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Preface: What do professors do all day?
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Recap

• P captures polynomial-time computation.
• NP captures polynomial-time verification.
• A problem is NP-hard if any language in NP is reducible to it.
• A problem is NP-complete if it is: (1) NP-hard, (2) in NP .
• Cook-Levin Theorem: SAT is NP-complete.
• In fact, so is CNF-SAT.
• And CNF-SAT is reducible to 3SAT:

(x1 ∨ x2 ∨ x3 ∨ x4) → (x1 ∨ x2 ∨ z1) ∧ (¬z1 ∨ x3 ∨ z2) ∧ (¬z2 ∨ x4)
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Let’s see some reductions!
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Independent Set

Given a graph G = (V ,E ), a subset X ⊆ V of the vertices is said to be
an independent set, if there are no edges (u, v) for u, v ∈ X .
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Independent Set

Given a graph G = (V ,E ), a subset X ⊆ V of the vertices is said to be
an independent set, if there are no edges (u, v) for u, v ∈ X .

The natural algorithmic problem is, given a graph, find the largest
independent set.

To turn this optimisation problem into a decision problem, we define IS
as:

The set of pairs (G ,K ), where G is a graph, and K is an integer,
such that G contains an independent set with K or more vertices.

IS is clearly in NP. We now show it is NP-complete.
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Reduction

We can construct a reduction from 3SAT to IS.

A Boolean expression ϕ in 3CNF with m clauses is mapped by the
reduction to the pair (G ,m), where G is the graph obtained from ϕ as
follows:

G contains m triangles, one for each clause of ϕ, with each node
representing one of the literals in the clause.
Additionally, there is an edge between two nodes in different
triangles if they represent literals where one is the negation of
the other.
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Example

(x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x2 ∨ ¬x1)
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Proof

Efficiency: The transformation is computable in polynomial time: write
down all triangles and connect literals.

Completeness: Suppose ϕ is satisfiable, and let T be a satisfying
assignment. Choose a satisfied literal from each of the m clauses. Denote
the corresponding set of vertices by X , and observe that: (1) X does not
contain a variable and its negation, and (2) X does not contains two
veritices from the same triange. Hence X is IS of size m

Soundness: Suppose ϕ is unsatisfiable, and towards contradiction,
suppose X is IS of size m. Note that X must contain at most 1 vertex
per triangle and no edges between triangles. Hence its corresponding
literals form a satisfying assignment of ϕ, in contradiction.
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Clique

Given a graph G = (V ,E ), a subset X ⊆ V of the vertices is called a
clique, if for every u, v ∈ X , (u, v) is an edge.

As with IS, we can define a decision problem:

CLIQUE is defined as:
The set of pairs (G ,K ), where G is a graph, and K is an integer,
such that G contains a clique with K or more vertices.
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Clique

CLIQUE is in NP by the algorithm which guesses a clique and then
verifies it.

CLIQUE is NP-complete, since

IS ≤P CLIQUE

by the reduction that maps the pair (G ,K ) to (Ḡ ,K ), where Ḡ is the
complement graph of G .
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k-Colourability

A graph G = (V ,E ) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E ,

χ(u) ̸= χ(v)
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k-Colourability

A graph G = (V ,E ) is k-colourable, if there is a function

χ : V → {1, . . . , k}

such that, for each u, v ∈ V , if (u, v) ∈ E ,

χ(u) ̸= χ(v)

This gives rise to a decision problem for each k.

2-colourability is in P. (How to intimidate your Google interviewer...)

For all k > 2, k-colourability is NP-complete.
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3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to
3-Colourability.

For each variable x , we have two vertices x , x̄ which are connected in a
triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l1, l2 and l3 we have a
gadget.

With a further edge from a to b.
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Gadget
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Turing fact of the day

Alan Turing used to cycle to work in a gas mask during the first week of
June each year to combat hay fever...
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Hamiltonian Graphs

Given a graph G = (V ,E ), a Hamiltonian cycle in G is a path in the
graph, starting and ending at the same node, such that every node in V
appears on the cycle exactly once.
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Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a graph, so
that every satisfying truth assignment to the expression corresponds to a
Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IS.
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Travelling Salesman

• V — a set of nodes.
• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V minimising:

n−1∑
i=1

c(vi , vi+1) + c(vn, v1)
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Travelling Salesman

As with other optimisation problems, we can make a decision problem
version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V , c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the cost
matrix c, has cost t or less.
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Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V ,E )

to the triple (V , c : V × V → IN, n), where

c(u, v) =
{

1 (u, v) ∈ E
2 (u, v) ̸∈ E

and n is the size of V .
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