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§2.1 
Fitting a 
linear model



You’ve got to have models in your head. And you’ve got 
to array your experience – both vicarious and direct – 
on this latticework of models.

You may have noticed students who just try to 
remember and pound back what is remembered. Well, 
they fail in school and in life. You’ve got to hang 
experience on a latticework of models in your head.

Charlie Munger (business partner of Warren Buffet), 
A lesson on elementary, worldly wisdom as it relates to 
investment management & business.



Monthly average temperatures in Cambridge, UK
What’s a good model for this dataset?

Climate is stable?

Temp 𝑡 ∼ 𝑎 + 𝑏 sin 2𝜋 𝑡 + 𝜙 + 𝑁(0, 𝜎2)

Temperatures are increasing?

Temperatures are increasing, 
and the increase is 
accelerating?

The extremes are 
getting worse?

There are so many possible models. We want 
to make it easy to invent and fit new models, 
so we have time to explore all the possibilities.



Example 2.1.1
The Iris dataset has 50 records of iris 
measurements, from three species.

How does Petal.Length depend on 
Sepal.Length? 

Petal.

Length

Petal.

Width

Sepal.

Length

Sepal.

Width Species

1.0 0.2 4.6 3.6 setosa

5.0 1.9 6.3 2.5 virginica

5.8 1.6 7.2 3.0 virginica

4.2 1.2 5.7 3.0 versicolor

…

Dataset collected by Edgar Anderson and popularized by Ronald Fisher in 1936

Let’s guess that for parameters 𝛼, 𝛽, 𝛾, 𝜎 (to be estimated), 
Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2
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Models of this form are called linear models
(because they’re based on linear algebra).

They are flexible, and very fast to optimize.
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Least squares estimation

Consider a linear model 
𝑦 ≈ 𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾

“All models are wrong.”

The vector of prediction errors is called the residual vector,
𝜀 = 𝑦 − (𝛽1𝑒1 + ⋯ + 𝛽𝐾𝑒𝐾)

We can fit the model using least squares estimation. This means finding 
parameters 𝛽1, … , 𝛽𝐾 to minimize the mean square error

mse =
1

𝑛


𝑖=1

𝑛

𝜀𝑖
2
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1 iris = pandas.read_csv(...)

2
3
4
5

one, SL, PL = np.ones(len(iris)), iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression(fit_intercept=False)
model.fit(np.column_stack([one, SL, SL**2]), PL)
(α,β,γ) = model.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = α + β*newSL + γ*(newSL**2)

Making predictions / getting fitted values from the model

Fitting the model
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Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2
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2
3
4
5

SL, PL = iris['Sepal.Length'], iris['Petal.Length']
model = sklearn.linear_model.LinearRegression()
model.fit(np.column_stack([SL, SL**2]), PL)
α,(β,γ) = model2.intercept_, model2.coef_

6
7

newSL = np.linspace(4.2, 8.2, 20)
predPL = model.predict(np.column_stack([newSL, newSL**2]))

Making predictions / getting fitted values from the model (cleaner code)

Fitting the model (cleaner code)
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Petal.Length ≈ 𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

§2.11 iris = pandas.read_csv(...)



§2.2 Feature design

How do we design features, 
so that linear models 
answer the questions we 
want answered?



ONE-HOT CODING
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EXERCISE
Fit the model with three parallel straight lines.
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NON-LINEAR RESPONSE

Petal.Length ≈
zinger𝛼 + 𝛽 Sepal.Length + 𝛾 Sepal.Length 2

Petal.Length ≈

𝑧𝑖𝑛𝑔𝑒𝑟𝛽0 + 
𝑘=1

𝐾

𝛽𝑘 Sepal.Length 𝑘
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quadratic

cubic

polynomial 
degree 10

𝑦 ≈ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽10𝑥10

𝑥

𝑦

Q. Should we just keep adding more 
and more features to our model?

A. No. If we did, we’d overfit. 

(seeing as the more features we add, 
the better we can fit the dataset)

Only add in features that you (as a 
scientist) believe are relevant.

Or do model testing, e.g. 
evaluation on a holdout set.
[§5–7]
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NON-LINEAR RESPONSE via one-hot coding §2.2



Memory lane

Credits: Smithsonian Institution



Listening modes:
- Rock
- Jazz
- Classical



How were listening modes calculated?

• Take a bunch of songs NS of three different music genres

• In a linear model
• the amplitudes for each frequency would be the feature vectors;

• the amplitude of the bass at the speaker would be the response vector 

• (dimensionality = NS)

• Calculate for each frequency the corresponding parameter

Scope of listening modes: improving audio quality

▪ By applying a frequency filter in the shape of the estimated 
distribution 
― Fostering some frequencies, reducing other frequencies



( + )

x

=

Accurate listening mode



( + )

x

=

Wrong listening mode



Listening modes, today



Listening modes, today

Credits: Sean Olive



COMPARING GROUPS
Measurements for condition 𝐴:  a = [a1,a2,…,am]
Measurements for condition 𝐵:  b = [b1,b2,…,bn]

Can we use a linear model to compare 𝐴 and 𝐵?
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PERIODIC PATTERN

We'd like to fit the model: 
temp ≈ 𝛼 + 𝛽 sin 2𝜋t+𝜑

It looks like we can’t use 
sklearn.LinearRegression. 
That’s only for linear models, 
e.g.

temp ≈ 𝛼 + 𝛽e + 𝛾f 
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PERIODIC PATTERN

We'd like to fit the model: 
temp ≈ 𝛼 + 𝛽 sin 2𝜋t+𝜑

From school trigonometry,

sin 𝐴 + 𝐵
 = sin 𝐴 cos 𝐵 + cos 𝐴 sin(𝐵)

≈ 𝛼 + 𝛽 sin 2𝜋t cos 𝜙  +  cos 2𝜋t sin 𝜙

= 𝛼 + 𝛽 cos 𝜙 sin 2𝜋t + 𝛽 sin 𝜙 cos 2𝜋t

= 𝛼 + 𝛽1 sin 2πt  +  𝛽2 cos 2𝜋t

= 𝛼 + 𝛽1𝑒 +  𝛽2𝑓

a linear model with feature 
vectors 1, sin(2𝜋t), cos(2𝜋t)

§2.2



PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
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§2.2PERIODIC PATTERN
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t

PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
PERIODIC PATTERN + SECULAR TREND
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t

Linear models are 
easily composable



temp ≈ 𝛼 + 𝛽1 sin 2𝜋t + 𝛽2 cos 2𝜋t

With our periodic model ...

... how do we discover we should add a secular term +𝛾t ? 



temp = 𝛼 + 𝛽 sin 2𝜋 t + 𝜙 + ε

If we hadn’t thought to include climate change in our temperature model ...

ε

temp = 𝛼′ + 𝛽′ sin 2𝜋 t + 𝜙 + 𝛾t + ε

This suggests a revised model ...

temp ≈ 𝛼 + 𝛽 sin 2𝜋 t + 𝜙
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Diagnosing a linear model

After fitting a model
 model.fit(..., y)

1. Compute the residuals
 ε = y – model.predict()

2. Plot ε every way we can think of. 
If there's a systematic pattern, 
add a feature that describes it.
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