

Complexity Theory

Lecture 5: NP-Complete Problems

Tom Gur

Preface: What do professors do all day?

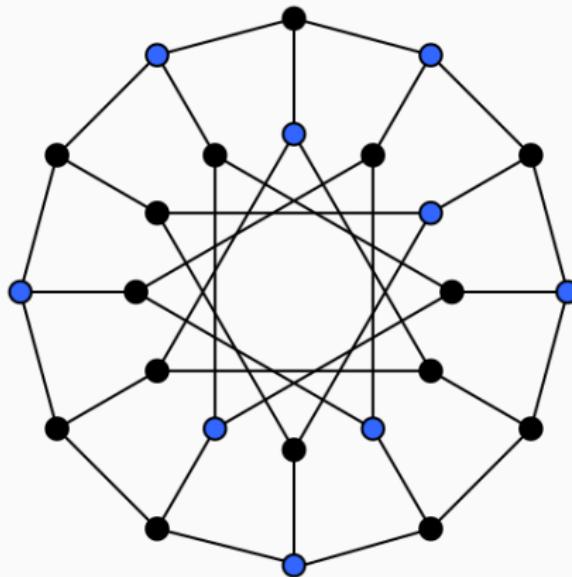
Recap

- \mathcal{P} captures polynomial-time computation.
- \mathcal{NP} captures polynomial-time verification.
- A problem is \mathcal{NP} -hard if any language in \mathcal{NP} is reducible to it.
- A problem is \mathcal{NP} -complete if it is: (1) \mathcal{NP} -hard, (2) in \mathcal{NP} .
- Cook-Levin Theorem: SAT is \mathcal{NP} -complete.
- In fact, so is **CNF-SAT**.
- And CNF-SAT is reducible to **3SAT**:
$$(x_1 \vee x_2 \vee x_3 \vee x_4) \rightarrow (x_1 \vee x_2 \vee z_1) \wedge (\neg z_1 \vee x_3 \vee z_2) \wedge (\neg z_2 \vee x_4)$$

Let's see some reductions!

Independent Set

Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is said to be an *independent set*, if there are no edges (u, v) for $u, v \in X$.



Independent Set

Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is said to be an *independent set*, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this *optimisation problem* into a *decision problem*, we define **IS** as:

The set of pairs (G, K) , where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.

IS is clearly in **NP**. We now show it is **NP**-complete.

Reduction

We can construct a reduction from 3SAT to IS.

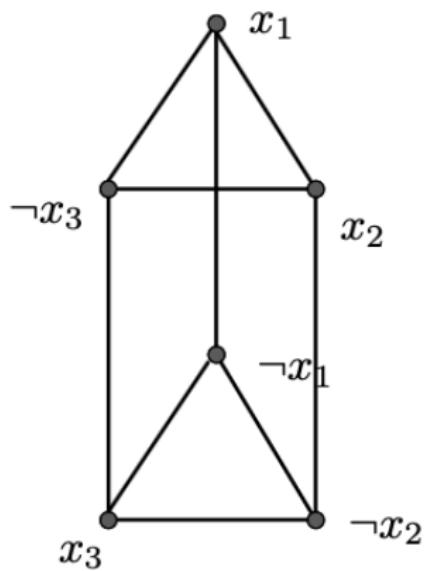
A Boolean expression ϕ in 3CNF with m clauses is mapped by the reduction to the pair (G, m) , where G is the graph obtained from ϕ as follows:

G contains m triangles, one for each clause of ϕ , with each node representing one of the literals in the clause.

Additionally, there is an edge between two nodes in different triangles if they represent literals where one is the negation of the other.

Example

$$(x_1 \vee x_2 \vee \neg x_3) \wedge (x_3 \vee \neg x_2 \vee \neg x_1)$$



Proof

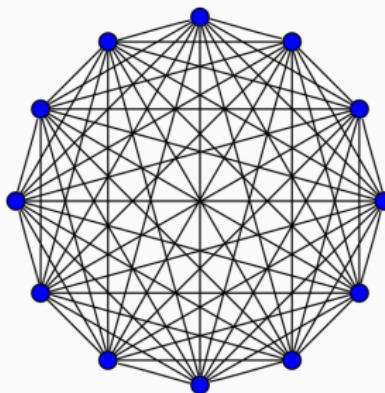
Efficiency: The transformation is computable in polynomial time: write down all triangles and connect literals.

Completeness: Suppose ϕ is satisfiable, and let T be a satisfying assignment. Choose a satisfied literal from each of the m clauses. Denote the corresponding set of vertices by X , and observe that: (1) X does not contain a variable and its negation, and (2) X does not contain two vertices from the same triangle. Hence X is IS of size m

Soundness: Suppose ϕ is unsatisfiable, and towards contradiction, suppose X is IS of size m . Note that X must contain at most 1 vertex per triangle and no edges between triangles. Hence its corresponding literals form a satisfying assignment of ϕ , in contradiction.

Clique

Given a graph $G = (V, E)$, a subset $X \subseteq V$ of the vertices is called a *clique*, if for every $u, v \in X$, (u, v) is an edge.



As with **IS**, we can define a decision problem:

CLIQUE is defined as:

The set of pairs (G, K) , where G is a graph, and K is an integer, such that G contains a clique with K or more vertices.

Clique

CLIQUE is in NP by the algorithm which *guesses* a clique and then verifies it.

CLIQUE is NP-complete, since

IS \leq_P CLIQUE

by the reduction that maps the pair (G, K) to (\bar{G}, K) , where \bar{G} is the complement graph of G .

