Complexity Theory

Lecture 9: Space Complexity

Tom Gur

Sublinear Complexity!

Space Complexity

is the set of languages accepted by a machine which uses
tape cells on inputs of length

is the class of languages accepted by a
Turing machine using at most work space.

As we are only counting work space, it makes sense to consider bounding
functions f that are less than linear.

Space Complexity Zoo

The class of languages decidable in polynomial space.

Also, define:
— the languages whose complements are in

— the languages whose complements are in

Space Complexity Zoo

EXPSPACE

EXPTIME

PSPACE = NPSPACE = IP

ST-Conn and NL

st-Connectivity

Recall the st-Connectivity problem: given a directed graph G = (V. E)
and two nodes s, t € V/, determine whether there is a path from s to .
Algorithm?

A simple search algorithm (BFS) solves it:

1. mark node s, leaving other nodes unmarked, and initialise set S to
gl
1SS

2. while S is not empty, choose node / in S: remove / from S and for
all j such that there is an edge (/. /) and j is unmarked, mark j and
add j to S;

3. if t is marked, accept else reject.

Complexity: O(n?) time, O(n) space.

We can construct a (DFS-based) algorithm to show that the is
in NL:

1. write the index of node s in the work space;

2. for i, the index currently written on the work space:

2.1 if then accept, else
guess an index j (bits) and write it on the work space.
2.2 if is not an edge, reject, else replace / by j and return to (2).

When in vertex i, the algorithm tries all possible indices j in parallel.
For edges (i,j), the computation can continue.

If there is a path from s to s, there will be a computation that visits all
the nodes on that path.

st-conn is NL-complete

The problem st-conn is in NL. Is it also NL-complete?

Definition (Logspace Reductions)
We write

if there is a reduction / of A to B that is computable by a deterministic
Turing machine using workspace

We can prove that st-Conn is in NL as follows:

= Start with an NL machine.
= Construct its configuration graph.

= Run an st-Conn algorithm and accept iff it accepted.

Configuration Graph

Define the of to be the graph whose nodes are
the possible configurations, and there is an edge from / to j if, and only
if,

Then, M accepts x if, and only if, some accepting configuration is
reachable from the starting configuration in the
configuration graph of

L vs NL

The problem st-Conn is NL-complete. Can we solve it deterministically?

Theorem (Savitch’s Theorem)
can be solved by a algorithm in space.

Consider the following recursive algorithm for determining whether there
is a path from a to b of length at most /.

Savitch’s Theorem

space deterministic algorithm:

if
1. if is an edge or accept

2. else reject

else (if), for each vertex v, check:

2.
if such an v is found, then accept, else reject.

The maximum depth of recursion is , and the number of bits of
information kept at each stage is

10

Savitch’s Theorem

The space efficient algorithm for st-Conn used on the configuration graph
of a nondeterministic machine shows:

for

This yields

11

Complementation

A still more clever algorithm for has been used to show that
nondeterministic space classes are closed under complementation:

If , then

In particular

12

Time vs Space

Inclusions

We have the following inclusions:

where

and

Moreover,

. 13
It would be easier to prove a more general statement!

Constructible Functions

To prove more general inclusion, we restrict our attention to reasonable
time functions.

A complexity class such as can be very unnatural, if f is.

We restrict our bounding functions 7 to be proper functions:

Definition
A function is if:
. is non-decreasing, i.e. for all n; and

= there is a deterministic machine // which, on any input of length 7,
replaces the input with the string , and M runs in time
and uses

14

All of the following functions are constructible:

If £ and g are constructible functions, then so are
and (this last, provided that).

15

Using Constructible Functions

can be defined as the class of those languages | accepted by
a Turing machine /M, such that for every x, there is an
accepting computation of M on x of length at most

If /' is a constructible function then any language in is
accepted by a machine for which all computations are of length at most

Also, given a Turing machine M and a constructible function f, we can
define a machine that simulates / for steps.

16

17

Establishing Inclusions

To establish the known inclusions between the main complexity classes,
we prove the following, for any constructible

The first two are straightforward from definitions.
The third is an easy simulation.

The last requires some more work.

17

Nondeterministic space vs deterministic time

We can use the O(n?) time algorithm for st-Connectivity to show that:
NSPACE(f(n)) C TIME(k'&+()

for some constant k.

Let M be a nondeterministic machine working in space bounds 7 ().

For any input x of length n, there is a constant ¢ (depending on the
number of states and alphabet of /) such that the total number of
possible configurations of // within space bounds 7 (1) is bounded by

n-cfn,

Here, c'\") represents the number of different possible contents
of the work space, and n different head positions on the input.

18

Using the algorithm for , We get that —the
language accepted by /—can be decided by a deterministic machine

operating in time

In particular, this establishes that and

19

Scaling up complexity results

Padding arguments

We can scale up relations between complexity classes. For example:

Proof: Let S € EXP.

Then S’ = {x012wk : x€eS}eP.

Hence, S’ € L; denote the algorithm by A.

Given x € S, we can emulate A(x012‘xlk) in polynomial space.

Thus S € PSPACE.

A similar argument shows that if P = NP, then EXP = NEXP.

20

Summary: A Complexity Zoo

The key players:

L C NL € P C NP C PSPACE C NPSPACE C EXP C NEXP

You should also know coNP, coNL, UP, R, RE, BQP (Quantum P)

Bonus contemporary classes: P, SZK, BPP, FP, ENP, PCP, QMA

21

