
Models that depend on linear 
combinations of features

Parameter interpretation 
and identifiability

Fitting via least squares
(when appropriate)

Bayesianism Bayes’s rule

Monte Carlo

Midway summary

Using a probability model 
to describe data

Fitting a model’s unknown 
parameters using MLE

Reasoning about 
parameter uncertainty

MATHS SKILLS

Supervised learning/ Generative modelling
• Too much complexity can lead to overfit
• Too little complexity can lead to 

underfit
• Not all the data (features) are equally 

informative/representative



How should we compare models?



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

Model B:

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

dataset of (𝑥𝑖 , 𝑦𝑖) pairs

§4.1*

MSE large

MSE small

MSE = 𝑛−1 σ𝑖=1
𝑛 𝑦𝑖 − pred𝑖

2 
measures how well a model fits… 

Or does it?



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

This model doesn’t just predict a value for 𝑦.

It predicts a distribution 𝑌, at every 𝑥.

§4.1*



Model A:

𝑌𝑖 ∼ 1.62 + 0.49 𝑥𝑖

+ Normal(0, 2.392)

Model B:

𝑌𝑖 ∼ −38.5 + 95.7 𝑥𝑖 − 84.8 𝑥𝑖
2 + 38.3 𝑥𝑖

3

−9.5 𝑥𝑖
4 + 1.3 𝑥𝑖

5 − 0.09 𝑥𝑖
6 + 0.003 𝑥𝑖

7

+ Normal(0, 0.312)

Area of 
high likelihood

Area of 
low likelihood

These points are very unlikely to 
have been generated by this model

There are several datapoints 𝑦𝑖 
where model B says “The likelihood 
of this 𝑦𝑖 is vanishingly small.” But 
these 𝑦𝑖 did appear in the dataset. 
So model B is a bad explanation.

§4.1*



MODEL EVALUATION AND COMPARISON

After we fit a model, how do we decide if it’s a good fit?

1. Evaluate the mean square error log likelihood of the dataset

2. Plot the residuals log likelihood of each datapoint,
and look for systematic patterns.



“Bayesianism”?!



Bayes’s rule for random variables

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 =
ℙ 𝑋 = 𝑥  ℙ 𝑌 = 𝑦 𝑋 = 𝑥)

ℙ(𝑌 = 𝑦)

Bayesianism
Whenever there’s an unknown parameter, 
you should express your uncertainty about it 
by treating it as a random variable.

Reverend Thomas 
Bayes, 1701–1761



I tossed four coins 
and got one head.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 = 25%

But surely, the more data we 
have, the more confident we 
should be!

25%

I tossed twelve coins 
and got three heads.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 =



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

We don’t know the value of Θ, but 
we’ll assume we know its distribution.

We observed 𝑋 = 1

We can use Bayes’s rule to work out 
how confident we are about the 
unknown parameter’s value …

e.g. to express complete ignorance,
Θ ~ Uniform[0,1]

ℙ Θ ∈ 20%, 30%  𝑋 = 1) = 21%



prior belief
PrΘ 𝜃

𝜃 𝜃

Θ

𝑋

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

A more sophisticated way to reason about confidence 
is by using likelihood functions.

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥



The data you see will affect your 
posterior belief about the parameter.

prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

A tighter 
posterior 
distribution for Θ 
means we are 
more confident 
about its value.

ℙ Θ ∈ .2, . 3  data) = 21%

ℙ Θ ∈ .2, . 3  data) = 33%

𝜃 𝜃

𝜃 𝜃



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃



Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 =

Pr𝑋 𝑥 Θ = 𝜃 =

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)



Exercise.
Consider the pair of random variables (Θ, 𝑋) where

Θ ∼ 𝑈 0,1 , 𝑋 ∼ Bin(4, Θ)

Find the distribution of (Θ|𝑋 = 1).

PrΘ 𝜃 𝑋 = 1 = 𝜅 PrΘ 𝜃  Pr𝑋(1|Θ = 𝜃)

Beta

Probability density function

Notation Beta(𝛼, 𝛽)

PDF 𝑥𝛼−1 1 − 𝑥 𝛽−1

𝐵(𝛼, 𝛽)

where 𝐵 𝛼, 𝛽 =
Γ 𝛼 Γ(𝛽)

Γ(𝛼+𝛽)
 and Γ 

is the Gamma function.this is a standard pdf

What is ℙ Θ ∈ .2,3  𝑋 = 1)?

D = scipy.stats.beta(a=2,b=4)
D.cdf(.3) – D.cdf(.2) 

so this constant
must be 1 (otherwise this pdf wouldn’t integrate to 1 wr.t. θ)



Exercise 5.2.3 (classification)
In a dataset of MP expense claims, let 𝑦𝑖  be log10 of the claim amount in record 𝑖. 
A histogram of the 𝑦𝑖  suggests we use a Gaussian mixture model with two 
components,

𝐶 = ቊ
1 with prob 𝑝 − 1
2 with prob 1 − 𝑝

𝑌 ∼ Normal 𝜇𝐶 , 𝜎𝐶
2

Find the probability that a claim amount £5000 belongs to the component 𝑐 = 2.

