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SMARISICE

The communities in north
Canada used to take
advantage of the frozen
fjords to travel from one
place to another by
snowmobiles.

Given a number of
readings of ice thickness
across time and space,
could we recommend the
people where/when it’s
safe to ride the
snowmobile?



Conseqguences

Credits: Beaverton Police Department



Here are marks for IA Algorithms questions last year:

Women: [17, 14, 18, 12, 17, ..]
Men: [18, 18, 11, 17, 17, ..]

Other: [17, 18, 9, 9, 11, ..]
EXERCISE.
The mean marks are o
Women: 13.22 (n=49) How would you critique
Men: 12.28 (n=219) ) ‘9
Other:  13.10 (n=10) this analysis:

Women do better.

* This does not report confidence

* [t's inappropriate to share this data or to report unaggregated data for scarcely represented
categories

* |t's drawing a general conclusion out of just one year of past data
* On the other hand, if we just restrict ourselves to describe only what has happened
already, and never say anything about the future, our ability to condition/shape the

future would be restricted as well



Based on the model
Mark ~ Hgender + N (O, 0_2)

the 95% confidence intervals are

fip € [11.8,14.6] EXERCISE.
fiy € [11.6,12.9] How would you critique

1, € [10.0,16.2 . . )
Ao €1 | this revised analysis?
Women tend to do better than Men. There is too little data

about Other to be confident in any comparison.

* Marks are not independent (each student answers to 2 questions)

* The Gaussian distribution does not seem appropriate

* |f we want to report on differences, we should report a confidence interval for the
differences



Based on a model using one-hot coding of gender, |
Mark ~ pp + 6M1gender:M + 601gender=0 + N (O, UZ) EXERCISE.

the 95% confidence intervals are How would you

fp € [11.8,14.6] implement this

oy € [—2.5,0.6] £

5, € [-3.6,3.3] analysis:

Neither 6,, nor 6, is convincingly non-zero.

See [echore (Z2~---

m # The readout function
def t(marks):

F 17 use sklearn.linear_model to fit the proposed model to marks

F 14 return a triple with the intercept_ (ug) and the coef_ (6y,60)

M 18 # To create a random synthetic dataset of marks

M 11 Let fig,8y,80,8 be the mle estimates from the marks column in the dataset
def rmarks():

M 17

pred = fip + SMlgender=M + 8o Lgender=o
return np.random.normal(loc=pred, scale=4)

# Get lots of samples of the test statistic
t_ = [t(rmarks()) for _ in range(10000)]
np.quantile([0O[0] for © in t_], [.025, .975]) # confint for g



How might we decide whether this
simpler model is good enough?

@ | think everyone gets pretty much the
| % same mark, regardless of gender.

Mark ~ p + Normal(0, 0%)

To answer this, it can be helpful to
introduce a richer model.

@ | think gender affects marks.
K Mark ~ fgenger + Normal(0, o)




confidence intervals

model selection

FREQUENTIST

(The answer might
depend on how we
resample.)

BAYESIANIST

(The answer depends on
our priors for the
unknowns.)

For just two genders:

Consider the richer model with Ugenger
and find a 95% confidence interval for
fim — OF.

P(fiy — fir € [—2.5,0.6]) = 95%

This contains zero, i.e. I'm NOT confident that
fp — [ is non-zero. So the simpler model is OK.

For just two genders:
Consider the richer model with Ugenger
and find a 95% confidence interval for

Hm — HF-

P(upy — up € [—3.1,—0.2]) = 95%

This does not contain zero, i.e. | am confident that
Uy — Up is non-zero. So the simpler model isn’t
good enough.

Hypothesis Testing

If we have prior weights for two models
(the simple model, and the richer model
With tgender), we can find posterior
weights using Bayes’s rule.

For prior weights 50%/50%, the posterior weights are
79%/21% in favour of the simpler model.

This s greed if theves o
single moclel powramater hat we

want (0 jnfestgate

Ths s for when we wout
o eNodvate the mocled oy
a whole



§9.3 HYPOTHESIS TESTING



Can you taste the difference
between milk-first versus tea-first?

HYPOTHESIS: you can’t.

| —



CEEr
CECE



Fisher’s hypothesis testing
o the ~d dester

Le@)e the dataset.

State a null hypothesis Hy, i.e. a probability
model for the dataset

1. Choose a test statistic
t : dataset » R

2. Define a random synthetic dataset X~,
what we might see if H, were true.

3. Look at the histogram of t(X™), and let p be
the probability of seeing a value as extreme
or more so than the observed t(x).

A low p-value is a sign that H, should be
rejected.

2 = Castey’s assigrment lekedy

He : tasker comt FU M ufhrevenc, ‘
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p= P((—(x*)?{-(:c)) = -k

0 < 57+ wall ryect flo.



Degrees of freedom

* Probability model
* Null hypothesis
* Test statistic

Warning: assumptions!



Example 9.6.2.

| have a dataset with readings from
two groups, x = [x4, ..., x,,| and

Y = V1, ..., Vn|. Test whether the two
groups are significantly different,
using the test statistic y — x.

# 1. Define the test statistic
def t(x,y): return np.mean(y) - np.mean(x)

# 2. To generate a synthetic dataset, assuming H,,
Xy = np.concatenate([x,y])
def rxy_star():
return (np.random.choice(xy, size=len(x)),
np.random.choice(xy, size=len(y)))

# 3. Sample the test statistic under H9; find p-value for observed data
t_ = np.array([t(*rxy_star()) for _ in range(10000)])

p = ..



Example 9.3.1.

| have a dataset with readings from
two groups, x = [x4, ..., x,,| and

Y = V1, ..., Vn|. Test whether the two
groups are significantly different,
using the test statistic y — x.

