RICE CRUMB #1

e ..or “road to risotto”

 What is the asymptotic behaviour of the expected value of the output of MLE?
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(a) A 0/1 signal is being transmitted. The transmitted signal at timeslot i &
{1,...,n} is =; € {0,1}, and we have been told that this signal starts at 0 . Skim read for
and then flips to 1, i.e. there is a parameter # € {1,...,n — 1} such that keywords. What’s the
r; = l;=9. The value of this parameter is unknown. The channel is noisy, and topic?
the received signal in timeslot ¢ is

Y; ~ z; + Normal(0, %)

where = 1s known.

Look for question

g . words. What is it
1 g P gy N0 .
*T % e asking you to do?
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(i) Given received signals (y1, ..., yn), find an expression for the log likelihood, . Think through the
log Pr(yy,....y,; #). Explain your working. 5 marks] course. What sections

. . . o . A are relevant?
(i¢) Give pseudocode for finding the maximum likelihood estimator 6.

5 marks]



(b)

[ have been monitoring average annual river levels for many years, and I have
collected a dataset (z2p,...,2,) where z; is the level in year 7 since I started
monitoring. I believe that for the first few years the level each year was roughly
what it was the previous year, plus or minus some random variation; but that
some year a drought started, and since then the level has decreased on average
each year. I would like to estimate when the drought started. I do not know the
other parameters.

(i) Propose a probability model for my dataset. 5 marks]

5 marks]

(#¢) Explain how to fit your model.

This “propose a
probability model”
is open-ended and

scary. How should
we even begin to
think about it?

Skim read for
keywords. What's the
topic?

Look for question
words. What is it
asking you to do?

Think through the
course. What sections
are relevant?

Read the whole
guestion. What’s the
link?

Part (a) gave us a
hammer. Can we
see part (b) as a
nail?



Summary so far

We have seen

* How probabilistic modelling plays a role in defining the relationships between ML and data
science

* How to define a probabilistic model and fit the model from the data by MLE

* How a proper definition of likelihoods can help in navigating through discrete and
continuous RVs

* How learning tasks can be categorised in supervised learning and generative Al

 How probabilistic ML is used to have a common framework to address supervised learning
and generative Al (whilst algorithmic ML might struggle in some cases to define tasks,
goals and procedures)



§3.3

Deep learning
with PyTorch
(and a look back on
neural networks)*

% Nnon-examinable



PROBABILISTIC MACHINE LEARNING

Supervised Learning

Data: {1, 1), (2, ¥2),s s (X, V)3
Labels: Y1, Y2, - Yn
Task: fit the probability model

Pry(y; fo(x))

Training goal: MLE
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Example (regression)

Given a labelled dataset consisting of
pairs (x;, y;) of real numbers, fit the
model Y; ~ a + fx; + yx? + N(0,02)

Model for a single observation:
Y ~a+ Bx +yx?+ N(0,02)
~ N(a + fx + yx?,02)

Likelihood of a single observation:
Pry(y3%,0, 8,7, 0) = ——
ry\Y:;X,a,p,y,0) =
Y V2mo?

Log likelihood of the dataset:

e~ —(a+Bx+yx?))/20?

n
n 1
log Pr(ys, .- Ys @ f,7,0) = =5 10g(2m0%) = == > (v = 9))?
i=1

Optimize over the unknown parameters:

where y; = a + fx; + yx

2
i



Example (regression)

Given a labelled dataset consisting of
pairs (x;, y;) of real numbers, fit the
model Y; ~ ug(x;) + N(0,c2).

(Here ug(+) is some specified function
with unknown parameters 6.)

2\
> YR — ()
A

edge weights 0

Log likelihood of the dataset:
n

log Pr(yq, ...y, 6,0) = — >

2 1 C 2
log(2mo~) — FZ(%’ — pg (x))
=

Optimize over the unknown parameters 6 and o

class RWiggle(nn.Module):
def __init__(self):
super().__init__Q)
self.u = ... # has parameters 0
self.o = nn.Parameter(torch.tensor(1.0))

# compute log Pr(y;x)
def forward(self, y, x):
02 = self.o *x 2
return - 0.5xtorch.log(2*xm*02) - ((y - self.u(x)) ** 2) / (2*02)

X,y = ...
mymodel = RWiggle()

optimizer = optim.Adam(mymodel.parameters())
for epoch in range(10000):
optimizer.zero_grad()
loglik = torch.sum(mymodel(y, x))
(-loglik).backward()

=5 See section 3.3 of printed notes.
optimizer.step()
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self.u = nn.Sequential(
nn.Linear(1,4), nn.LeakyRelLU(),
nn.Linear(4,20), nn.LeakyReLU(),
nn.Linear(20,20), nn.LeakyRelLU(),
nn.Linear(20,1) )



Example (regression)

Given a labelled dataset consisting of
pairs (x;, y;) of real numbers, fit the
model Y; ~ ug(x;) + N(0,c2).

(Here ug(+) is some specified function
with unknown parameters 6.)

