
𝑥

cdf(𝑥)

0

1

def rx(𝑢,𝑣,𝑤,𝑝):

   # preconditions: u < v < w, and 0 < p < 1
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
  return np.random.uniform(𝑢,𝑣)
 else:
  return np.random.uniform(𝑣,𝑤)

EXERCISE
What’s the cdf for this random variable?

Let 𝐾 = ቊ
left with prob. 𝑝

right with prob. 1 − 𝑝

Let 𝑋 ∼ ቊ
𝑈[𝑢, 𝑣] if 𝐾 = left
𝑈[𝑣, 𝑤] if 𝐾 = right

ℙ 𝑋 ≤ 𝑥 = ℙ 𝑋 ≤ 𝑥 𝐾 = left × ℙ 𝐾 = left + ℙ 𝑋 ≤ 𝑥 𝐾 = right × ℙ(𝐾 = right)

if 𝑥 < 𝑢:

if 𝑢 < 𝑥 < 𝑣:

if 𝑣 < 𝑥 < 𝑤:

if 𝑤 < 𝑥:

u v w

left right

by the Law of Total Probability

ℙ 𝑋 ≤ 𝑥 = 𝑝 ℙ 𝑈 𝑢, 𝑣 ≤ 𝑥 + 1 − 𝑝  ℙ(𝑈 𝑣, 𝑤 ≤ 𝑥) =



Models that depend on linear 
combinations of features

Parameter interpretation 
and identifiability

Fitting via least squares
(when appropriate)

Bayesianism Bayes’s rule

Monte Carlo

Bespoke
distributions

Non-Bayesianist 
approaches

IB Data Science syllabus

Using a probability model 
to describe data

Fitting a model’s unknown 
parameters using MLE

Reasoning about 
parameter uncertainty
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This chart shows the distribution of the speeds of 120 galaxies, 
from a survey of the Corona Borealis region.
Postman, Huchra, Geller (1986)

theoretical distribution for uniform universe

§7



fitted Gaussian mixture model

§7



What’s the best distribution we 
can find, to model this dataset?

§7



random
variable
notation

code

likelihood
function

(pdf)

cdf

There are four ways to specify a distribution.

§5.3



random
variable
notation

code

likelihood
function

(pdf)

cdf

Bespoke probability distributions part I:

from code to likelihood (for continuous random variables)

§5.3



Wikipedia: Uniform distribution



random
variable
notation

code

likelihood
function

(pdf)

cdf

Bespoke probability distributions
§7.2



Our goal: 
to find the best distribution we can to fit this dataset.

§7



IA Probability lecture 10

Empirical cumulative distribution functions



ECDF

Given a dataset of numerical values 
[𝑥1, 𝑥2, … , 𝑥𝑛], the empirical cumulative 
distribution function or ecdf is

෠𝐹 𝑥 =
1

𝑛

how many datapoints
there are ≤ 𝑥

෠𝐹(𝑥)

𝑥

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1



෠𝐹(𝑥)

𝑥

What if there are repeated values in the dataset, e.g.

x = [0.8, 0.8, 1.3] 

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1

(This code will plot an extra point at (0.8, 1/3), but who cares? 
The plot is still correct.)



fitted 
Gaussian mixture 
model

§7.1

But can I find a better-fitting distribution?



Can I generate a random variable with this pdf?
 Is this even a valid pdf?

Can I generate a random variable with this cdf?

§7.1

It’s certainly a valid cdf: 
it starts at 0, goes to 1, 
and is non-decreasing.

But can I find a better-fitting distribution?



𝑥

cdf(𝑥)

𝑢 𝑣 𝑤0

𝑝

1

𝑥

cdf(𝑥)

𝑢1 𝑢2 𝑣1
0

ൗ1
2

1

𝑣2

def rx(𝑢,𝑣,𝑤,𝑝):
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
  return np.random.uniform(𝑢,𝑣)
 else:
  return np.random.uniform(𝑣,𝑤)

def rx(𝑢1,𝑢2,𝑣1,𝑣2):
   # pick either left or right, with equal probability
 k = np.random.choice(["left","right"])
 if k == "left":
  return np.random.uniform(𝑢1,𝑢2)
 else:
  return np.random.uniform(𝑣1,𝑣2)

§7.2



𝑥

cdf(𝑥)

