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Sublinear Complexity!
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Space Complexity

SPACE(f ) is the set of languages accepted by a machine which uses
O(f (n)) tape cells on inputs of length n.

Counting only work space.

NSPACE(f ) is the class of languages accepted by a nondeterministic
Turing machine using at most O(f (n)) work space.

As we are only counting work space, it makes sense to consider bounding
functions f that are less than linear.
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Space Complexity Zoo

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
∪∞

k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
∪∞

k=1 NSPACE(nk)

Also, define:

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.
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Space Complexity Zoo
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ST-Conn and NL
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st-Connectivity

Recall the st-Connectivity problem: given a directed graph G = (V ,E )

and two nodes s, t ∈ V , determine whether there is a path from s to t.
Algorithm?

A simple search algorithm (BFS) solves it:

1. mark node s, leaving other nodes unmarked, and initialise set S to
{s};

2. while S is not empty, choose node i in S: remove i from S and for
all j such that there is an edge (i , j) and j is unmarked, mark j and
add j to S;

3. if t is marked, accept else reject.

Complexity: O(n2) time, O(n) space.
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st-Conn is in NL

We can construct a (DFS-based) algorithm to show that the st-Conn is
in NL:

1. write the index of node s in the work space;
2. for i , the index currently written on the work space:

2.1 if i = t then accept, else
guess an index j (log n bits) and write it on the work space.

2.2 if (i , j) is not an edge, reject, else replace i by j and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel.

For edges (i,j), the computation can continue.

If there is a path from s to s, there will be a computation that visits all
the nodes on that path.
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st-conn is NL-complete

The problem st-conn is in NL. Is it also NL-complete?

Definition (Logspace Reductions)
We write

A ≤L B

if there is a reduction f of A to B that is computable by a deterministic
Turing machine using O(log n) workspace

We can prove that st-Conn is in NL as follows:

• Start with an NL machine.
• Construct its configuration graph.
• Run an st-Conn algorithm and accept iff it accepted.
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Configuration Graph

Define the configuration graph of M, x to be the graph whose nodes are
the possible configurations, and there is an edge from i to j if, and only
if, i →M j .

Then, M accepts x if, and only if, some accepting configuration is
reachable from the starting configuration (s, ▷, x , ▷, ε) in the
configuration graph of M, x .

8



L vs NL
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L vs NL

The problem st-Conn is NL-complete. Can we solve it deterministically?

Theorem (Savitch’s Theorem)
st-Conn can be solved by a deterministic algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether there
is a path from a to b of length at most i .
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Savitch’s Theorem

An O((log n)2) space st-Conn deterministic algorithm:

Path(a, b, i)

if i = 1:

1. if (a, b) is an edge or a = b accept
2. else reject

else (if i > 1), for each vertex v , check:

1. Path(a, v , ⌊i/2⌋)
2. Path(v , b, ⌈i/2⌉)

if such an v is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of
information kept at each stage is 3 log n.
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Savitch’s Theorem

The space efficient algorithm for st-Conn used on the configuration graph
of a nondeterministic machine shows:

NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.

This yields
PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for st-Conn has been used to show that
nondeterministic space classes are closed under complementation:

If f (n) ≥ log n, then

NSPACE(f ) = co-NSPACE(f )

In particular
NL = co-NL.
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Time vs Space
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Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

where EXP =
∪∞

k=1 TIME(2nk
)

and NEXP =
∪∞

k=1 NTIME(2nk
)

Moreover,
L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

It would be easier to prove a more general statement! 13



Constructible Functions

To prove more general inclusion, we restrict our attention to reasonable
time functions.

A complexity class such as TIME(f ) can be very unnatural, if f is.

We restrict our bounding functions f to be proper functions:

Definition
A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f (n + 1) ≥ f (n) for all n; and
• there is a deterministic machine M which, on any input of length n,

replaces the input with the string 0f (n), and M runs in time
O(n + f (n)) and uses O(f (n)) work space.
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Examples

All of the following functions are constructible:

• ⌈log n⌉;
• n2;
• n;
• 2n.

If f and g are constructible functions, then so are
f + g , f · g , 2f and f (g) (this last, provided that f (n) > n).
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Using Constructible Functions

NTIME(f ) can be defined as the class of those languages L accepted by
a nondeterministic Turing machine M, such that for every x , there is an
accepting computation of M on x of length at most O(f (n)).

If f is a constructible function then any language in NTIME(f ) is
accepted by a machine for which all computations are of length at most
O(f (n)).

Also, given a Turing machine M and a constructible function f , we can
define a machine that simulates M for f (n) steps.
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‘
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Establishing Inclusions

To establish the known inclusions between the main complexity classes,
we prove the following, for any constructible f .

• SPACE(f (n)) ⊆ NSPACE(f (n));
• TIME(f (n)) ⊆ NTIME(f (n));
• NTIME(f (n)) ⊆ SPACE(f (n));
• NSPACE(f (n)) ⊆ TIME(k log n+f (n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.
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Nondeterministic space vs deterministic time

We can use the O(n2) time algorithm for st-Connectivity to show that:

NSPACE(f (n)) ⊆ TIME(k log n+f (n))

for some constant k.

Let M be a nondeterministic machine working in space bounds f (n).

For any input x of length n, there is a constant c (depending on the
number of states and alphabet of M) such that the total number of
possible configurations of M within space bounds f (n) is bounded by
n · c f (n).

Here, c f (n) represents the number of different possible contents
of the work space, and n different head positions on the input.
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Space vs Time

Using the O(n2) algorithm for st-Connectivity, we get that L(M)—the
language accepted by M—can be decided by a deterministic machine
operating in time

O(|G |2) = O((nc f (n))2) = O(k(log n+f (n)))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.
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Scaling up complexity results
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Padding arguments

We can scale up relations between complexity classes. For example:

L = P =⇒ PSPACE = EXP

Proof: Let S ∈ EXP.

Then S ′ = {x012|x|k
: x ∈ S} ∈ P.

Hence, S ′ ∈ L; denote the algorithm by A.

Given x ∈ S, we can emulate A(x012|x|k
) in polynomial space.

Thus S ∈ PSPACE.

A similar argument shows that if P = NP, then EXP = NEXP.
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Summary: A Complexity Zoo

The key players:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

You should also know coNP, coNL, UP, R, RE, BQP (Quantum P)

Bonus contemporary classes: IP, SZK, BPP, FP, FNP, PCP, QMA
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