PrC 𝑐 =

Pr𝑌 𝑦 C = 𝑐 =

PrC 𝑐 𝑌 = 𝑦 = 𝜅 PrC 𝑐  Pr𝑌(𝑦|C = 𝑐)



By using random variables for unknown quantities, 
we can reason about confidence.

Θ

𝑋

probability of 
heads, unknown

number of heads 
from 4 coin tosses

prior belief
PrΘ 𝜃

𝜃 𝜃

+ 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

∼ 𝑈[0,1]

∼ Bin(𝑛, Θ)

0. First write out our probability model 
for the data Pr𝑋(𝑥|Θ = 𝜃)

1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate probabilities:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃

… but these are usually intractable



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛


𝑖=1

𝑛

1𝑥𝑖∈𝐴

What’s the chance that a randomly thrown 
dart will hit the mystery object 𝐴?

1
2
3
4

# Let 𝑋 ∼ 𝑁(𝜇 = 1, 𝜎 = 3). What is ℙ 𝑋 > 5 ?
x = np.random.normal(loc=1, scale=3, size=10000)
i = (x > 5)
np.mean(i)

§6. Computational methods



Expectation
For a real-valued random variable 𝑋

𝔼𝑋 = ൝
σ𝑥 𝑥 Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
𝑥 Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 

§6.1



Law of the Unconscious Statistician
For a random variable 𝑋 and a real-valued function ℎ 

§6.1

If we want to know the average properties of a rich random variable 
(random images, random texts), we have to use real-valued 
property readout functions h(X) so that we can take averages.

≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖

where 𝑥1, … , 𝑥𝑛 is a sample drawn from 𝑋

Monte Carlo integration

𝔼ℎ 𝑋

𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 𝔼ℎ 𝑋 = ൝
σ𝑥 ℎ 𝑥  Pr𝑋 𝑥 , 𝑑𝑥if 𝑋 is discrete 

𝑥
ℎ 𝑥  Pr𝑋 𝑥 𝑑𝑥 , if 𝑋 is continuous

 



Let 𝑋 be the location of a 
randomly thrown dart, and let 
𝑥1, … , 𝑥𝑛 be some throws.

The probability of hitting 𝐴 is

ℙ 𝑋 ∈ 𝐴 ≈
1

𝑛


𝑖=1

𝑛

1𝑥𝑖∈𝐴

§6.1



Monte Carlo integration

𝑎 𝑏

ℎ(𝑥) 

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈ 

𝑖=1

𝑛

ℎ 𝑥𝑖

𝑏 − 𝑎

𝑛

where 𝑥𝑖 is the midpoint of interval 𝑖

Trinity College integration

Let’s instead approximate this integral using Monte Carlo. Let 𝑋 ∼ 𝑈[𝑎, 𝑏].

By Monte Carlo,

𝔼ℎ 𝑋 ≈
1

𝑛


𝑖=1

𝑛

ℎ 𝑥𝑖  where 𝑥1, … , 𝑥𝑛 sampled from 𝑋

න
𝑥=𝑎

𝑏

ℎ 𝑥  Pr𝑋 𝑥  𝑑𝑥 = න
𝑥=𝑎

𝑏

ℎ 𝑥  
1

𝑏 − 𝑎
 𝑑𝑥

Thus,

න
𝑥=𝑎

𝑏

ℎ 𝑥  𝑑𝑥 ≈
𝑏 − 𝑎

𝑛


𝑖=1

𝑛

ℎ(𝑥𝑖)

§6.1



COMPUTATIONAL METHODS

❖ If we want 𝔼ℎ(𝑋) but the maths is too 
complicated, we can approximate it using 
𝑥1, … , 𝑥𝑛 sampled from 𝑋

❖ The approximation for 𝔼ℎ(𝑋) also tells us 
how to estimate probabilities, since 
ℙ 𝑋 ∈ 𝐴 = 𝔼1𝑋∈𝐴

❖ For computational Bayes, we need 
something a bit fancier: weighted samples



Is it always the best choice?



Hint

Try to perform classification on a dataset used to determine whether a 
landslide is occurring or not

I.e., sometimes not all the errors have the same consequences 

In that case, it would be good to have a different metric that could take into 
account this information → from error to risk 

Good thing about Bayes’ theory: it can incorporate risk 

The next slides (OPTIONAL) explain how



Hint

2-class 
classification

S. Theodoridis, K. Koutroumbas, “Pattern 
Recognition”, Academic press, 2009 – chapter 2











Is it always the best choice?



Let’s consider warning systems for landslides



Credits: J. Dimasaka



Credits: J. Dimasaka





Probability of feature vector x from j-th 
class being classified in i-th class.
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