Midway summary

Models that depend on linear Parameter interpretation
combinations of features and identifiability

Supervised learning/ Generative modelling

Too much complexity can lead to overfit
Too little complexity can lead to
underfit

Not all the data (features) are equally
informative/representative

Fitting via least squares .
(when appropriate)

MATHS SKILLS

Bayesianism <+ Bayes’s rule

\ Monte Carlo




How should we compare models?




dataset of (x;, y;) pairs

Model A:

Y, ~ 1.62 + 0.49 x;
+ Normal(0, 2.39%)

Model B:

Y; ~ —38.5+ 95.7 x; — 84.8 x/ + 38.3 x;

—9.5x} + 1.3 x7 — 0.09 x? + 0.003 x/
+ Normal(0, 0.31%)

MSE =n"1 Y™ (y; — pred;)?

measures how well a model fits...

Or does it?

MSE large

MSE small



This model doesn't just predict a value for y.

It predicts a|distribution Y, at every x.

Model A:

Y, ~ 1.62 + 0.49 x;
+ Normal(0, 2.39%)




Model A:

Y, ~ 1.62 + 0.49 x;
+ Normal(0, 2.392)

Model B: There are several datapoints y;

I[T " "
Y, ~ —38.5 + 95.7 x; — 84.8 x2 + 38.3 x3 where model B says “The likelihood

_ 4 5 6 E of this y; is vanishingly small.” But
95X + 1.3, 2 0.09 %" +0.003 x; these y; did appear in the dataset,
+ Normal(0, 0.314) P

S0 model B is a bad explanation.




MODEL EVALUATION AND COMPARISON

After we fit a model, how do we decide if it’s a good fit?

1. Evaluate the imnean square error log likelihood of the dataset

2. Plot the residuais log likelihood of each datapoint,
and look for systematic patterns.



“Bayesianism”?!



Reverend Thomas
Bayes, 1/01-1/61

Bayes’s rule for random variables
PX=x)P(Y =y|X =x)
P(Y =y)
o) Py (1%

PX=x|Y=y)=

Pr. (ac‘yﬂy) =
. Pr, (y)

Bayesianism
Whenever there’s an unknown parameter,

you should express your uncertainty about it
by treating it as a random variable.



| tossed four coins
and got one head.

Using a Bin(n, p) model, | estimate
the probability of heads is p = 25%

| tossed twelve coins
and got three heads.

Using a Bin(n, p) model, | estimate
the probability of heads is p = 25%

But surely, the more data we

have, the more confident we
should be!




By using random variables for unknown quantities,
we can reason about confidence.

probability of
heads, unknown

% @ We don't know the value of 0, but
Q§

we'll assume we know its distribution.

o e.g. to express complete ignorance,
® ~ Uniform[O,l]
@ v
®
X We observed X =1

number of heads

from 4 coin tosses
We can vse Bayes's rule to work out
how confident we are about the
unknown parameter’s value ...

P(0 €[20%,30%] | X =1) =21%



A more sophisticated way to reason about confidence
is by using likelihood functions.

@ 3 () ~ ufo,1]

A

CRONONC!

X ~ Bin(n, O)

OE®ek

0.0 0.5 1.0 0.0 0.5



The data you see will affect your
posterior belief about the parameter.

prior belief data . posterior belief
PF@(Q) X PI'@(H'X = .X')

%@3 “

PO € [.2,.3] | data) = 21%
®
© A tighter
0.0 0.5 1.0 0.0 0.5 1.0 posterior
6 > distribution for O

means we are
more confident
about its valve.

Lo
CRcY-Yo!

@e 006
CACHCHC]

P(© € [.2,.3] | data) = 33%

0.0 0.5 1.0 0.0 0.5 1.0 J



. By using random variables for unknown quantities,
we can reason about confidence.

probability of
heads, unknown

@ 3 () ~ulo1]

prior belief N data IR posterior belief
Pl"@(@) X PF@(Q'X = X)

CEON O]

X ~ Bin(n, 0)

number of heads
from 4 coin tosses

OE®ek

0.0 0.5 1.0 0.0



By using random variables for unknown quantities,
we can reason about confidence.

probability of 0. First write out our probability model
heads, unknown for the data Pry (x|0® = 0)
@ \ () ~ulo1] 1.  Write out Pry(0)
3% 2. Use the formula

Prg(0|X = x) = kPrg(0)Pry(x|® = 0)
then find K to make this integrate to 1

CEON O]

X ~ Bin(n, 0)

number of heads

: This lets us calculate probabilities:
from 4 coin tosses

P(® € range|X = x) = j Pro(0|X = x) d6

B€range



Exercise.
Consider the pair of random variables (0, X) where

® ~ U[0,1], X ~ Bin(4, ©9)
Find the distribution of (O|X = 1).

Pro@)= 1 fov @€ lo(!]

- < ::.Ll', L =
Pry(xlo=0)= (2)0O~ (-o)" ™ - y o (1-9) v =102
Prg(0|X = 1) = k Prg(8) Pry (1|6 = 0)
A
az;mhbr :Kfi\z[fg(l @)
&fg} Yoy |<' Q) ({*@)3 < amw(jqw[cd/‘) non —4) ey,
l
| 5 = | (-
1@ (1-@)” 4 = K=
£K - [ o(-ep A

Q



Beta

Exercise.
Consider the pair of random variables (0, X) where Probability density function
® ~U[0,1], X ~ Bin(4,0) Notation | Beta(a,f3)
Find the distribution of (O|X = 1). PDE x31(1 — x)f-1
B(a,B)
where B(a, ) = NP and T
this is a standard pdf Lot h)

i5 15 a 5tandard p is the Gamma function.

