model for 𝑋 
and how do we fit it to a training dataset {𝑥(1), 𝑥(2), … , 𝑥(𝑛)} ?

GPT playground: https://platform.openai.com/playground?mode=complete

❖ Once we have a trained probability model, we can use it for completion. 
We give it an input prompt 𝑥 = 𝑥0𝑥1 ⋯ 𝑥𝑚 and it generates a sample from

𝑋 𝑋0 = 𝑥0, … , 𝑋𝑚 = 𝑥𝑚)

https://platform.openai.com/playground?mode=complete


§12. What’s a good 
probability model for sequences, 
and how can we fit it?



Bag-of-words text generation
Choose each word randomly, independently.

“us the incite o'er a land-damn are peace 

incardinate take him worthy quick generals □”

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr(𝑥1) Pr(𝑥2) × ⋯ × Pr(𝑥𝑛) Pr(□)

Probability model: generate 𝑋 by producing random words until we produce □. 

𝑋1, 𝑋2, … , 𝑋𝑁, □

Let’s let Pr 𝑤 = 𝑝𝑤 where 𝑝 = [𝑝𝑤1
, 𝑝𝑤2

, … , 𝑝𝑤𝑉
, 𝑝□] is a probability vector 

with an entry for each word in the vocabulary.

We can learn the 𝑝 vector by maximizing the likelihood of the dataset {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}. 
The mle is simple:  𝑝𝑤 = fraction of occurrences of word 𝑤 in the dataset

end-of-
sentence 
token

Goal: generate Shakespeare-like text



Markov model
Based on a graph of word-to-word transitions.

“to foreign princes lie in your blessing god who 

shall have the prince of rome □”

to

be
or

sleep
afeard

Probability model: generate 𝑋 by starting at □ and jumping from word to word until we hit □ again. 

□ → 𝑋1 → 𝑋2 → ⋯ → 𝑋𝑁 → □

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr 𝑥1 □ × Pr 𝑥2 𝑥1 × ⋯ × Pr 𝑥𝑛 𝑥𝑛−1 × Pr(□|𝑥𝑛)

Let’s let Pr 𝑤 𝑣 = 𝑃𝑣𝑤 for some matrix 𝑃 that denotes the word-to-word transition probabilities.
The maximum likelihood estimate for 𝑃 is easy to find, by simple counting of word pairs.

end-of-
sentence 
token

§12.2Goal: generate Shakespeare-like text



Andrei Markov (1856–1922)



Markov’s trigram model
“to be wind-shaken we will be glad to receive at 

once for the example of thousands □”

be contented to be what they

who is to be executed this

in him to be truly touched

took occasion to be quickly woo’d

Probability model: Generate 𝑋 by starting with □□ and repeatedly generating the next 
word based on the preceding two, until we produce □.

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr 𝑥1 □□  Pr 𝑥2 □𝑥1  Pr 𝑥3 𝑥1𝑥2 × ⋯ × Pr 𝑥𝑛 𝑥𝑛−2𝑥𝑛−1  Pr(□|𝑥𝑛−1𝑥𝑛)

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

Let’s let Pr 𝑤 𝑢𝑣 = 𝑃(𝑢𝑣)𝑤 

It’s easy to estimate 𝑃, the (word,word)-to-word transition probabilities, by simple counting. 
(Before counting, preprocess the dataset by putting □□ at the start and □ at the end of every sentence.)

§12.2



Different ways to write the trigram model:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁 𝑋𝑁□⋯

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping 
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

A Markov Chain is a sequence in which 
each item is generated based only on 
the preceding item.

The trigram model is a Markov chain, 
whose items are word-pairs.

§12.2



Trigram character-by-character model trained on Shakespeare:
“on youghtlee for vingiond do my not whow’d no crehout withal 

deepher forand a but thave a doses?”

5-gram character-by-character model trained on Shakespeare:
“once is pleasurely. though the the with them with 

comes in hand. good. give and she story tongue.”

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping 
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

QUESTION. What are the advantages and disadvantages 
of a long history window?

QUESTION. Can we do better than using a fixed history 
window?

