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DSP
COMPUTER SCIENCE TRIPOS Part II

Monday 28 October 2024 12:00 to Monday 4 November 2024 12:00

Module DSP – Digital Signal Processing – Assignment 1

This assignment involves programming. The recommended programming language
is Julia and library functions referred to in the problems may be found in
the Julia packages DSP.jl, FFTW.jl and Plots.jl. [Implementations in other
suitable languages, using equivalent library functions, such as MATLAB’s Signal
Processing Toolbox, or the Python packages matplotlib and scipy.signal, are
also acceptable.]

Prepare the solutions and answers to all parts as a single PDF file and include all
source code written, along with any required outputs produced by the programs. A
Pluto.jl notebook provides a convenient way to combine answer text, Julia source
code and outputs into a single PDF. [Alternatives include a Jupyter notebook for
either a Julia or Python solution, or MATLAB’s publish function or Live Editor.]

Submit your work via

https: // www. vle. cam. ac. uk/ course/ view. php? id= 254472

no later than 12:00 on Monday 4 November 2024.

Students may be required to sign an undertaking that work submitted
will be entirely their own; no collaboration is permitted.
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1 (a) Julia commands (similar to)

using DSP, Plots

plot_filter(x, y; kwargs...) =

plot([x y], linecolor=[:blue :red], markercolor=[:blue :red],

markershape=[:x :circle], markerstrokewidth=3,

size = (800, 250), xticks=[], yticks=[0],

label=["x" "y"], ylim=[-7,7]; kwargs...);

x = [ 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2,

2, 0, -3, -3, -3, 0, 0, 0, 0, 0, 1, -4, 0, 4,

3, -1, 2, -3, -1, 0, 2, -4, -2, 1, 0, 0, 0, 3,

-3, 3, -3, 3, -3, 3, -3, 3, -3, 0, 0, 0, 0, 0, 0 ];

y = filt([1, 1, 1, 1]/4, [1], x);

plot_filter(x, y; title="4-point moving average system")

produced the plot on slide 19 to illustrate the 4-point moving average system.
The DSP.jl library function filt(b, a, x) applies to the finite sequence x
the discrete system defined by the constant-coefficient difference equation with
coefficient vectors b and a (see slide 25).

Change in this program the filt parameters to implement instead the

(i) exponential averaging system (slide 20)

(ii) accumulator system (slide 21)

(iii) backward difference system (slide 22)

and provide the coefficient vectors b and a for each of these systems.

[Note: A function equivalent to filt is in MATLAB called filter and in
Python scipy.signal.lfilter.]
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(b) (i) Simulate the reconstruction a sampled frequency-limited signal, following
these steps:

� Generate a one second long Gaussian noise sequence r with a sampling
rate of 300 Hz, where each sample is independent and identically
distributed and drawn from a normal distribution, using the randn

function.

� Taper the noise sequence r by setting its first and last 15 samples to
zero.

� Use the DSP.jl function call

digitalfilter(Lowpass(45, fs=300),

FIRWindow(Windows.hamming(51)))

to design a finite impulse response low-pass filter with a cut-off
frequency of 45 Hz. This function will return a vector b for use in
a digital filter of the type shown on slide 25. What vector a is required
in addition?

[Note: In MATLAB an equivalent function call is fir1(50, 45/150)

and in Python scipy.signal.firwin(51, 45/150).]

Use the filtfilt function in order to apply that filter to the
generated noise signal, resulting in the filtered noise signal x. (This
function applies the filter twice, once in forward and once in backward
direction.)

� Then sample x at 100 Hz by setting all but every third sample value
to zero, resulting in the (equally long) sequence y.

� Implement sinc interpolation with a suitably scaled sinc function (and
any required loops) to reconstruct the zeroed samples of y, resulting
in a reconstructed sequence z.

� Generate another low-pass filter with digitalfilter, with a cut-off
frequency of 50 Hz and apply it with filtfilt to y, resulting in
interpolated sequence u. Multiply the result by three, to compensate
the energy lost during sampling.

� Plot x, y, z and u, all on top of each other (superimposed) in one
figure, and compare x with z and u.

� Lastly, turn the calls to digitalfilter and Windows.hamming into
comments and replace them with your own implementations.

(ii) Why should the first filter have a lower cut-off frequency than the second?
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(c) (i) Simulate the reconstruction of a sampled band-pass signal, with these steps:

� Generate a 1 s noise sequence r, as in part (b)(i), but this time use
a sampling frequency of 3 kHz. Set the first and last 500 samples to
zero.

� Apply to that with filtfilt a band-pass filter that attenuates
frequencies outside the interval 31–44 Hz, resulting in filtered sequence
x. The following DSP.jl function call will design such a filter for you:

digitalfilter(Bandpass(31, 44, fs=3000),

Chebyshev2(3, 30))

This function returns a filter object that can be passed directly to filt

or filtfilt. [Hint: To obtain a representation as coefficient vectors
b and a, you can convert that filter object to type PolynomialRatio

and then use functions coefa and coefb on that.]

[Note: In MATLAB an equivalent function call is cheby2(3, 30,

[31 44]/1500), which returns two vectors b and a. In Python:
scipy.signal.cheby2(3,30, [31/1500,44/1500], "bandpass").]

� Then sample the resulting signal at 30 Hz by setting all but every
100-th sample value to zero, resulting in y.

� Implement sinc interpolation with a suitably scaled and modulated sinc
function (and any required loops) to reconstruct an approximation of
x from y, resulting in a reconstructed sequence z.

� Generate with

digitalfilter(Bandpass(30, 45, fs=3000),

Chebyshev2(3, 20))

another band-pass filter for the interval 30–45 Hz and apply it to y, to
reconstruct the original signal as sequence u. (What factor do you have
to multiply it by, to compensate the energy lost during sampling?)

� Plot x, y, z, and u, all on top of each other in one figure, and compare
the original band-pass signal x and the two reconstructed versions z
and u after being sampled at 30 Hz.

(ii) Why does the reconstructed waveform differ much more from the original
if you reduce all the cut-off frequencies of all band-pass filters by 5 Hz?
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(d) Write a function fft_interp(x, f) that receives a vector x of real-valued
floating-point numbers and an integer f. You can assume that the vector x

contains the result of sampling a continuous function x(t) that contains only
frequencies less than half the sampling frequency used to obtain x. The function
should return a vector that is f times longer than x and represents approximately
the same continuous signal x(t) as x, but sampled with a factor f higher sampling
frequency.

In your function, use the Fast Fourier Transform to efficiently approximate sinc
interpolation. After applying any necessary padding to x, use the fft function
to convert that finite discrete sequence into a frequency-domain representation
X. Then modify X such that it resembles the frequency-domain representation
of the same signal x(t) if it had been sampled at an f-times higher sampling
frequency. Finally apply the ifft function to return to the time domain, remove
any padding and return the result.

Generate two test signals x to demonstrate this signal, each 100 samples long:

(i) a unit impulse at the 10th sample, all other samples being zero;

(ii) a sine-wave of variable frequency that starts with value 0 and with a
normalized frequency of 0 rad/sample, then increases during the first half
of the signal (over 50 samples) in frequency linearly until it reaches a
normalized frequency of 0.9π rad/sample, and then decreases again linearly
down to 0 rad/sample during the second half of the signal.

For each of these test signals, prepare a plot that shows both x and
fft_interp(x, 8) plotted on top of each other (superimposed) as lines, such
that the corresponding samples are aligned with each other both horizontally
and vertically.

END OF PAPER
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