
RICE CRUMB #1

• … or “road to risotto”

• What is the asymptotic behaviour of the expected value of the output of MLE?

1. Skim read for
keywords. What’s the
topic?

2. Look for question
words. What is it
asking you to do?

3. Think through the
course. What sections
are relevant?

1. Skim read for
keywords. What’s the
topic?

2. Look for question
words. What is it
asking you to do?

3. Think through the
course. What sections
are relevant?

4. Read the whole
question. What’s the
link?

Part (a) gave us a
hammer. Can we
see part (b) as a
nail?

This “propose a
probability model”
is open-ended and
scary. How should
we even begin to
think about it?

Summary so far

We have seen

• How probabilistic modelling plays a role in defining the relationships between ML and data
science

• How to define a probabilistic model and fit the model from the data by MLE

• How a proper definition of likelihoods can help in navigating through discrete and
continuous RVs

• How learning tasks can be categorised in supervised learning and generative AI

• How probabilistic ML is used to have a common framework to address supervised learning
and generative AI (whilst algorithmic ML might struggle in some cases to define tasks,
goals and procedures)

Deep learning
with PyTorch
(and a look back on
neural networks)*

* non-examinable

§3.3

PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and
 learn 𝜃 to minimize the prediction loss

𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖)

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑋 𝑥 ; 𝜃

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE MLE

edge weights 𝜃

§3.4

random
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the

model 𝑌𝑖 ∼ 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2 + 𝑁(0, 𝜎2)

Model for a single observation:

Likelihood of a single observation:

Log likelihood of the dataset:

Optimize over the unknown parameters:

𝑌 ∼ 𝛼 + 𝛽𝑥 + 𝛾𝑥2 + 𝑁 0, 𝜎2

∼ 𝑁(𝛼 + 𝛽𝑥 + 𝛾𝑥2, 𝜎2)

Pr𝑌 𝑦 ; 𝑥, 𝛼, 𝛽, 𝛾, 𝜎 =
1

2𝜋𝜎2
𝑒−(𝑦− 𝛼+𝛽𝑥+𝛾𝑥2)/2𝜎2

log Pr 𝑦1, … 𝑦𝑛; 𝛼, 𝛽, 𝛾, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2

𝑖=1

𝑛

𝑦𝑖 − ො𝑦𝑖
2

where ො𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝛾𝑥𝑖
2

1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ... # has parameters 𝜃

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

 # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 σ2 = self.𝜎 ** 2
 8 return - 0.5*torch.log(2*𝜋*σ2) – ((y - self.μ(x)) ** 2) / (2*σ2)

 9 x,y = ...
10 mymodel = RWiggle()

11 optimizer = optim.Adam(mymodel.parameters())
12 for epoch in range(10000):
13 optimizer.zero_grad()
14 loglik = torch.sum(mymodel(y, x))
15 (-loglik).backward()
16 optimizer.step()

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2).

(Here 𝜇𝜃 ⋅ is some specified function
with unknown parameters 𝜃.)

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

See section 3.3 of printed notes.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

§3.3

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

self.μ = nn.Sequential(
 nn.Linear(1,4), nn.LeakyReLU(),
 nn.Linear(4,20), nn.LeakyReLU(),
 nn.Linear(20,20), nn.LeakyReLU(),
 nn.Linear(20,1))

× 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4

element-wise nonlinear function

matrix multiplication

§3.3

1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ... # has parameters 𝜃

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

 # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 σ2 = self.𝜎 ** 2
 8 return - 0.5*torch.log(2*𝜋*σ2) – ((y - self.μ(x)) ** 2) / (2*σ2)

 9 x,y = ...
10 mymodel = RWiggle()

11 optimizer = optim.Adam(mymodel.parameters())
12 for epoch in range(10000):
13 optimizer.zero_grad()
14 loglik = torch.sum(mymodel(y, x))
15 (-loglik).backward()
16 optimizer.step()

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2).

(Here 𝜇𝜃 ⋅ is some specified function
with unknown parameters 𝜃.)

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

See section 3.3 of printed notes.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

§3.3

1 class RWiggle(nn.Module):

 2 def __init__(self):

 3 super().__init__()

 4 self.μ = ... # has parameters 𝜃

 5 self.𝜎 = nn.Parameter(torch.tensor(1.0))

 # compute log Pr(y;x)
 6 def forward(self, y, x):

 7 σ2 = self.𝜎 ** 2
 8 return - 0.5*torch.log(2*𝜋*σ2) – ((y - self.μ(x)) ** 2) / (2*σ2)

 9 x,y = ...
10 mymodel = RWiggle()

11 optimizer = optim.Adam(mymodel.parameters())
12 for epoch in range(10000):
13 optimizer.zero_grad()
14 loglik = torch.sum(mymodel(y, x))
15 (-loglik).backward()
16 optimizer.step()

Example (regression)
Given a labelled dataset consisting of
pairs 𝑥𝑖 , 𝑦𝑖 of real numbers, fit the
model 𝑌𝑖 ∼ 𝜇𝜃(𝑥𝑖) + 𝑁(0, 𝜎2).

