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Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it n = 10 times,
and observe x = 6 heads. Let’s use the probability model

-)g ~ Binom(n,p)

where p is the probability of heads. Estimate p.

Likelihood of the observed data:

'k = P(X=x)
= (2) P> (1~P)

h=3(
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There are standard numerical random variables that you should know:

DISCRETE RANDOM VARIABLES

Binomial P(X =x) = (Z) p*(1 —p)n=* For count data, e.g. number of heads in n coin tosses
X~Bin(n, p) x € {0,1,...,n}
Poisson P(X = x) = e A For count data, e.g. number of buses passing a spot
X ~Pois(1) x!

x €{0,1,..}
Categorical P(X{= x) :}px For picking one of a fixed number of choices

x €{1,...,

X~Cat([p1, ..., P

CONTINUOUS RANDOM VARIABLES

Uniform pdf(x) = ! A uniformly-distributed floating point value
X~U[a,b] b—
x € [a,b]
Normal / Gaussian pdf(x) = 1 o~ (x—)? /202 For data about magnitudes, e.g. temperature or height
X~N(u,02) V2ma?
x €ER
Pareto pdf(x) = a x~(@*D) For data about “cascade” magnitudes, e.g. forest fires
X~Pareto(a) x=1
Exponential pdf(x) = 1e For waiting times, e.g. time until next bus
X~Exp(A) x>0
Beta pdf(x) o x*71(1 — x)P~* Arises in Bayesian inference

§1.2

X~Beta(a, b) x € (0,1)




There are standard numerical random variables that you should know:

o + bN(O)’) ~ QY+ N (@, 5% —~ N(O,A")

Useful properties of the Normal distribution:
prop / (a* (u'vqf'o“h a aﬂ\ﬂ" R

= |f we rescale a Normal, we get a Normal

2 62_} Q
= |f we add independent Normals, we geta Normal ~v N (/.., ¢?) + N (V'F \ ~ N(/”V/ P)
MSUW\} i twe Narmoh owe ﬁ*“f”" bk,

o~ (x—1)2/20? For data about magnitudes, e.g. temperature or height

Normal / Gaussian 4,) =

X~N(u,0?) V2mo?
x €ER
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How does AlphaFold2 work?

As part of AlphaFold2's development, the Al modal has
been trained on all the known amino acid sequences and

onnss (B (B

determined protein structures.

1. DATA ENTRY AND
DATABASE SEARCHES

An amino acid sequence with
unknown structure is

fed into AlphaFold2, which
searches databases for similar
amine acid sequences and
protein structures

2, SEQUENCE ANALYSIS »
The Al model aligns all the similar amino acid
sequencas - often from differsnt spacies - and
investigates which parts have been presarved
during evolution

In the next step, AlphaFold2 explores which amino
acids could interact with each other in ths three-
dimensional protein structure. Interacting amino
acids co-evotve. If one is charged. the other

has the opposite charge, o they are atiracted

to each other: If one Is replaced by a water-
repeilent [hydrophobic) amino acid, the other

also becomes hydrophobic.
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AMIND ACIDS IN
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Have co-evolved

Using this analysis,
AlphaFold2 produces

# distance map that
estimates how close
amino acids are 1o each
other in the structure
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3. Al ANALYSIS » » v
Using an iterative process, AlphaFold2 Lk i & S L
refines the segquence analysis and dsstance )
map. The Al model uses neural networks 1, ® s & 0
called transformars, which have a great \/
capacity to identify important elements to " i A CYCLE
focus on Data about other protein
structures - if they were found in
step | - is also utilised <« ¢ /

CYCLE?2
4. HYPOTHETICAL STRUCTURE 829
AlphaFold2 puts together a puzzie of .
all the amino scids and tests pathways e « 4——J

to produce & hypothetical protein

structure. This is e-run through step 3
After three cycles, AlphaFold2 arrivas
at a particular structure. The Al model
calculates the probability that ditferent
parts of this structure correspond

to reality

CYCLE]

g AlphaFold2

SEQUENCE ANALYSIS

Credits: nobelprize.org



-~ Horizontal steam boiler,
-~ =7 Augsburg machines,
- early 19t century



Joseph Fourier (1768-1830)




THEORIE

ANALYTIQUE

DE LA CHALEUR, , ,
e any function of a variable, whether
Fex BLSEOURIER. continuous or discontinuous, can be
expanded in a series of sines of multiples
of the variable = Fourier transform

Two main results:

e partial differential equation for conductive
A PARIS, diffusion of heat

CHEZ FIRMIN DIDOT, PERE ET FILS,

..................