2\
> YR — ()
A

edge weights 0

Log likelihood of the dataset:
n

log Pr(yq, ...y, 6,0) = — >

2 1 C 2
log(2mo~) — FZ(%’ — pg (x))
=

Optimize over the unknown parameters 6 and o

class RWiggle(nn.Module):
def __init__(self):
super().__init__Q)
self.u = ... # has parameters 0
self.o = nn.Parameter(torch.tensor(1.0))

# compute log Pr(y;x)
def forward(self, y, x):
02 = self.o *x 2
return - 0.5xtorch.log(2*xm*02) - ((y - self.u(x)) ** 2) / (2*02)

X,y = ...
mymodel = RWiggle()

optimizer = optim.Adam(mymodel.parameters())
for epoch in range(10000):
optimizer.zero_grad()

loglik = tgsel=swup(mymodel(y, x))
(-loglik )
optimizer.Step

See section 3.3 of printed notes.



Example (regression)
Given a labelled dataset con
pairs (x;, y;) of real number
model Y; ~ ug(x;) + N(O, 0
(Here ug(+) is some specifie

with unknown parameters 6

Ho (x;))*

2 +
’ o ) x% 2) / (2%02)
N
x—> Zx:
e

edge weights 0

BN 3.3 of printed notes.



A look back on NNs

Neural networks have been:
 Theorised out of the thoughts of Leibniz

e Built up on the first neuron by McCulloch & Pitts

 Developed from the perceptron by Rosenblatt

* Started to address the problem of nonlinear classifiers P

4: Frank Rosenblatt with his Mark | perceptron(left), and a graphical representation of it(right). Image source :
https://data-science-blog.com/blog/2020/07/16/a-brief-historyof-neural-nets-everything-you-should-know-before-
learning-Istm/
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MATHEMATICAL BIOPHYSICS 1943
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

From THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be descri
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.

1940 PROCEEDINGS OF THE IRE

What the Frog’s Eye Tells the Frog’s Brain®

J. Y. LETTVINt, H. R. MATURANAL, W. S. McCULLOCH||, SENIOR MEMBER, IRE,

aNnp W. H. PITTS

Summary—In this paper, we analyze the activity of single fibers
in the optic nerve of a frog. Our method is to find what sort of stimu-
lus causes the largest activity in one nerve fiber and then what is the
exciting aspect of that stimulus such that variations in everything else
cause little change in the response. It has been known for the past
20 years that each fiber is connected not to a few rods and cones in
the retina but to very many over a fair area. Our results show that for
the most part within that area, it is not the light intensity itself but
rather the pattern of local variation of intensity that is the exciting
factor. There are four types of fibers, each type concerned with a dif-
ferent sort of pattern. Each type is uniformly distributed over the
whole retina of the frog. Thus, there are four distinct parallel dis-
tributed channels whereby the frog’s eye informs his brain about the
visual image in terms of local pattern independent of average
illumination. We describe the patterns and show the functional and
anatomical separation of the channels. This work has bee

the frog, and our interpretation applies only to the frog. 1959

it moves like one. He can be fooled easily not only by a
bit of dangled meat but by any moving small object.
His sex life is conducted by sound and touch. His choice
of paths in escaping enemies does not seem to be gov-
erned by anything more devious than leaping to where
it is darker. Since he is equally at home in water and on
land, why should it matter where he lights alter jumping
or what particular direction he takes? He does remember
a moving thing providing it stays within his field of
vision and he is not distracted.

Anatomy of Frog Visual Apparatus

The retina of a frog is shown in Fig. 1(a). Between
» rods and cones of the retina and the ganglion cells,
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Attempted to demonstrate that

- the neuron was the base logic unit of
the brain

- a Turing machine program could be
implemented in a finite network of
formal neurons



A Turing machine is a mathematical model of computation describing an
abstract machine that manipulates symbols on a strip of tape according to
a table of rules. Despite the model's simplicity, it is capable of
implementing any computer algorithm.

Alan Turing (1912-1954)
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information

In particular:
- g models the ability to weigh the inputs = typically weighted sum
- f models the ability to choose = typically step (indicator) function
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We could add

more neurons
o “vertically”, but
also “horizontally”




The number of neurons in the second hidden layer can be reduced by exploiting
the geometry that results from each specific problem



In general:

" The number of neurons in the hidden layers help us to better define
the hyperplanes to take decisions (classifications)

" The number of neurons in the output layer define the number of
classes we can recognise

Ok... but what about the limits?!



Main problem: we do not have all this info typically

" How the classes are composed, where they are located in the data
space, the analytical expressions of the hyperplanes...

We have to learn all this from the training data that we have (if/when
possible)

What are our degrees of freedom?
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In summary:

 There are several degrees of freedom (parameters) that we should
estimate

 Exact methods for estimation (e.g., using analytical expressions) might
be very cumbersome
* Lots of potential local minima that the optimisation strategy might fall in

* This could have been a major problem for the development (and
success) of NNs

e A solution for this issue came from...



Backpropagation
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Skip to slide 39 during class
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If we choose f = indicator function,
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j A function like sigmoid can unlock the
| potential of this approach
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A lifetime NNs

- Research on NNs started from the 60s, and flourished until the 80s
(-ish)

- At one point, NNs were found unfeasible

- The technology to support the computational power required for complex
systems was not there yet

- Research and development of NNs restarted in early 2000 (-ish),
thanks to...






PROBABILISTIC MACHINE LEARNING

Generative Modelling

Data: {xl,xz, ...,xn}

Labels: n/a

Task: fit the probability model
Pry(x;0)

Training goal:  MLE

— W | — X =fy(2)

Ve
random &
noise Z X

N[ X~
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RICE CRUMB #2
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