

Complexity Theory

Lecture 9: Space Complexity

Tom Gur

Sublinear Complexity!

Space Complexity

$\text{SPACE}(f)$ is the set of languages accepted by a machine which uses $O(f(n))$ tape cells on inputs of length n .

Counting only work space.

$\text{NSPACE}(f)$ is the class of languages accepted by a *nondeterministic* Turing machine using at most $O(f(n))$ work space.

As we are only counting work space, it makes sense to consider bounding functions f that are less than linear.

Space Complexity Zoo

$L = \text{SPACE}(\log n)$

$NL = \text{NSPACE}(\log n)$

$\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k)$

The class of languages decidable in polynomial space.

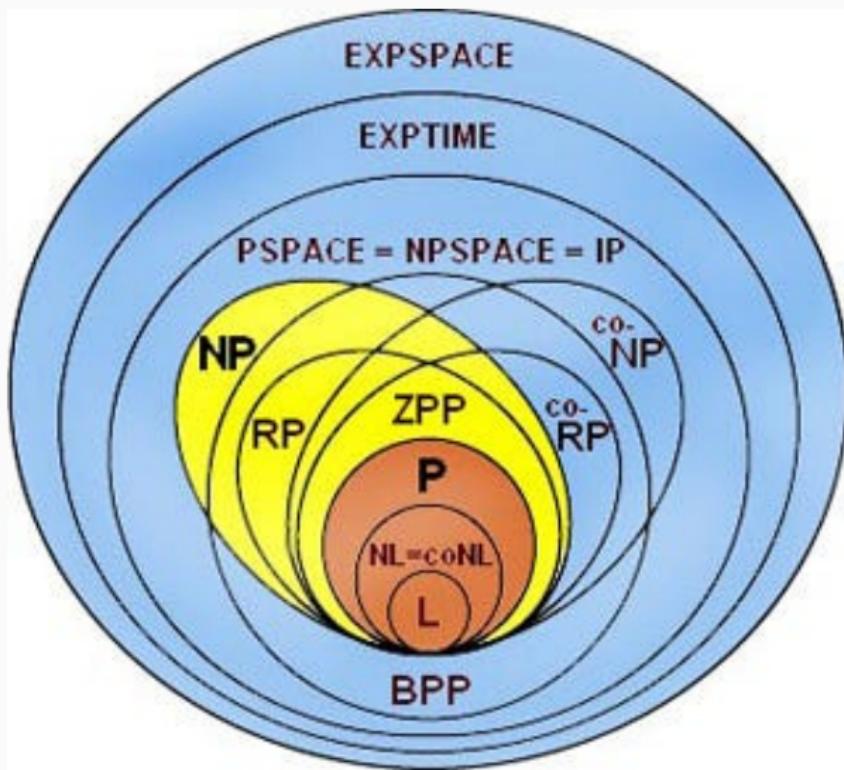
$\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k)$

Also, define:

co-NL – the languages whose complements are in NL .

co-NPSPACE – the languages whose complements are in $NPSPACE$.

Space Complexity Zoo



ST-Conn and NL

st-Connectivity

Recall the **st-Connectivity** problem: given a *directed* graph $G = (V, E)$ and two nodes $s, t \in V$, determine whether there is a path from s to t .
Algorithm?

A simple search algorithm (BFS) solves it:

1. mark node s , leaving other nodes unmarked, and initialise set S to $\{s\}$;
2. while S is not empty, choose node i in S : remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S ;
3. if t is marked, accept else reject.

Complexity: $O(n^2)$ time, $O(n)$ space.

st-Conn is in NL

We can construct a (DFS-based) algorithm to show that the **st-Conn** is in **NL**:

1. write the index of node s in the work space;
2. for i , the index currently written on the work space:
 - 2.1 if $i = t$ then accept, else guess an index j ($\log n$ bits) and write it on the work space.
 - 2.2 if (i, j) is not an edge, reject, else replace i by j and return to (2).

When in vertex i , the algorithm tries all possible indices j in parallel.

For edges (i, j) , the computation can continue.

If there is a path from s to t , there will be a computation that visits all the nodes on that path.

st-conn is NL-complete

The problem **st-conn** is in **NL**. Is it also **NL-complete**?

Definition (Logspace Reductions)

We write

$$A \leq_L B$$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace

We can prove that **st-Conn** is in **NL** as follows:

- Start with an NL machine.
- Construct its configuration graph.
- Run an st-Conn algorithm and accept iff it accepted.

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \rightarrow_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x .

L vs NL

L vs NL

The problem *st-Conn* is **NL-complete**. Can we solve it deterministically?

