Example sheet 1

Question 8. For the climate data from section 2.2.5 of lecture notes, we proposed the model
temp = a + [ sin(27t) + 32 cos(27t) + 4t

in which the +~t term asserts that temperatures are increasing at a constant rate. We might
suspect though that temperatures are increasing non-linearly. To test this, we can create a non-
numerical feature out of t by

u = ’decade ’ + str(math.floor(t/10)) + ’@s’
(which gives us values like *decade_1980s”, *decade_1990s”’, etc.) and fit the model
temp = a + 3 sin(27t) + B3 cos(27t) + .

Write this as a linear model, and give code to fit it. [Note. You should explain what your feature

vectors are, then give a one-line command to estimate the parameters.]
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QUESTION. This code doesn’t pass the Moodle tester. What’s the bug?

class StepPeriodicModel():

def

def

def

__init__(self):
self.mindec = np.nan
self.maxdec = np.nan

p sin (ZtrC) 3 (2¢)
fit(self, t, temp):
self.mindec = np.floor(min(t)/10)*10
self.maxdec = np.floor(max(t) /7 10) * 10
indicators = [np.where(np.floor(t/10)*10

for year in range(int((self.maxdec - self.mindec)/10

year*10 + self.mindecxpl, 0)

+ 1]

X = np.column_stack([np.sin(2 * np.pi * np.mod(t,1)), np.cos(2 * np.mod(t,1)), *indicators])

model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(X, temp)

(_,_,*y) = model.coef_

self.y = np.append(y, np.nan)

predict_step(self, t):

t = np.array(t).astype(float)

2 = ((np.floor(t/10)*10-self.mindec)/10).astype(int)
replace_mask = np.where((2<0) | (£>=len(self.y)-1))
2[replace_mask] = len(self.y) - 1

return np.take(self.y, 2)
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§2.3. Diagnhosing a model

After fitting a model,

1. Compute the prediction errors
a.k.a. the residuals

2. Plot them every way we can
think of. They're telling us
where our model is poor.

Machine learning models don't fail
with nice simple exceptions or
incorrect answers, They fail by
giving vs fishy answers.

The only way to debug them is
through data science investigation.
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TODAY’S AGENDA

§2.3 Model diagnostics

§2.6 Interpreting parameters

§2.4 Least squares estimation & probability

§4  Measuring model fit (* non-examinable)



§2.6 Interpreting parameters

Write out the predicted response for a few
typical / representative datapoints.

Write out the features.

Check if the features are linearly dependent.




COMPARING GROUPS

Measurements for condition A: a

= [at » a2 e ] am]
Measurements for condition B: b =

[bl ' b2 gy an
Can we use a linear model to compare A and B?
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Exercise 2.6.2 (Contrasts) Whot predhicHony do tHhege wocldds meke ?

In the dataset below, of measurements

[
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» 15_, means “apply the indicator to each element of g”
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Stop and search

© This article is more than 3 years old

Met police

'disproportionately’ use
stop and search powers on
black people

London’s minority black population
targeted more than white population in
2018 - official figures

Guar
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Can | set up a model with
a parameter that
measures the quantity
I'm interested in?




Example 2.6.4

The UK Home Office makes available a dataset of police stop-and-search incidents. We
wish to investigate whether there is racial bias in police decisions to stop-and-search.
Consider the linear model

Vi = a+ Peth,

where eth; is the officer-defined ethnicity for record i, and y; records the outcome:
v; = 1 if the police found something, O otherwise.

a) Write this as a linear equation using one-hot coding.
b) Are the parameters identifiable? If not, rewrite the model so that they are.

c) Does the model suggest there is racial bias in policing actions?
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The non-identifiable model that was proposed by the question:
y=al+faseas + PBrier + Pumicmi + Poth €oth + Pwn ewn

(b) Rewrite it to have identifiable parameters
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Output from the identifiable model

y=a 1+ B'greg +B'miemi + B ot €otn + L wnewn
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some_levels = [k for k in ethnicity_levels if k != 'Asian']
eth_onehot = [np.where(eth==k,1,0) for k in some_levels]

a’ = 0.2614 4 —
model = sklearn.linear_model.LinearRegression() B’ [Black] 154705731562644
model.fit(np.column_stack(eth_onehot), y) B’ [Mixed] = 0.028715617211154926

o,Bs = model.intercept_, model.coef_ B’[Other] = -0.004471057366589165

B’[White] = -0.003720378247083333
print(f'a = {a}"')

for k,B in zip(some_levels, fs):

print(f'BL{k}] = {B}")



Output from the non-identifiable model

V= a+ Pasleth=as + Peileth=B1 + Pmileth=mi T Pothleth=0th T Bwhleth=wh
Asian Black Mixed Other White

ethnicity_levels = np.unique(eth)

eth_onehot = [np.where(eth==k,1,0) for k in ethnicity_levels]
o = -34037792910.00365

model = sklearn.linear_model.LinearRegression() B[Asian] = 34037792910.26522
model.fit(np.column_stack(eth_onehot), y) B[Black] = 34037792910.265717
o,Bs = model.intercept_, model.coef_ B[Mixed] = 34037792910.2939
BL[Other] = 34037792910.260
print(f'a = {a}"') B[White] = 34037792910.26

for k,B in zip(ethnicity_levels, fBs):
print(f'BL{k}] = {B}")



