
RICE CRUMB #1

• … or “road to risotto”

• What is the asymptotic behaviour of the expected value of the output of MLE?



1. Skim read for 
keywords. What’s the 
topic?

2. Look for question 
words. What is it 
asking you to do?

3. Think through the 
course. What sections 
are relevant?



1. Skim read for 
keywords. What’s the 
topic?

2. Look for question 
words. What is it 
asking you to do?

3. Think through the 
course. What sections 
are relevant?

4. Read the whole 
question. What’s the 
link?

Part (a) gave us a 
hammer. Can we 
see part (b) as a 
nail?

This “propose a 
probability model” 
is open-ended and 
scary. How should 
we even begin to 
think about it?



Summary so far

We have seen 

• How probabilistic modelling plays a role in defining the relationships between ML and data 
science 

• How to define a probabilistic model and fit the model from the data by MLE

• How a proper definition of likelihoods can help in navigating through discrete and 
continuous RVs

• How learning tasks can be categorised in supervised learning and generative AI

• How probabilistic ML is used to have a common framework to address supervised learning 
and generative AI (whilst algorithmic ML might struggle in some cases to define tasks, 
goals and procedures)



Deep learning
with PyTorch 
(and a look back on 
neural networks)*

* non-examinable

§3.3



PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss


𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑋 𝑥 ; 𝜃

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE MLE

edge weights 𝜃

§3.4

random 
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)



Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 

model 𝑌𝑖 ∼ 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2 + 𝑁(0, 𝜎2)

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

𝑌 ∼ 𝛼 + 𝛽𝑥 + 𝛾𝑥2 + 𝑁 0, 𝜎2

∼ 𝑁(𝛼 + 𝛽𝑥 + 𝛾𝑥2, 𝜎2)

Pr𝑌 𝑦 ; 𝑥, 𝛼, 𝛽, 𝛾, 𝜎 =
1

2𝜋𝜎2
𝑒−(𝑦− 𝛼+𝛽𝑥+𝛾𝑥2 )/2𝜎2

log Pr 𝑦1, … 𝑦𝑛;  𝛼, 𝛽, 𝛾, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2


𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

where ො𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2



1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ...  # has parameters 𝜃

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

       # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 σ2 = self.𝜎 ** 2
 8 return - 0.5*torch.log(2*𝜋*σ2) – ((y - self.μ(x)) ** 2) / (2*σ2)

 9  x,y = ...
10  mymodel = RWiggle()

11  optimizer = optim.Adam(mymodel.parameters())
12  for epoch in range(10000):
13      optimizer.zero_grad()
14      loglik = torch.sum(mymodel(y, x))
15      (-loglik).backward()
16      optimizer.step()

Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2).

(Here 𝜇𝜃 ⋅  is some specified function 
with unknown parameters 𝜃.)

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛;  𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2


𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

See section 3.3 of printed notes. 

𝑥 𝜇𝜃 𝑥

edge weights 𝜃
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𝑥 𝜇𝜃 𝑥

edge weights 𝜃

self.μ = nn.Sequential(
    nn.Linear(1,4), nn.LeakyReLU(),
    nn.Linear(4,20), nn.LeakyReLU(),
    nn.Linear(20,20), nn.LeakyReLU(),
    nn.Linear(20,1)  )

× 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4

element-wise nonlinear function

matrix multiplication

§3.3



1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ...  # has parameters 𝜃

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

       # compute log Pr(y;x)
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11  optimizer = optim.Adam(mymodel.parameters())
12  for epoch in range(10000):
13      optimizer.zero_grad()
14      loglik = torch.sum(mymodel(y, x))
15      (-loglik).backward()
16      optimizer.step()

Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2).

(Here 𝜇𝜃 ⋅  is some specified function 
with unknown parameters 𝜃.)

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛;  𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2


𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

See section 3.3 of printed notes. 

𝑥 𝜇𝜃 𝑥

edge weights 𝜃
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Example (regression)
Given a labelled dataset consisting of 
pairs 𝑥𝑖 , 𝑦𝑖  of real numbers, fit the 
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𝑖=1

𝑛
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See section 3.3 of printed notes. 

𝑥 𝜇𝜃 𝑥

edge weights 𝜃
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A look back on NNs
Neural networks have been:

• Theorised out of the thoughts of Leibniz

• Built up on the first neuron by McCulloch & Pitts

• Developed from the perceptron by Rosenblatt

• Started to address the problem of nonlinear classifiers







Attempted to demonstrate that 
- the neuron was the base logic unit of 

the brain
- a Turing machine program could be 

implemented in a finite network of 
formal neurons 

1943

1959



Not today

Alan Turing (1912-1954)

A Turing machine is a mathematical model of computation describing an 
abstract machine that manipulates symbols on a strip of tape according to 
a table of rules. Despite the model's simplicity, it is capable of 
implementing any computer algorithm.



Receive 
inputs from 
environment

Process 
information

Transmits 
information

Links to 
other 

neurons

Credits: A.L. Chandra

In particular: 
- g models the ability to weigh the inputs → typically weighted sum  
- f models the ability to choose → typically step (indicator) function



We could add 
more neurons 

“vertically”, but 
also “horizontally”



The number of neurons in the second hidden layer can be reduced by exploiting
the geometry that results from each specific problem



In general: 

▪ The number of neurons in the hidden layers help us to better define 
the hyperplanes to take decisions (classifications)

▪ The number of neurons in the output layer define the number of 
classes we can recognise

Ok… but what about the limits?!



Main problem: we do not have all this info typically

▪ How the classes are composed, where they are located in the data 
space, the analytical expressions of the hyperplanes…

We have to learn all this from the training data that we have (if/when 
possible)

What are our degrees of freedom?











In summary:

• There are several degrees of freedom (parameters) that we should 
estimate

• Exact methods for estimation (e.g., using analytical expressions) might 
be very cumbersome
• Lots of potential local minima that the optimisation strategy might fall in

• This could have been a major problem for the development (and 
success) of NNs

• A solution for this issue came from…



Backpropagation

Skip to slide 39 during class 

























If we choose f = indicator function, 
then 𝑓′ → +∞ 



A function like sigmoid can unlock the 
potential of this approach𝑥

𝜎(𝑥)



- Research on NNs started from the 60s, and flourished until the 80s      
(-ish)

- At one point, NNs were found unfeasible
- The technology to support the computational power required for complex 

systems was not there yet

- Research and development of NNs restarted in early 2000 (-ish), 
thanks to…

A lifetime NNs
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PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and 
 learn 𝜃 to minimize the prediction loss


𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖 )

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑋 𝑥 ; 𝜃

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE MLE

edge weights 𝜃

§3.4

random 
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)



RICE CRUMB #2
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