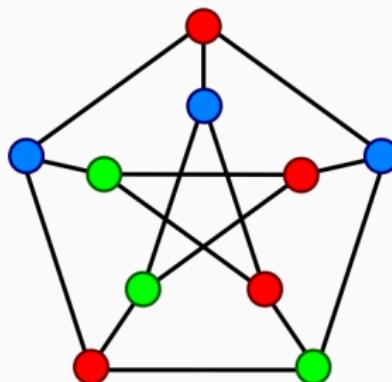
k -Colourability

A graph $G = (V, E)$ is k -colourable, if there is a function

$$\chi : V \rightarrow \{1, \dots, k\}$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$\chi(u) \neq \chi(v)$$



k -Colourability

A graph $G = (V, E)$ is k -colourable, if there is a function

$$\chi : V \rightarrow \{1, \dots, k\}$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$\chi(u) \neq \chi(v)$$

This gives rise to a decision problem for each k .

2 -colourability is in P . (How to intimidate your Google interviewer...)

For all $k > 2$, k -colourability is NP -complete.

3-Colourability

3-Colourability is in NP, as we can *guess* a colouring and verify it.

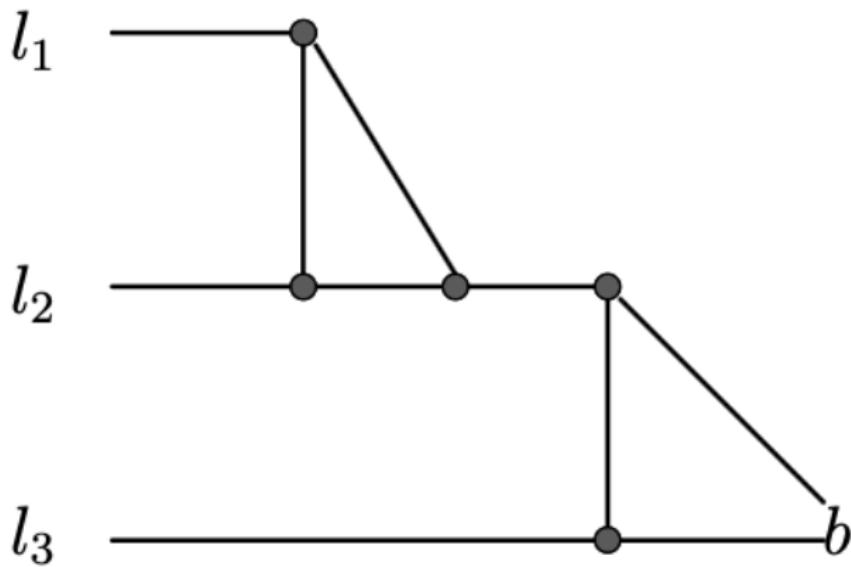
To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x , we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals l_1, l_2 and l_3 we have a gadget.

With a further edge from a to b .

Gadget

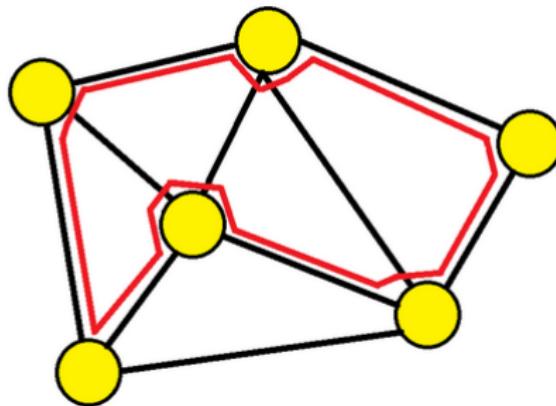


Turing fact of the day

Alan Turing used to cycle to work in a gas mask during the first week of June each year to combat hay fever...

Hamiltonian Graphs

Given a graph $G = (V, E)$, a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.



Hamiltonian Cycle

We can construct a reduction from **3SAT** to **HAM**

Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

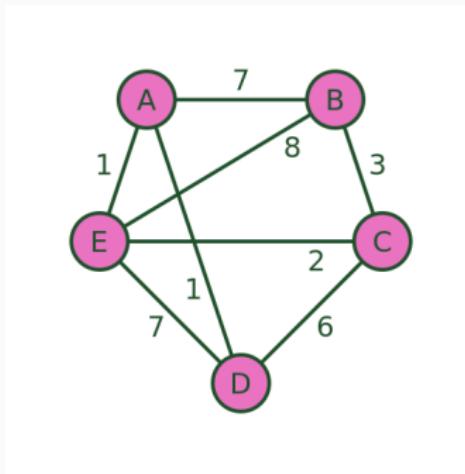
This reduction is much more intricate than the one for **IS**.

Travelling Salesman

- V — a set of nodes.
- $c : V \times V \rightarrow \mathbb{N}$ — a cost matrix.

Find an ordering v_1, \dots, v_n of V minimising:

$$\sum_{i=1}^{n-1} c(v_i, v_{i+1}) + c(v_n, v_1)$$



Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem **TSP** consists of the set of triples

$$(V, c : V \times V \rightarrow \mathbb{N}, t)$$

such that there is a tour of the set of vertices V , which under the cost matrix c , has cost t or less.

Reduction

There is a simple reduction from **HAM** to **TSP**, mapping a graph (V, E) to the triple $(V, c : V \times V \rightarrow \mathbb{N}, n)$, where

$$c(u, v) = \begin{cases} 1 & (u, v) \in E \\ 2 & (u, v) \notin E \end{cases}$$

and n is the size of V .