Ho:  Ae, Ye both o~ N(p, @)

Ea(u.‘vwo

spsume K~ N(m, 62, Y:a N (pma 9, ‘rx)

He: =0

# 1. Define the test statistic
def t(x,y): return np.mean(y) - np.mean(x)

# 2. To generate a synthetic dataset, assuming H,,
Xy = np.concatenate([x,y]1)
A = np.mean(xy)
g = np.sqrt(np.mean((xy - f1)**2))
def rxy_star():
return (np.random.normal(loc=f, scale=d, size=len(x)),

np.random.normal(loc=f, scale=g, size=len(y)))

# 3. Sample the test statistic under H9; find p-value for observed data
t_ = np.array([t(xrxy_star()) for _ in range(10000)1]1)

p = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



Two main gquestions

e What counts as ‘more extreme’?

* How do we compute p?



What counts as ‘more extreme’?

=  Plot the histogram for t(X™), assuming H, is true

= Also plot the histogram for some scenarios where Hy is
false

= Do the alternatives push t(X™) bigger, or smaller, or
- ? . . { I [
either? This determines what ‘more extreme’ means — ’f " o‘scf\led

either one-tailed or two-tailed. ] )
t lwg of eithwr

HO: 6=O e&.‘,mm‘ ;e ls
avidunee asaiwﬂe
—4 "b.' J:'o-
6>0
6<0




How do we compute p for a two-tailed test?

The p-value is

P ( t(X™) at least

Hy is true)
as extreme as t(x) | ~°

HQZ 6=0 I

6. “ 2 “6 of my samples of t(X*Y*)
are more extreme than t(X,y)."

p = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



Exercise 9.3.2 (Equality of group means).
We are given three groups of observations from three different systems,

r=[7.2,7.3,7.8,8.2,8.8,0.5]|
y=[8.3,8.5,9.2]
z=[7.4,8.5,9.0],

and we wish to know whether they all come from the same distribution, or whether
there are three different distributions. Start with a general probability model in which
they could potentially come from three different distributions,

X; ~ Normal(a,o?), Y; ~ Normal(b,0?), Z; ~ Normal(c,o?)
Let Hy be that the three distributions are identical i.e. that a = b = ¢, or equivalently
X; ~Y; ~ Z; ~ Normal(u, o).
Consider the test statistic
t=(a—p)?*+(b-p)’+(E-p)’

where hats denote maximum likelihood estimators. If Hy were true, we’d expect t(x) to
be small.
Find the value of the test statistic for the data given. What is the probability of

seeing a value this large or larger, if Hy is true?




# 1. Define test statistic
def t(x,y,z):
)
1/ = np.mean(np.concatenate([x,y,z]))
a' b, = [np.mean(v) for v in [x,y,z]]
return (a' — p')*x2 + (0 — p')%*2 + (' — p/)*%2

# 2. To generate a synthetic dataset, assuming Hq:
data = np.concatenate([x,y,z])

ft = np.mean(data)

o = np.sqrt(np.mean((data—)*x2))

def rxyz_star():
return (np.random.normal(size=len(x), locsi, scale=s),
np.random.normal(size=len(y), loc=i, scale=5),
np.random.normal(size=len(z), loc=i, scale=7))

# 3. Sample the test statistic under Hy, find the p-value
t_sample = np.array ([t(*rxyz_star()) for _ in range(10000)])
p = np.mean(t_sample >= t(x,y,z)) #answer p = 0.502



The beauty of hypothesis testing is that it lets us test whether
H, is a good enough model for the data, without our having
to specify an alternative model. Instead, we specify a test.

Where do test statistics come from?

There are two common scenarios,
exploratory and rhetorical.

EXPLORATORY.

You, the modeller, are trying to come up with a good model
for the dataset. Suppose you’ve tried out several models, and
H, is the best you’ve come up with. Is it good enough?

" |f you settle for Hy and someone else comes up with a
better model, you lose.

So it’s up to you to creatively think up ways to test if H
might be deficient.

RHETORICAL.
Sometimes, there’s a model H; that everyone accepts to be
the natural alternative to H,.

" Example: Hy = “my drug makes no difference”,
H; = “it makes a difference”.

If so, craft the test statistic to look for evidence
pointing in the direction of H;.
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The communities in north
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advantage of the frozen
fjords to travel from one
place to another by
snowmobiles.

Given a number of
readings of ice thickness
across time and space,
could we recommend the
people where/when it’s
safe to ride the
snowmobile?



SMARISI CE

The communities in north
Canada used to take
s ‘ol Ve , advantage of the frozen
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Given a number of
readings of ice thickness
across time and space:
Model < ice history

t < ice thickness

H, € “it’s safe to ride in
winter”
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Iceberg detection

Iceberg

4

Color Composite

.

Color Composite

lceberg are detected by
analysing SAR images.

The backscatter of icebergs is
very strong — very bright pixels.
However, in rough waters there
might be several lookalikes.

Given a number of readings of
icebergs and ships in a given
region, would we be able to tell
the difference?



Subsets of Landsat image (left) and ASAR APP H-polarisation image (right) in the area where icebergs M, O and
P were identified. Note that N was not observed in the Landsat image, but analysis of a nearby feature was done
for the SAR images. These icebergs were not identified in the RADARSAT image. There are many more
icebergs that can be identified in the Landsat image as well as in the SAR image. However, many of the bright
points in the SAR image are not icebergs but speckle noise.

Credits: S. Sandven



Iceberg detection

Iceberg

4

Color Composite

.

Color Composite

lceberg are detected by
analysing SAR images.

The backscatter of icebergs is
very strong — very bright pixels.
However, in rough waters there
might be several lookalikes.

Given a number of readings of
icebergs and ships in a given
region, would we be able to tell
the difference?

H, € end user won'’t be able to
tell the difference
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