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• How can we write the distribution of the parameters estimated by MLE for 
N→+∞ ?

 … keep the central limit theorem in mind …



Central limit theorem



Central limit theorem
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• How can we write the distribution of the parameters estimated by MLE for 
N→+∞ ?

                                       መ𝜃𝑀𝐿 ∼ 𝒩( መ𝜃0, Σ෡𝜃)

The ML estimate is related to the sum of random variables



I tossed four coins 
and got one head.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 = 25%

But surely, the more data we 
have, the more confident we 
should be!

25%

I tossed twelve coins 
and got three heads.

Using a Bin(𝑛, 𝑝) model, I estimate 
the probability of heads is Ƹ𝑝 =



“This is a 40mph speed 
limit, with probability 98%.”

Neural networks tell us 
probabilities, but they don’t 
tell us their confidence.

No one has worked out how 
to extract confidences from 
neural networks. But, in 
Bayesian statistics, we do 
know how to …



What are these probabilities?
▪ ℙ have COVID test +ve)
▪ ℙ have COVID test −ve)

Let’s rewrite this data as a probability model:

Let 𝑋 = 1have COVID and let 𝑌 = 1test+ve

1 𝑋 ~ Bin(1, 0.004)

test +ve test -ve

got COVID 376 24

not got COVID 996 98,604

Data from a population sample of 100,000 people:

Bayes’s rule

99,400

99,600

total

2

3

4

5

if 𝑋 == 1:
    𝑌~ Bin(1, 0.94)
else:
    𝑌~ Bin(1, 0.01)

ℙ 𝑋 = 1 𝑌 = 1

=
ℙ 𝑋 = 1  ℙ(𝑌 = 1|𝑋 = 1)

ℙ(𝑌 = 1)

=
0.004 × 0.94

0.004 × 0.94 + 0.996 × 0.01

376 / 400 = 0.94

996 / 99 600 = 0.01

400 / 100 000 = 0.004



Credits: IEEE GRSS Data Fusion contest 2018

 Training Test →



Thomas Bayes (1701-1761)



Bayes’s rule

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 =
ℙ 𝑋 = 𝑥 ℙ 𝑌 = 𝑦 𝑋 = 𝑥

ℙ 𝑌 = 𝑦
 when ℙ 𝑌 = 𝑦 > 0

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌 𝑦 𝑋 = 𝑥

Pr𝑌 𝑦
 when Pr𝑌(𝑌) > 0

For two discrete random variables 𝑋 and 𝑌,

For two discrete or continuous random variables 𝑋 and 𝑌,

§5



Recap
Marginal Probability
▪ It is the probability of an event irrespective of any other factor/event/circumstance. Basically, 

you ‘marginalize’ other events and hence the name. It is denoted by P(A) and read as 
“probability of A”.

Conditional Probability
▪ Conditional probability is when the occurrence of an event is wholly or partially affected by 

other event(s). Alternatively put, it is the probability of occurrence of an event A when an 
another event B has already taken place. It is denoted by P(A|B) and read as “probability of A 
given B”.

Joint Probability
▪ Joint probability is calculated when we are interested in the occurrence of two different events 

simultaneously. It is also often referenced as probability of intersection of two events. It is 
denoted by P(A, B) and read as “probability of A and B”.



Joint distribution

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)]
plt.hist2d(xy_samp)



Marginal random variables

The marginal of 𝒀
Pr𝑌 𝑦 = ℙ 𝑌 = 𝑦

= ෍
𝑥

ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

= ෍
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

Code to plot the marginal pmf
y_samp = [y for (x,y) in xy_samp]
plt.hist(y_samp)

The joint pmf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦 = ℙ 𝑋 = 𝑥, 𝑌 = 𝑦

§5.1

Code to plot the joint pmf
xy_samp = [rxy() for _ in range(1000)]
plt.hist2d(xy_samp)

by the Sum Rule

← i.e. just throw away the x values



Conditional random variables

𝑿 conditional on 𝒀 = 3

ℙ 𝑋 = 𝑥|𝑌 = 3 =
ℙ(𝑋 = 𝑥, 𝑌 = 3)

ℙ(𝑌 = 3)
=

Pr𝑋,𝑌(𝑥, 3)

Pr𝑌(3)

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

def rx_given_y():
    while True:
        x,y = rxy()
        if y == 3: break
    return x

Sample space:

Code to generate values from it:

We can think of “𝑿 conditional on 𝒀 = 3” 
as a random variable …

We’ve provided a valid probability mass function:

§5.1

def rx_given_y():
    Ω = {-5,...,5}
    p = [pmf(x) for x in Ω]
    return np.random.choice(Ω, p=p)

i.e. take the Y=3 row,
then rescale it to sum to 1



Conditional random variables

def rxy():
    x = np.random.randint(low=-5, high=6)  # from -5 to +5 inclusive
    y = np.random.binomial(n=6, p=(x/6)**2)
    return (x,y)

§5.1

We define the conditional random 
variable, written 𝑋 𝑌 = 𝑦 , by 
specifying its likelihood:

Pr 𝑋|𝑌=𝑦 𝑥 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

def rx_given_y():
    Ω = {-5,...,5}
    p = [pmf(x) for x in Ω]
    return np.random.choice(Ω, p=p)









The quality of the analysis (and of the statistics) depends on 
the quality of the data and of the design choices we make



Credits: IEEE GRSS Data Fusion contest 2018

 Training Test →
Why this is not a good choice?





Recall: pdf and cdf for continuous random variables

For a continuous random variable 𝑋

ℙ 𝑥1 ≤ 𝑋 ≤ 𝑥2 = න
𝑥=𝑥1

𝑥2

Pr𝑋(𝑥) 𝑑𝑥

Pr𝑋 𝑥 =
𝑑

𝑑𝑥
ℙ(𝑋 ≤ 𝑥)

For a pair of continuous random variable 𝑋 and 𝑌

ℙ 𝑥1 ≤ 𝑋 ≤ 𝑥2 and 𝑦1 ≤ 𝑌 ≤ 𝑦2 = න
𝑥=𝑥1

𝑥2

න
𝑦=𝑦1

𝑦2

Pr𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦

Pr𝑋,𝑌 𝑥, 𝑦 =
𝜕2

𝜕𝑥 𝜕𝑦
 ℙ(𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦)



Joint distribution and marginals (continuous case)

The joint pdf of (𝑿, 𝒀)
Pr𝑋,𝑌 𝑥, 𝑦

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

The marginal of 𝒀

Pr𝑌 𝑦 = න
𝑥

Pr𝑋,𝑌(𝑥, 𝑦)  𝑑𝑥

§5.1



Conditional random variables (continuous case)

def rxy():
    x = np.random.uniform(-1,1)
    y = np.random.normal(loc=x**2, scale=0.1)
    return (x,y)

We define the conditional random variable 
(𝑿|𝒀 = 𝒚) by specifying its likelihood:

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋,𝑌(𝑥, 𝑦)

Pr𝑌(𝑦)

§5.1

Take the 𝑌 = 0.6 slice of the joint pdf,
then rescale it so it integrates to 1
i.e. so we get a legitimate pdf.



Bayes’s rule

Bayes’s rule is true for any pair of random variables 𝑋, 𝑌.
It’s only useful in “sequential models” i.e. when the question tells us Pr𝑋(𝑥) and Pr𝑌(𝑦|𝑋 = 𝑥).

§5.1



Bayes’s rule for discrete or continuous random variables

For two random variables 𝑋 and 𝑌,

Pr𝑋 𝑥 𝑌 = 𝑦 =
Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

Pr𝑌(𝑦)
 when Pr𝑌 𝑦 > 0

In practice, we use it as

Pr𝑋 𝑥|𝑌 = 𝑦 = 𝜅 Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)

constant that 
doesn’t involve 𝑥

then figure out 𝜅 so that Pr𝑋(⋅ |𝑌 = 𝑦) 
is a legitimate likelihood function

𝑥׬
Pr𝑋 𝑥|𝑌 = 𝑦  𝑑𝑥 = 1 

or σ𝑥 Pr𝑋 𝑥|𝑌 = 𝑦 = 1

§5.2



Exercise 5.2.1
Consider the pair of random variables (𝑋, 𝑌) generated by

    def rxy(σ):
        x = np.random.uniform(-1,1)
        y = np.random.normal(loc=x**2, scale=σ) 
        return (x,y)

Or, in maths notation,

𝑋 ∼ 𝑈 −1,1 ,  𝑌 ∼ 𝑁(𝑋2, 𝜎2)

Calculate Pr𝑋 𝑥 𝑌 = 𝑦).

Pr𝑋 𝑥 =

Pr𝑌 𝑦 𝑋 = 𝑥 =

Pr𝑋 𝑥 𝑌 = 𝑦 = 𝜅 Pr𝑋 𝑥  Pr𝑌(𝑦|𝑋 = 𝑥)





Is it always the best choice?



Hint

Try to perform classification on a dataset used to determine whether a 
landslide is occurring or not
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