Pro(01X = 1) =  Pro(6) Pry (1|0 = ) —
-\
o —| B
{__'@ = =

\ S, B(x,§)
50 this constant
must be 1 (otherwise this pdf wouldn't inte grate to 1 wr.t. 6)

Thee  (®1x=1) ~ Beta (x=2, f= )

What is P(0 € [.2,3] | X = 1)?

|

D = scipy.stats.beta(a=2,b=4)
D.cdf(.3) - D.cdf(.2)



Exercise 5.2.3 (classification)

In a dataset of MP expense claims, let y; be log,, of the claim amount in record 1. 0.71 ;- ;" 77
A histogram of the y; suggests we use a Gaussian mixture model with two 0.6 1 PO
components, 031 4 \
. 0.4 - // \
C= 1 with prob p 034 y \\\,— k};“:z_ 51
2 withprob1 —p 021 v \\ T
~ 2 0.11 / '
Y ~ Normal(uc, of) . - | .\‘~—.
-1 0 1 2 3 4
Find the probability that a claim amount £5000 belongs to the component ¢ = 2. log10(expense claim)
Pr~(c) = - .
c(c) t X Q& .
Pry(y[C=¢) =

Prc(clY = y) = K Prc(c) Pry(y|C = ©)




By using random variables for unknown quantities,
we can reason about confidence.

probability of 0. First write out our probability model
heads, unknown for the data Pry (x|0® = 0)
@ \ () ~ulo1] 1.  Write out Pry(0)
3% 2. Use the formula

Prg(0|X = x) = kPrg(0)Pry(x|® = 0)
then find k to make this integrate to 1

CEON O]

X ~ Bin(n, 0)

number of heads
from 4 coin tosses

... but these are vsually intractable

This lets us calculate probabilities:
r

P(® € range|X = x) =



§6. Computational methods

Let X be the location of a
randomly thrown dart, and let
X1, -, Xy be some throws.

What’s the chance that a randomly thrown
dart will hit the mystery object 4?

The probability of hitting A is i
1 n i ~ I/f x;ef)
P(X € 4) ~ 52 loea KA (o ke
i=1

#t Let X~Nw=1,0=3). What is P(X >5)7?
X = np.random.normal (loc=1, scale=3, §12e=10@@@)
i=(x>5) (0,00 Bohkans

np.mean(i)

’ §\\/é\\w\\-“‘ ( ‘
N f‘yfcc«,t st R L.




Expectation 301
For a real-valued random variable X

(Zxx Pry(x), ifX isdiscrete
EX = <f

X

x Pry(x) dx, if X is continuous



Law of the Unconscious Statistician 6.1
For a random variable X and a real-valued function h

f
h(x) Pry(x), if Xis discrete
IEh(X) ={Zx ( ) X( )

\ fx h(x) Pry(x) dx, if X is continuous
\
|

If we want to know the average properties of a rich random variable
(random images, random texts), we have to use real-valued
property readout functions h(X) so that we can take averages.

Monte Carlo integration

ER(X) ~ %Zilh(xi)

where x4, ..., X, is @ sample drawn from X



Let X be the location of a
randomly thrown dart, and let
X1, -+, Xy be some throws.

The probability of hitting A is

n
1
P €A~ ~ ) Ty
=1

§6.1



Trinity College integratio 56.1

b n _
Jzah(x) dx ~ ; h(x;) b m -

where Xx; is the midpoint of interval i

Let’s instead approximate this integral using Monte Carlo. Let X ~ U|a, b].

Monte Carlo integration By Monte Carlo,

n
1
Eh(X) = —z h(x;) where x4, ..., x,, sampled from X

j b

b 1
f h(x) Pry(x) dx =j h(x) P— dx

> x=a x=a




COMPUTATIONAL METHODS

“ If we want Eh(X) but the maths is too
complicated, we can approximate it using
X1, ..., X, Sampled from X

»» The approximation for Eh(X) also tells us
how to estimate probabilities, since
P(X€A) =Elyeqy

*%* For computational Bayes, we need
something a bit fancier: weighted samples



s it always the best choice?



Hint

Try to perform classification on a dataset used to determine whether a
landslide is occurring or not

l.e., sometimes not all the errors have the same consequences

In that case, it would be good to have a different metric that could take into
account this information = from error to risk

Good thing about Bayes’ theory: it can incorporate risk

The next slides (OPTIONAL) explain how



JERY Y
S. Theodoridis, K. Koutroumbas, “Pattern
Recognition”, Academic press, 2009 — chapter 2

Hint

2-class
classification

FIGURE 2.1

Example of the two regions Ky and B> formed by the Bayesian classifier for the case of two
equiprobable classes.

xe R, = AABIG A~ Ay

X e By = o T, o
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s it always the best choice?
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Let’s consider warning systems for landslides



Figure 4.2: Date-specific maps of (a) total rainfall (mm/day), (b) mean temperature
(Celsius degrees), (¢) snow depth (cm/day), (d) snow water equivalent (mm/day), and
(e) fresh snow water equivalent (mm/day) for December 30, 2020. Static maps of (f)
steepness (degrees), (g) ELSUS susceptibility (categorical integer), (h) slope angle class

(categorical integer), (i) land cover class (categorical integer), and (j) lithology class
(categorical integer).

Credits: J. Dimasaka
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Credits: J. Dimasaka
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