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The story so far

= Goal: understand the complexity of computational problems.
= Decidability is necessary, but not enough!

= Upper bound: show one algorithm.

= Lower bounds: argue about all algorithms.

= Towards that, we abstract the notion of an algorithm

= Extended Church-Turing Thesis: the model doesn’t matter
(perhaps, unless it's quantum...)

= We will use Turing Machines, as they are relatively simple.

Out next goal: characterise efficient computation!



Complexity Classes

We will study the landscape of computational power by group problems
into complexity classes.

A complexity class is a collection of languages determined by three things:
= A model of computation (such as a deterministic Turing machine, or
a nondeterministic TM, or a parallel Random Access Machine).
= A resource (such as time, space or number of processors).

= A set of bounds. This is a set of functions that are used to bound
the amount of resource we can use.

How shall we model efficient computation?



The Big ldea:
Efficient = Polynomial Time



Polynomial Time

P = [ TIME(n*)
(s=il
The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

= Concrete enough to rule out unphysical (exponential) complexity.
= Abstract enough to be robust (Extended Church Turing Thesis).
= Group structure: captures sub-procedures.

= |t serves as our formal definition of what is feasibly computable

However, it is not perfect: Is runtime 0(n'%") feasible?

The distinction between polynomial and exponential leads to a useful and
elegant theory.



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V| E)
and two nodes a2, b € V/, to determine whether there is a path from 2 to
bin G.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to

{a};

2. while S is not empty, choose node / in S: remove / from S and for

all j such that there is an edge (/./) and j is unmarked, mark j and
add j to S;

3. if b is marked, accept else reject.

What are the time and space complexities?



This algorithm requires time and space.

The description of the algorithm would have to be refined for an
implementation on a Turing machine, but it is easy enough to show that:

To formally define as a language, we would have to also
choose a way of representing the input as a string.



Example 2: Euclid’s Algorithm

Consider the decision problem (or ) defined by:

What is the naive algorithm? Complexity? is it in P?



Example 2: Euclid’s Algorithm

Consider the decision problem (or ) defined by:

The standard algorithm for solving it is due to Euclid:

1. Input
2. Repeat until : ; Swap x and
3. If then accept else reject.



The number of repetitions at step 2 of the algorithm is at most

This implies that is in

If the algorithm took steps to terminate, it would not be a
polynomial time algorithm, as x is not polynomial in the of the
input.



Turing fact of the day

Turing had authored one of the most cited papers in biology.

THE CHEMI

L BASIS OF MORPHOGENESIS
By A. M. TURING, F.R.S. University of Manchester
(Reccived 9 November 1951—Revised 15 March 1952
It is suggested that a system of chemical substances, called morphogens, reacting together and
diffising through a tissue, is adequate to account for the main phenomena of morphogen

Such a system, although it may originally be quite homogencous, may later develop a pattern
or structure due to

instability of the homogencous cquilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated rin

of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found
essentially different forms which this may take. In the

there are six

most interesting form stationary waves
It is suggested that this might account, for instance, for the tentacle patterns
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-

appear on the

sidered. Such a system appears to account for gastrulation. Another reaction system in two
dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary
waves in two dimensions could account for the phenomena of phyllotaxis.

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote
may determine the anatomical structure of the resulting or

nism. The theory does not make any

new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account
for many of the facts. The full understanding of the paper requires a good knowledge of mathe-
matics, some biology, and some el
experts in all of these subjects, a nu entary facts are explained, which can be found in
text-books, but whose omission would make the paper difficult reading.

tary chemistry. Since readers cannot be expected to be
ber of e

1. A MODEL OF THE EMBRYO. MORPHOGENS

In this \uuon a mather

atical model of the growing embryo will be described. This model
will be a simplification and an ideals and enty a falsification. It is to be
hoped that the features r
present state of knowledge.

The model takes two slightly different forms. In one of them the cell theory is recognized
but the cells are idealized into geometrical points. In the other the matter of the organism
is imagined as continuously distributed. The cells are not, however, completely ignored,
for v ical and physico-chemical ct
assumed to have values appropriate to the cellular mater.

With cither of the

ined for discussion are those of greatest importance in the

ous ph: acteristics of the

matter as a whole are

odels one proceeds as with a physical theory and defines an entity
called ‘the state of the system’. One then describes how that state is to be determined from 10
the state at a moment very shortly before. With cither model the description of the state
B P han ool land the chemic

1. The mechanical part of the state



Example 3: Primality

Consider the decision problem (or ) defined by:

The obvious algorithm:

requires steps and is therefore polynomial in the length of the
input.

Is ?
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Example 4: Boolean Formula Evaluation

Boolean expressions are built up from an infinite set of variables

and the two constants and by the rules:

= a constant or variable by itself is an expression;
= if ¢ is a Boolean expression, then so is :

= if ¢ and i) are both Boolean expressions, then so are and

12



Evaluation

If an expression contains no variables, then it can be evaluated to either
or

Otherwise, it can be evaluated, a truth assignment to its variables.

Examples:
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Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean
expression of length n will determine, in time
whether the expression evaluates to

The algorithm works by scanning the input, rewriting formulas according
to the following rules:
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Each scan of the input ( steps) must find at least one subexpression

matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the formula.

Thus, there are at most scans required.

The algorithm works in steps.
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Last Problem: Satisfiability

For Boolean expressions ¢ that contain variables, we can ask
Is there an assignment of truth values to the variables which

would make the formula evaluate to ?
The set of Boolean expressions for which this is true is the language
of expressions.
This can be decided by a deterministic Turing machine in time
An expression of length 1 can contain at most 1 variables.
For each of the 2" possible truth assignments to these variables, we check

whether it results in a Boolean expression that evaluates to

Is ?
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Questions?