□□□□ □□□𝑋1 □□𝑋1𝑋2 □𝑋1𝑋2𝑋3 𝑋𝑁−3𝑋𝑁−2𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

Can we get a better model by 
using more history?

§12.2



learnable function 
𝑓𝜃 𝑠, 𝑥 = (𝑝, 𝑠new)

𝑝

𝑋new

random generation
𝑋new ∼ Cat(𝑝)

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.”

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest. This is 
more flexible than choosing a fixed history window.

§12.2



def loglik(xstr):
    res = 0
    s,x = 0,□
    for xnext in xstr + “□”:
        s,p = 𝑓𝜃(s,x)
        res += log(p[xnext])
        x = xnext
    return res

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

A Recurrent Neural Network (RNN) is a probability model for generating a random 
sequence 𝑋.

𝑋𝑖 ∼ Cat(𝑝𝑖)

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

We can train it in the usual way, by maximizing the log likelihood of our dataset.
This is easy, because there’s a simple explicit formula for the likelihood of a datapoint:

Pr𝑋 𝑥1, … , 𝑥𝑛 = Pr𝑋1
𝑥1  Pr𝑋2

𝑥2 𝑥1 × ⋯ × Pr𝑋𝑛
𝑥𝑛 𝑥1 ⋯ 𝑥𝑛−1  Pr𝑋𝑛+1

(□|𝑥1 ⋯ 𝑥𝑛)

= 𝑝1 𝑥1
𝑝2 𝑥2

× ⋯ × 𝑝𝑛 𝑥𝑛
𝑝𝑛+1 □

where each 𝑝𝑖 is a function of 𝑥1 ⋯ 𝑥𝑖−1

by the chain rule for probability

§12.2



The history of random sequence models

Markov 
chains TransformersRNN

1913 1986 2017

LSTM

1997

Better models of the data 
All trained by maximizing the 
log likelihood of the data

linguistic 
theories

non-
probabilistic 
metrics

larger 
scale

prompt 
engineering

Hidden 
Markov 
models

1966



Transformer architecture
This is a probability model for a random sequence 𝑋.

Like the RNN, there’s a simple explicit formula for the log likelihood Pr𝑋(𝑥), so it’s easy to train.

It’s more powerful than an RNN, because 𝑓 has access to the full sequence;
it doesn’t have to squeeze history into a “history digest” at each step.
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𝑝1

𝑝2
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⋮

probability 
distribution 
over tokens

next token 
is chosen 
at random



What does 𝑓 look like? How is it built out of differentiable functions?

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖



Let 𝑖 𝑖 + 𝑖+ + + + +

𝑥𝑖

𝑞𝑖

𝑘𝑖

𝑣𝑖

For each position 𝑖 ∈ {1, … , 𝑛},
let 𝑞𝑖 = 𝑄𝑥𝑖, let 𝑘𝑖 = 𝐾𝑥𝑖, let 𝑣𝑖 = 𝑉𝑥𝑖

∈ ℝ𝑒 ∈ ℝ𝑒 ∈ ℝ𝑑

𝑦1 𝑦2 𝑦𝑗 𝑦4 𝑦5
For each position 𝑗 ∈ {1, … , 𝑛} we’ll produce 

an output vector 𝑦𝑗 ∈ ℝ𝑑, as follows:

1. let 𝑠𝑗𝑖 = 𝑞𝑗 ⋅ 𝑘𝑖 and 𝑎𝑗∗ = softmax Τ𝑠𝑗∗ 𝑒

2. let 𝑦𝑗 = Σ𝑖𝑎𝑗𝑖𝑣𝑖𝑔

From the final value 𝑦𝑛, compute 𝑝 = 𝑔 𝑦𝑛 ∈ ℝ𝑊

where 𝑔 is some straightforward neural network
𝑝

𝑋𝑛+1 Generate the next token by 𝑋𝑛+1 ∼ Cat(𝑝)

𝑎𝑗𝑖 is the attention 

that we should give 
to input 𝑥𝑖  when 
computing output 𝑦𝑗

𝑥1 𝑥3 𝑥4 𝑥5
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Exploring the Global Journey of Nickel 

with Markov Chain Models
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