§2.4 Least squares estimation
& probability
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Least squares estimation
Fit the linear model
y = [ie1 + -+ freg
i.e.
Vi = Bieq; + -+ Bregi + &

by choosing the parameters [, ..., fx so as to
minimize the mean square error

1 n
mse = — E eiz
n i=1

Maximum likelihood estimation
Fit the probability model

Yi~...

by choosing the model parameters so as to maximize
the log likelihood of the observed data

n

log Pr(yy, ..., V) = z._llog Pry(y;i; ...)

1=

§2.4

Example 2.1.1
The Iris dataset has 50 records of iris measurements,

from three species.

How does depend on

?
We fitted the linear model

~a+ f SL+ySL?

Example
Let’s fit the probability model

PL; ~ @ + 3 SL; + ¥ SL? + Normal(0, 52)




Model for a single observation:  PL; ~ a + 3 SL; + y SL¥ + MO0, c2)
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Maximize over the unknown parameters,
a,f,y,and o:
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Gauss, 13822

In a linear model where the errors have a mean of zero, are uncorrelated,
normally distributed, and have equal variances, the best linear unbiased
estimator of the parameters is the least-squares estimator.



Least squares estimation
derives from a Gaussian
probability model.

If that model doesn’t fit the
data, then don’t use least
squares estimation!

A sensible model diagnostic is to plot a histogram
of the residuals, and check they look Gaussian.

Histogram of residuals, split by month
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Let y; € {0,1} be the outcome for stop-and-search incident i.

Stop and search

© This article is more than 3 years old

Vi ® @+ Petn; ie. Y; ~ a+ Bewn, + N(0,0%)

Met police
'disproportionately’ use
stop and search powers on
black people

Fit « and B}, Pumis --- Using least squares estimation
or, equivalently, fit using maximum likelihood estimation

London's minority black population
targeted more than white population in
2018 - official figures

Y; ~ Bin(1, @ + Betn,)
Fit the parameters using maximum likelihood estimation

There’s a more advanced version called Logistic Regression,
for Bin(1, 8;) where 0; depends on multiple features. It uses softmax.
See the code in [stop-and-search.ipynb], or Part Il Advanced Data Science.




Why is Gaussian distribution important?
 Computational tractability

 Models several operational scenarios
 Central limit theorem



Central limit theorem




Central limit theorem




Question
Does the central limit theorem have limitations for applied scenarios?

Well, yes.

et
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“Don’t beliebe me, just watch”

Bruno fHlars



THEORIE

ANALYTIQUE
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Two main results:

any function of a variable, whether
continuous or discontinuous, can be
expanded in a series of sines of multiples
of the variable = Fourier transform

partial differential equation for conductive
diffusion of heat



The heat diffusion mechanism is summarized by a stochastic differential equation of this form:

X = —?DT(E) — \/ﬁﬂ", This says to what rate (x)
the material at a point will
where X and W identify the derivatives with respect to £ of X and | heat up (or cool down) is

: e e . - . P . proportional to how much
w, respectively. Moreover, U is the free energy at X (which can | _©_ (or cooler) the

be also called the potential at X). and wW(t) 1s an n-dimensional | surrounding material is
Brownian motion process.

This equation can be expressed in terms of the probability density function of the heat diffusion
process (Fokker-Planck derivation):

5
; —V - (Vp+pVU(x))

A. Marinoni, C. Jutten, M. Girolami, «A graph representation based on fluid diffusion model for data analysis: theoretical aspects and enhanced community detection,» subm. to IEEE Trans. On Pattern Analaysis and
Machine Intelligence (TPAMI), https://arxiv.org/abs/2112.04388, 2023



https://arxiv.org/abs/2112.04388

The solution of this equation is:

X; —Kj| :;ﬁl

p(x(t+€) = x;[x(t) = X;) = pij x exp {_ 20

Which is the probability of the given thermodynamic system to transition from state x; to state x;
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Credits: M. Bronstein



§4. How should we measure how well a model fits the data?
(* non-examinable)
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Temperatures are increasing,

Climate is stable: and the rate is increasing

Temp(t) ~a+b sin(Zn(t + ¢)) + N(0,0?) piecewise-linearly:

e VYWV [+
Temperatures are increasing,

and the rate is nonlinear:
And if so, when is

/\W ¥ JJ_nJJ_J_ the tipping point?
Temperatures are increasing linearly:
Temp(t) ~ -+ yt ’\W " /

VWV Jf|—



RICE CRUMB #3 —v2.0

* How can we write the distribution of the parameters estimated by MLE for
N—>+o0 ?

... keep the central limit theorem in mind ...
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