Bayes’s rule for random variables

For any pair of random variables (X,Y)

Pry(y|X = x)

Pry(x|Y = y) = Prx(x) Pry ()

Reverend Thomas
Bayes, 1/01-1/61

Bayesianism

Whenever there’s an unknown parameter, you should
express your uncertainty about it by treating it as a
random variable.
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| tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it 8)?

“The’maximum likelihood eStimatoys 8 =/25%,
thus the true probability0f heads s 25%7

(hence if | tossed millions mere coins that’s the fraction of heads I'd see)

un justified!

“Nll' we know-fer-certaifi i5that 0 <-8-<"1" logical, but vseless!
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Bayesianists represent their uncertainty about an
unknown parameter by using a random variable.

probability of
heads, unknown

@ We use a random variable here
@ “35 to express our beliefs about 0.

CXON !

X ~Bin(4,0)

number O_f heads Prg(0) is called the prior.
from 4 coin tosses

Prg(8|X = 1) is called the posterior.



By using random variables for unknown quantities,
we can reason about confidence.

Prg(6) Pro(8|1X =1)
@ \ () ~ulo1]
§ ®
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@ X ~Bin(4,0) | ®© | | |
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This Bayesianist approach lets us say something justifiable and useful:
for example, “IP(0 € [.2,.3] | data) = 21%”".



_ Typically, the more data you
have, the closer the posterior

gets to the truth.
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- You must have a prior belief about every
unknown parameter. You must choose it
before seeing the dataset in question.

@ 3 @ ~ U[0,1] But where does the prior come from?

It comes from what you know already — it’s how you can
integrate your existing knowledge into your modelling.

v

X ~Bin(4,0)
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Often, with lots of data, the
prior doesn’t make much

difference.

Pro(0|X = x) = k Prg(0) Pry(x|® = 6)

Prg(6)

Pry(x|® = 0)




Preconception
that 6 > 0.6 is
impossible

Prg(0)

PF@(Q'X — X') — K PF@(B) Prx(X|® — 9)

You are entitled to your own personal prior beliefs.
They are entirely your choice.
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___ The preconception
is unshakeable
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If your prior is extreme, it will
be reflected in your posterior
(even if there’s lots of data). observed
fraction of heads

_ after after after
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“Are they going to run a
trick play?”
“NAAAHHH...”
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Don't blame cloud seeding for the Dubai Th o UK~
floods o
Guardian

Questions have swirled online about the process being
behind the historic rainfall - but experts say it's not the real
culprit

April 2024
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Figure 5. Critical zones in study area. (a): the green and red areas are zones with high and low capacity for mobilisation of
resources (supplies, search-and-resuce units) across Tripoli City, respectively. (b): areas with a high proportion of vulnerable
population are highlighted. using data collected by Inter-Agency Coordination Lebanon.
0.0

M.X. Ho, A. Marinoni, N. Karageozian, R. Serhal, C. A. Chakra, S. Selvakumaran, “Understanding cascading effects of earthquakes in urban scenarios for disaster response and search-and-rescue operations by

graph machine learning: a case study of Tripoli, Lebanon,” subm. to Nature scientific reports, 2024



Prior distribution for ®
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Posterior distribution for ©
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QUESTION.
How should we report the
posterior distribution?

——

We could report the posterior mean.
\ We could report the point with highest likelihood,

the MAP or maximum a-posteriori estimate.

Example (Laplace smoothing).

We counted x successful outcomes from n trials.

Using the model X ~ Bin(n, ®), and the prior ® ~ U[0,1],
the posterior meanof @is (x +1)/(n + 2).

2.5%
2.5%
95% 2%

We could report a 95% confidence interval [1o,hi ] such that
P(O < lo|data) = 2.5%
P(® > hi | data) = 2.5%

or indeed any other 95% confidence interval e.g.
lo = —o0

P(® > hi| data) = 5%




Consider a plot of the 6;,
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howing their weights. 14
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We want to choose 1oso
that the sum of weights
for these 6; is 0.025

cumsum=0.025

cumulative sum of
weights of sorted 6;

v

We could report a 95% confidence interval [10,hi] such that
P(® < lo | data) = 2.5%
P(® > hi | data) = 2.5%

(though this only really works well for continuous 0,
as for discrete ® we might not be able to hit those probabilities exactly)

How can we compute 1o and hi?