Theorem (Savitch's Theorem)

st-Conn can be solved by a **deterministic** algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from *a* to *b* of length at most *i*.

Savitch's Theorem

An $O((\log n)^2)$ space st-Conn deterministic algorithm:

Path(a, b, i)

if $i = 1$:

1. if (a, b) is an edge or $a = b$ accept
2. else reject

else (if $i > 1$), for each vertex v , check:

1. $\text{Path}(a, v, \lfloor i/2 \rfloor)$
2. $\text{Path}(v, b, \lceil i/2 \rceil)$

if such an v is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Savitch's Theorem

The space efficient algorithm for st-Conn used on the configuration graph of a nondeterministic machine shows:

$$\text{NSPACE}(f) \subseteq \text{SPACE}(f^2)$$

for $f(n) \geq \log n$.

This yields

$$\text{PSPACE} = \text{NPSPACE} = \text{co-NPSPACE}.$$

Complementation

A still more clever algorithm for **st-Conn** has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \geq \log n$, then

$$\text{NSPACE}(f) = \text{co-NSPACE}(f)$$

In particular

$$\text{NL} = \text{co-NL}.$$

Time vs Space

Inclusions

We have the following inclusions:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq EXP \subseteq NEXP$$

where $EXP = \bigcup_{k=1}^{\infty} \text{TIME}(2^{n^k})$

and $NEXP = \bigcup_{k=1}^{\infty} \text{NTIME}(2^{n^k})$

Moreover,

$$L \subseteq NL \cap \text{co-NL}$$

$$P \subseteq NP \cap \text{co-NP}$$

$$PSPACE \subseteq NPSPACE \cap \text{co-NPSPACE}$$

It would be easier to prove a more general statement!

Constructible Functions

To prove more general inclusion, we restrict our attention to **reasonable** time functions.

A complexity class such as $\text{TIME}(f)$ can be very unnatural, if f is.

We restrict our bounding functions f to be proper functions:

Definition

A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is **constructible** if:

- f is non-decreasing, i.e. $f(n+1) \geq f(n)$ for all n ; and
- there is a deterministic machine M which, on any input of length n , replaces the input with the string $0^{f(n)}$, and M runs in time $O(n + f(n))$ and uses $O(f(n))$ work space.

Examples

All of the following functions are constructible:

- $\lceil \log n \rceil$;
- n^2 ;
- n ;
- 2^n .

If f and g are constructible functions, then so are $f + g$, $f \cdot g$, 2^f and $f(g)$ (this last, provided that $f(n) > n$).

Using Constructible Functions

$\text{NTIME}(f)$ can be defined as the class of those languages L accepted by a *nondeterministic* Turing machine M , such that for every x , there is an accepting computation of M on x of length at most $O(f(n))$.

If f is a constructible function then any language in $\text{NTIME}(f)$ is accepted by a machine for which all computations are of length at most $O(f(n))$.

Also, given a Turing machine M and a constructible function f , we can define a machine that simulates M for $f(n)$ steps.

Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f .

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
- $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
- $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$;

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

Nondeterministic space vs deterministic time

We can use the $O(n^2)$ time algorithm for **st-Connectivity** to show that:

$$\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)})$$

for some constant k .

Let M be a nondeterministic machine working in space bounds $f(n)$.

For any input x of length n , there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds $f(n)$ is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

Space vs Time

Using the $O(n^2)$ algorithm for **st-Connectivity**, we get that $L(M)$ —the language accepted by M —can be decided by a deterministic machine operating in time

$$O(|G|^2) = O((nc^{f(n)})^2) = O(k^{(\log n + f(n))})$$

In particular, this establishes that $\text{NL} \subseteq \text{P}$ and $\text{NPSPACE} \subseteq \text{EXP}$.

Scaling up complexity results

Padding arguments

We can scale up relations between complexity classes. For example:

$$L = P \implies PSPACE = EXP$$

Proof: Let $S \in EXP$.

Then $S' = \{x01^{2^{|x|^k}} : x \in S\} \in P$.

Hence, $S' \in L$; denote the algorithm by \mathcal{A} .

Given $x \in S$, we can emulate $\mathcal{A}(x01^{2^{|x|^k}})$ in polynomial space.

Thus $S \in PSPACE$.

A similar argument shows that if $P = NP$, then $EXP = NEXP$.

Summary: A Complexity Zoo

The key players:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq EXP \subseteq NEXP$$

You should also know $coNP$, $coNL$, UP , R , RE , BQP (Quantum P)

Bonus contemporary classes: IP , SZK , BPP , FP , FNP , PCP , QMA