(Here 𝜇𝜃 ⋅ is some specified function
with unknown parameters 𝜃.)

Log likelihood of the dataset:

log Pr 𝑦1, … 𝑦𝑛; 𝜃, 𝜎 = −
𝑛

2
log 2𝜋𝜎2 −

1

2𝜎2

𝑖=1

𝑛

𝑦𝑖 − 𝜇𝜃(𝑥𝑖) 2

Optimize over the unknown parameters 𝜃 and 𝜎:

See section 3.3 of printed notes.

𝑥 𝜇𝜃 𝑥

edge weights 𝜃

§3.3

A look back on NNs
Neural networks have been:

• Theorised out of the thoughts of Leibniz

• Built up on the first neuron by McCulloch & Pitts

• Developed from the perceptron by Rosenblatt

• Started to address the problem of nonlinear classifiers

Attempted to demonstrate that
- the neuron was the base logic unit of

the brain
- a Turing machine program could be

implemented in a finite network of
formal neurons

1943

1959

Not today

Alan Turing (1912-1954)

A Turing machine is a mathematical model of computation describing an
abstract machine that manipulates symbols on a strip of tape according to
a table of rules. Despite the model's simplicity, it is capable of
implementing any computer algorithm.

Receive
inputs from
environment

Process
information

Transmits
information

Links to
other

neurons

Credits: A.L. Chandra

In particular:
- g models the ability to weigh the inputs → typically weighted sum
- f models the ability to choose → typically step (indicator) function

We could add
more neurons

“vertically”, but
also “horizontally”

The number of neurons in the second hidden layer can be reduced by exploiting
the geometry that results from each specific problem

In general:

▪ The number of neurons in the hidden layers help us to better define
the hyperplanes to take decisions (classifications)

▪ The number of neurons in the output layer define the number of
classes we can recognise

Ok… but what about the limits?!

Main problem: we do not have all this info typically

▪ How the classes are composed, where they are located in the data
space, the analytical expressions of the hyperplanes…

We have to learn all this from the training data that we have (if/when
possible)

What are our degrees of freedom?

In summary:

• There are several degrees of freedom (parameters) that we should
estimate

• Exact methods for estimation (e.g., using analytical expressions) might
be very cumbersome
• Lots of potential local minima that the optimisation strategy might fall in

• This could have been a major problem for the development (and
success) of NNs

• A solution for this issue came from…

Backpropagation

Skip to slide 39 during class

If we choose f = indicator function,
then 𝑓′ → +∞

A function like sigmoid can unlock the
potential of this approach𝑥

𝜎(𝑥)

- Research on NNs started from the 60s, and flourished until the 80s
(-ish)

- At one point, NNs were found unfeasible
- The technology to support the computational power required for complex

systems was not there yet

- Research and development of NNs restarted in early 2000 (-ish),
thanks to…

A lifetime NNs

- Research on NNs started from the 60s, and flourished until the 80s
(-ish)

- At one point, NNs were found unfeasible
- The technology to support the computational power required for complex

systems was not there yet

- Research and development of NNs restarted in early 2000 (-ish),
thanks to…

A lifetime NNs

PROBABILISTIC MACHINE LEARNING

Data: 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛)

Labels: 𝑦1, 𝑦2, … , 𝑦𝑛

Task: Predict the label
𝑦𝑖 ≈ 𝑓𝜃 𝑥𝑖

Training goal: Invent a loss function and
 learn 𝜃 to minimize the prediction loss

𝑖
𝐿(𝑦𝑖 , 𝑓𝜃 𝑥𝑖)

𝑥 𝑓𝜃(𝑥)

edge weights 𝜃

Supervised Learning Generative Modelling

Data: 𝑥1, 𝑥2, … , 𝑥𝑛

Labels: n/a

Task: learn to synthesize new values
 similar (but not identical) to those
 in the dataset, ...

Training goal: ???

fit the probability model
Pr𝑋 𝑥 ; 𝜃

fit the probability model
Pr𝑌 𝑦 ; 𝑓𝜃(𝑥)

𝑌

MLE MLE

edge weights 𝜃

§3.4

random
noise 𝑍

𝑋 = 𝑓𝜃(𝑍)

RICE CRUMB #2

	Slide 1: RICE CRUMB #1
	Slide 2
	Slide 3
	Slide 4: Summary so far
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: A look back on NNs
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Backpropagation
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: RICE CRUMB #2