Via the computational Bayes estimate:

P(O < lo| data) = Z w; 1g.<lo
i

Osamp, w = ..

i = np.argsort(Bsamp)
Osamp, w = Osamp[i], w[i]
F = np.cumsum(w)

lo = Osamp[F<0.025][-1]




prior belief N data IR posterior belief
Pr@(H) X Pl"@(@lX = X)
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| estimate the probability of
heads is 25%, and my 95%
confidence interval is [3%, 72%]
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| estimate the probability of
heads is 25%, and my 95%
confidence interval is [12%, 51%]
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Consider the dataset of monthly average temperatures in Cambridge.
Proposed model: Temp ~ o + f3 sin(Zn(t + qb)) + y(t — 2000) + N(0,02)
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If we fit this model we get the maximum likelihood estimate ¥ = 0.027 °C/year.

How confident are we about this value?

Climate confidence challenge.
Find a 95% confidence interval for y,

for Cambridge from 1985 to the present.
(Use your own priors for the unknowns.)

Please submit your answer on Moodle




§8.2 Asking the right question

Whenever there’s an unknown parameter, you should
express your uncertainty about it by treating it as a
random variable.

Q. What don’t we know?

Q. How do we represent unknowns?
Answer: As random variables, with a prior.

Q. What do we report?
Answer: The posterior distribution of the quantity of interest.

Q. How do we find this?
Answer: Using Bayes’s rule.



Exercise 8.3.3 (Bayesian classification)

There are two types of expense claims, legitimate and fraudulent.
The legitimate claim sizes are ~ Exp(4;) and the fraudulent ones
are ~ Exp(Az) where 4;, = 0.1 and Az = 0.02.

In my prior experience, 99% of claims I've seen are legitimate.

A new claim comes in, for an amount £x. Is it likely to be fraudulent?

What are we uncertain about?

How do we represent uncertainty?

What is my prior?

What is the posterior | want to report?

Exercise.
Calculate P(0 = f | x).

(See lecture notes for solution.)




How should we express uncertainty about predictions?
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2010 2015 2020 2025 2030 2035 2040 2045 2050

I've fitted the model: Temp ~ o + f3 sin(Zn(t + qb)) + y(t — 2000) + N(0,52)
| predict the temperature in January 2050 is pred(2050) =a + [ sin(Zﬂ(ZOSO + gb)) + 50y.

How confident am | about this prediction?

What are we uncertain about? The unknown parameters a, 3, ¢,y, o

How do we represent uncertainty? Treat the unknowns as random variables,
Concretely, we'll generate M samples (a;, i, b, Vi, 0i), i=l,...,M, from our chosen prior, then compute weights w;.

What do | want to report? The posterior distribution of pred(2050).

Each sample of the parameters gives a different prediction, call it pred;(2050).
Each sample also has an associated weight. Use these weights to find a confidence interval for pred(2050).



Why is this the right way to compute (* non-examinable)
a confidence interval for a prediction?

Let h(a, 5, @, y,0) = 1pred(2050;a,ﬁ,cp,y) <lo

P(pred(2050; a, B, ,y) <lo) = E 1pred(2050 ;a,B,9,7) <lo since Elycy =P(X € A)
=Eh(a,pB,o,y,0) by definition of h
n
~ z w; h(e;, Bi, i, Vi, 0;) by Computational Bayes
=1
n
= z w; pred; (2050) where pred; is the prediction
=1

from the ith parameter sample



How should we choose between two models?

Modeller 1: Temp ~ a + [ sin(2m(t + ¢)) + y(t — 2000) + N(0, 52)
Modeller 2: Temp ~ a’ + f'sin(2n(t + ¢')) + N(0,0'?)

207 + + k * 4 i +
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2010 2015 2020 2025 2030 2035 2040 2045

What are we uncertain about? Which model is correct (and also all nine unknown parameters)

How do we represent uncertainty?  With random variables,

Let M be a random variable saying which model is correct, M=1 or M=2. Invent a prior for it.

Pr(data | params) = Pr(temp,,...,temp, | M=m, a,B,¢,y,0,o,8 ,¢ ,0) = { :fc: r:;lz

What do | want to report?  The posterior distribution of M given the data. In other words, P(M=1 | data).

2050
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