
Complexity Theory
Lecture 2: Complexity classes – The Class P

Tom Gur



Active learning

1



The story so far

• Goal: understand the complexity of computational problems.
• Decidability is necessary, but not enough!
• Upper bound: show one algorithm.
• Lower bounds: argue about all algorithms.
• Towards that, we abstract the notion of an algorithm
• Extended Church-Turing Thesis: the model doesn’t matter

(perhaps, unless it’s quantum...)
• We will use Turing Machines, as they are relatively simple.

Out next goal: characterise efficient computation!

2



Complexity Classes

We will study the landscape of computational power by group problems
into complexity classes.

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or
a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).
• A set of bounds. This is a set of functions that are used to bound

the amount of resource we can use.

How shall we model efficient computation?

3



The Big Idea:
Efficient = Polynomial Time

3



Polynomial Time

P =
∞∪

k=1
TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• Concrete enough to rule out unphysical (exponential) complexity.
• Abstract enough to be robust (Extended Church Turing Thesis).
• Group structure: captures sub-procedures.
• It serves as our formal definition of what is feasibly computable

However, it is not perfect: Is runtime θ(n100) feasible?

The distinction between polynomial and exponential leads to a useful and
elegant theory.

4



Example 1: Reachability

The Reachability decision problem is, given a directed graph G = (V ,E )

and two nodes a, b ∈ V , to determine whether there is a path from a to
b in G .

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to
{a};

2. while S is not empty, choose node i in S: remove i from S and for
all j such that there is an edge (i , j) and j is unmarked, mark j and
add j to S;

3. if b is marked, accept else reject.

What are the time and space complexities?

5



Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an
implementation on a Turing machine, but it is easy enough to show that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also
choose a way of representing the input (V ,E , a, b) as a string.

6



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

What is the naive algorithm? Complexity? is it in P?

7



Example 2: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x , y) | gcd(x , y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x , y).
2. Repeat until y = 0: x ← x mod y ; Swap x and y
3. If x = 1 then accept else reject.

8



Analysis

The number of repetitions at step 2 of the algorithm is at most O(log x).
why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a
polynomial time algorithm, as x is not polynomial in the length of the
input.

9



Turing fact of the day

Turing had authored one of the most cited papers in biology.

10



Example 3: Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:
For all y with 1 < y ≤

√
x check whether y |x.

requires Ω(
√

x) steps and is therefore not polynomial in the length of the
input.

Is Prime ∈ P?

11



Example 4: Boolean Formula Evaluation

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;
• if ϕ is a Boolean expression, then so is (¬ϕ);
• if ϕ and ψ are both Boolean expressions, then so are (ϕ ∧ ψ) and

(ϕ ∨ ψ).

12



Evaluation

If an expression contains no variables, then it can be evaluated to either
true or false.

Otherwise, it can be evaluated, given a truth assignment to its variables.

Examples:
(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true

13



Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean
expression without variables of length n will determine, in time O(n2)

whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas according
to the following rules:

14



Rules

• (true ∨ ϕ)⇒ true

• (ϕ ∨ true)⇒ true

• (false ∨ ϕ)⇒ ϕ

• (ϕ ∨ false)⇒ ϕ

• (false ∧ ϕ)⇒ false

• (ϕ ∧ false)⇒ false

• (true ∧ ϕ)⇒ ϕ

• (ϕ ∧ true)⇒ ϕ

• (¬true)⇒ false

• (¬false)⇒ true

15



Analysis

Each scan of the input (O(n) steps) must find at least one subexpression
matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.

16



Last Problem: Satisfiability

For Boolean expressions ϕ that contain variables, we can ask
Is there an assignment of truth values to the variables which
would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language SAT
of satisfiable expressions.

This can be decided by a deterministic Turing machine in time O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we check
whether it results in a Boolean expression that evaluates to true.

Is SAT ∈ P?

17



Questions?

17