In “classic” data analysis, information propagates according to
thermodynamics law

— tangent spaces to data manifold resembles Euclidean planes

P
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Figure 2, A manifold A4 and the vector space T A G0 this case = '_.[El;l
tangent at the point A7, and a convenient side-cut. The velocity element, A =
A O, does not belong to the manifold Aqd buat 10 the angent space Ty M.

J. Sola, J. Deray, D. Atchuthan, «A micro Lie theory for state estimation in robotics,», https://arxiv.org/abs/1812.01537, 2021




Exercise 1.3.1 (Coin tosses)
Suppose we take a biased coin, and tossed it n = 10 times,
and observe x = 6 heads. Let’s use the probability model

X ~ Binom(n, p)

where p is the probability of heads. Estimate p.

Log likelihood of the observed data:
n x ((-p\" %

lik = P(X=x)= %

lo-a ‘lb- = ’Q'J (;\t

Parameter that maximizes it:
, X
A lo'sl'k = = =
Ar P { P
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Exercise 1.3.6 (Handling boundaries) TR SANITY CHECK
We throw a k-sided dice, and get the answer x=10. ¥ <587
Estimate k, using the probability model

Does our answer
depend on the

data? In the way
we’d expect it to?

1
P(throw x) = T x €{1,..,k}




Exercise 1.3.6 (Handling boundaries)

We throw a k-sided dice, and get the answer x=10.

Estimate k, using the probability model

1
P(throw x) = — x €{1,..,

}

k}

SANITY CHECK
Does our answer
depend on the
data? In the way
we’d expect it to?

T,{ 1 INDICATOR FUNCTIONS

The indicator function 1, is simply

1 if statement A is true
0 if statement A is false

4=




§1.3 Maximum likelihood estimation
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Exercise 1.3.2 (Exponential sample)

Let the dataset be a list of real numbers, x4, ..., x,,, all > 0. )( ~ FKP()‘)

Use the probability model that says they’re all independent

Exp(A4) random variables, where A is unknown. Estimate A. (P ()( = x,) =0

Pd'f (=) = %e-kx’

Log likelihood of the observed data:
"é (dd"' \ = [rk (J-'l) X x Ik (In)

-\ )
- n
= (2 xm e (W0
. CONTINUOUS RANDOM VARIABLES (real-valued)
_ )\n e" A ‘g'z‘. Exponential pdf(x) = le
- X~Exp(1) x>0

) i np.random.exponential(scale=1/1)
lojfnk = y;(aj)\ - A ;le( ’ ' ——

Parameter that maximizes it:
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Exercise 1.3.4 (Predictive models)
Consider a dataset of January temperatures, one record per year. Let t;

be the year forrecord i = 1, ..., n, and let y; be the temperature. Using
the probability model
Y; ~ Normal(a + yt;, 02)

estimaﬁ)he annual rate of temperature change.
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Exercise 1.3.4 (Predictive models)

Consider a dataset of January temperatures, one record per year. Let t;
be the year forrecord i = 1, ..., n, and let y; be the temperature. Using
the probability model

Y; ~ Normal(a + yt;, 02)

estimate y, the annual rate of temperature change.

What would happen if we just solved one equation, for the
parameter we’re interested in?

dl lik =0
& oglik =

We get the answer ( E
it (v @ v

Y= > jwshres o€,

SANITY CHECK
Does our answer

depend on
unknown
parameters?