𝑥1 ± 𝛿
0

ൗ1
2

1

𝑥2 ± 𝛿

def rx(𝑥1,𝑥2,𝛿):
 k = np.random.choice(["left","right"])
 if k == "left":
  return np.random.uniform(𝑥1 − 𝛿,𝑥1 + 𝛿)
 else:
  return np.random.uniform(𝑥2 − 𝛿,𝑥2 + 𝛿)

def rx(𝑥1,𝑥2):
 k = np.random.choice(["left","right"])
 if k == "left":
  return 𝑥1

 else:
  return 𝑥2𝑥

ൗ1
2

1

𝑥1 𝑥2

cdf(𝑥)

§7.2

[𝑥1 − 𝛿, 𝑥1 + 𝛿] [𝑥2 − 𝛿, 𝑥2 + 𝛿]



def rxhat([𝑥1, … , 𝑥𝑛]):
    return np.random.choice([𝑥1, … , 𝑥𝑛])

𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

cdf(𝑥)

𝑥

ecdf 𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

Recall the empirical distribution for a 
dataset Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 :

ecdf 𝑥 =
1

𝑛
#points ≤ 𝑥

To generate a random variable ෠𝑋 whose cdf 
matches exactly this step function:

§7.2



The empirical distribution
Given a dataset [𝑥1, 𝑥2, … , 𝑥𝑛] 
let ෠𝑋 be the random variable obtained 
by picking one of the 𝑥𝑖  at random. 
(This is a discrete random variable.)

We say this random variable has the 
empirical distribution of the dataset.

The ecdf only applies to real-valued random 
variables, whereas this definition makes 
sense for any type of data (text, images, etc.)

Instead of saying “the cdf of ෠𝑋 matches the 
ecdf of the data”, we can say

 ℙ ෠𝑋 ∈ 𝐴 =
1

𝑛
σ𝑖=1

𝑛 1𝑥𝑖∈𝐴 

𝔼 ℎ ෠𝑋 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑥𝑖) 

§7.3



▪ Empirical modelling
The empirical distribution is a 
perfect fit for a dataset. Why 
bother fitting a parametric 
probability model?

§7.3

“God forbid that we should give out 
a dream of our own imagination for 
a pattern of the world.”

Francis Bacon, 1561–1626



Monte Carlo
Let [𝑥1, … , 𝑥𝑛] be sampled from a random variable 𝑋. 
For any real-valued readout function ℎ,

𝔼 ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖 = 𝔼 ℎ( ෠𝑋) ▪ Empirical calculations
Don’t bother doing maths with 
a tricky random variable 𝑋, 
just take a sample and use its 
empirical distribution ෠𝑋!

§7.3



April 2024

Cdf?!?



▪ “The maximum likelihood estimator is መ𝜃 = 25%, 
thus the true probability of heads is 25%”
(hence if I tossed millions more coins that’s the fraction of heads I’d see)

▪ “All we know for certain is that 0 < 𝜃 < 1”

▪ Let it be random with prior distribution Θ~𝑈[0,1].
Then ℙ Θ ∈ 3%, 72%  | data = 95%

▪ ???

unjustified!

logical, but useless!

justifiable, useful,
subjective.

The challenge of induction
induction = inferring general truths from finite data

I tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it 𝜃)?



I saw x=1. Let me 
go figure out how 
likely is each 
possible 
explanation Θ=θ.

I saw x=1, ෠𝜃=1/4, 
IN THIS REALITY. 

What was ෠𝜃 in other 
dimensions of the 
multiverse?

Bayes’s rule:
PrΘ 𝜃 𝑥 = 𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)



I’m not so bothered about knowing 

whether ෠𝜃 ∈ [lo, hi] in this 
universe. 

I’m interested in the frequency with 

which ෠𝜃 ∈ [lo, hi] across the 
multiverse.

Frequentism

How might I simulate the multiverse?



I see temperatures rising 
by ො𝛾=2.58oC / century, in 
this reality.

What are the 
values in other 

parallel universes?

Climate confidence challenge.
Find a 95% confidence interval for 𝛾,
for Cambridge from 1985 to the present. 
(It’s your choice how to simulate the 
multiverse.)

Please submit your answer on Moodle 



Confidence intervals 
via resampling

Given a dataset 𝑥,

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset

▪ Let 𝑋∗ be a random synthetic dataset, 
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset, 
and report the spread of 𝑡
for example with a histogram 
or a confidence interval np.quantile(tsamples, [.025, .975])

np.quantile(tsamples, [0,.95])

Two-sided 95% confidence interval

One-sided 95% confidence interval

§9.1, 9.2



Example.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples 
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1  # 1. Define a readout statistic
 2  def t(x): return np.mean(x)

This problem is over-specified. It might as well just say 
“Find a 95% confidence interval for the mean of the dataset.”