Three views of a probability model

Temp; ~ a sin(2n(t; + ¢)) + ¢ + yt; + Normal(0, 02),

i €{1,..,n}
rand.var
% notation
code
def rtemp(t, o,d,c,y,0):
pred = ¢ + a * np.sin(2*m*(t+d)) + y*t

return np.random.normal(loc=pred, scale=0)

likelihood



Exercise
Te»«-f‘: ~ N (P"“’c‘ (l) Temp; ~ « sin(Zn(ti + <p)) + ¢ + yt; + Normal(0, o2),
’ i €{1,..,n}
IAW'{ t/ - r 2m (&
w prede = B 5 ( (s J) The observed data is [temp,,...,temp_]. Find an expression for the log
Fe+r B¢, likelihood.

(7o () = 1k (Gomy,) X x (I £ (h?va,\)
e»((enr',Pmd,\z/ZG'z) - -

|
- (=,
(270 Watch out for copy-paste-itis! We want the likelihood of seeing templ1,

for the random variable Temp; ~N(pred;, 0%). Don’t just paste in the
formula from the random variable reference sheet,

L oGmw?20?

V2ma?
ZLG‘ 7 (tewp;-predi)

(A

. - 2
/czjlri/daul'a\ = Eloj (21 ¢ )



RISOTTO CHALLENGE

e (Question:

what is the major limitation of MLE in modern data analysis?

 Submit your answer (one per person) by Nov. 1, 2024 sending an email to
am2920@cam.ac.uk with subject “RISOTTO CHALLENGE”

* |n the meanwhile, hints will be provided in the next classes

 No points earned for course assessment, but a valuable prize:
THE risotto recipe from your dearest lecturer!

* Award ceremony on Class 11!


mailto:am2920@cam.ac.uk

§1.4 Numerical optimization

1. Write out a probability model

2. Fit the model from data \
using maximum likelihood estimation

This is behind
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, beet  Numerical optimization with Python / scipy
T 10 find theemimimem’ of a smooth function f:R¥ - R,

import scipy.optimize

def f(x):
return ..

Xg = [..] | # initial guess
X = scipy.optimize.fmin(f, Xx,)

The initial guess will influence which local
" minimum the fmin ends up finding.

={
- — Y

T There is no scipy.optimize.fmax



Exercise 1.4.2 (Constraints / softmax transformation)
Find the maximum of

f1,p2,p3) = 0.2logp; +0.5logp; + 0.3logps
over pq, P2, P3 € (0,1) such that p; + p, + p; = 1.
1, P2, D3 {1 2 3j

def

def

v

Optimization terminated successfully. Current function value: 1.02965. Iterations: 63.
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'n\‘s ! a‘f F(. ‘6 (0, l) 7 PI+ rz v ?g - ‘
f(p):
P1sP2sP3 = P
return 0.2*np.log(p,) + ©.5*np.log(p,) + ©.3*np.log(p;)
softmax(s):
p = np.exp(s)

return p / np.sum(p)

scipy.optimize.fmin(lambda s: -f(softmax(s)), [0,0,0])
softmax(s)

Function evaluations: 120
array([0.19999474, ©.49999912, ©.30000614])

ff‘( Pz *PJ,: },



Exercise 1.4.1 (Positivity constraint)
Find the maximum over o > 0 of

1 2
(O‘) — e~3/20
/ \V2mo?




How does it work?

Animations by Lili Jiang, Towards Data Science

GRADIENT DESCENT

Find the gradient of the
function, and take a step in the
direction of steepest descent



https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Visualizing the Loss
Landscape of Neural
Nets

Li, Xu, Taylor, Studer,
Goldstein (2018)

https://arxiv.org/abs/
1712.09913



G\ Andrej Karpathy
Wy rarpatny

Gradient descent can write code better than
you. I'm sorry.

e 9POOOOF £ 4

1]l 343

Software 1.0 is code we write. Software 2.0 is code written by the
optimization based on an evaluation criterion (such as “classify this
training data correctly”). It is likely that any setting where the
program is not obvious but one can repeatedly evaluate the
performance of it (e.g. — did you classify some images correctly? do
you win games of Go?) will be subject to this transition, because the
optimization can find much better code than what a human can
write.
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