3  # 2. To generate a synthetic dataset ...

6  # 3. Sample the readout statistic, and report its spread
 7  t_ = [t(rx_star()) for _ in range(10000)]
 8  lo,hi = np.quantile(t_, [.025, .975])

4  def rx_star():
 5      return np.random.choice(x, size=len(x))

§9.6

since the MLE ොμ is just the sample mean

i.e. to simulate what the dataset might have been, we can 
simply sample n values from the empirical distribution 
(which is a perfect fit to the data)



Example 9.2.1.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples 
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1  # 1. Define a readout statistic
 2  def t(x): return np.mean(x)

3  # 2. To generate a synthetic dataset ...

8  # 3. Sample the readout statistic, and report its spread
 9  t_ = [t(rx_star()) for _ in range(10000)]
10  lo,hi = np.quantile(t_, [.025, .975])

4  μhat = np.mean(x)
 5  σhat = np.sqrt(np.mean((x-μhat)**2))
 6  def rx_star():
 7      return np.random.normal(loc=μhat, scale=σhat, size=len(x))

§9.6

i.e. to simulate what the dataset might have been, we can fit 
the probability model N(μ,σ2), then sample n values from it



Confidence intervals 
via resampling

Given a dataset 𝑥

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset.

▪ Let 𝑋∗ be a random synthetic dataset, 
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset, 
and report the spread of 𝑡
for example with a histogram 
or a confidence interval

and a parametric probability model Pr(𝑥; 𝜃)

Fit this model, i.e. estimate ෠𝜃

parametric resampling

§9.1, 9.2

all the parameters

all the data



I see temperatures rising 
by ො𝛾=2.58oC / century, in 
this reality.

What are the 
values in other 

parallel universes?

The model we fitted:

Temp𝑖 ∼ 𝛼 sin 2𝜋 𝑡𝑖 + 𝜙 + 𝑐 + 𝛾𝑡𝑖 + 𝑁(0, 𝜎2)

Simple way to simulate a new dataset:

Fit ො𝛼, Ƹ𝑐, ො𝛾, ො𝜎 from the observed data, then generate 𝑛 
new datapoints Temp𝑖, 𝑖 = 1, … , 𝑛, by

Temp𝑖 ∼ ො𝛼 sin 2𝜋 𝑡𝑖 + ෠𝜙 + Ƹ𝑐 + ො𝛾𝑡𝑖 + 𝑁(0, ො𝜎2)

Parametric resampling §9.1

How might I 
simulate the 
multiverse?



Exercise 9.2.3 (Comparing groups).
We are given data 𝑥 = [𝑥1, … , 𝑥𝑚] which we believe is 𝑁(𝜇, 𝜎2) 
and further data 𝑦 = [𝑦1, … , 𝑦𝑛] which we believe is 𝑁(𝜇 + 𝛿, 𝜎2). 

Find a 95% confidence interval for መ𝛿.

1  x = [4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9]
 2  y = [8.3, 8.5, 8.9]
 3  m,n = len(x), len(y)

13  # 3. Sample the readout statistic, and report its spread
14  𝒕_ = [𝑡(*rx_star()) for _ in range(10000)]
15  lo,hi = np.quantile(𝒕_, [.025, .975])
16  plt.hist(𝒕_)

6

 7  # 2. To generate a synthetic dataset ...

4  # 1. Define the readout statistic
 5  def 𝑡(x,y): return np.mean(y) - np.mean(x)

The MLEs for 𝜇, 𝛿, 𝜎 are what you calculated in Example Sheet 1 question 5:

Ƹ𝜇 = ҧ𝑥
መ𝛿 = ത𝑦 − ҧ𝑥
ො𝜎 = ⋯

8  Ƹ𝜇, መ𝛿 = np.mean(x), np.mean(y) – np.mean(x)
 9  ො𝜎 = np.sqrt((np.sum((x- Ƹ𝜇)**2 + np.sum((y- Ƹ𝜇- መ𝛿)**2))/(m+n))

10  def rxy_star():
11      return (np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=m),
12              np.random.normal(loc= Ƹ𝜇 + መ𝛿, scale= ො𝜎, size=n))

There is only ever ONE dataset, 
consisting of ALL the observations.

Pr 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑛 ;  𝜇, 𝛿, 𝜎 = ⋯

To simulate it, we need to estimate 
ALL the unknown parameters.
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