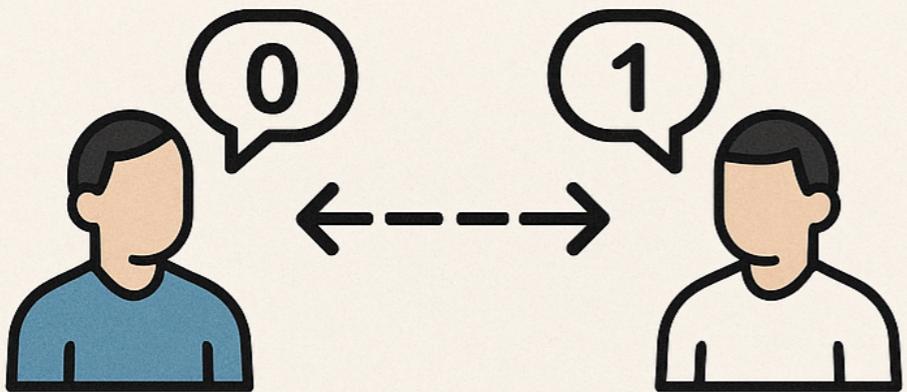
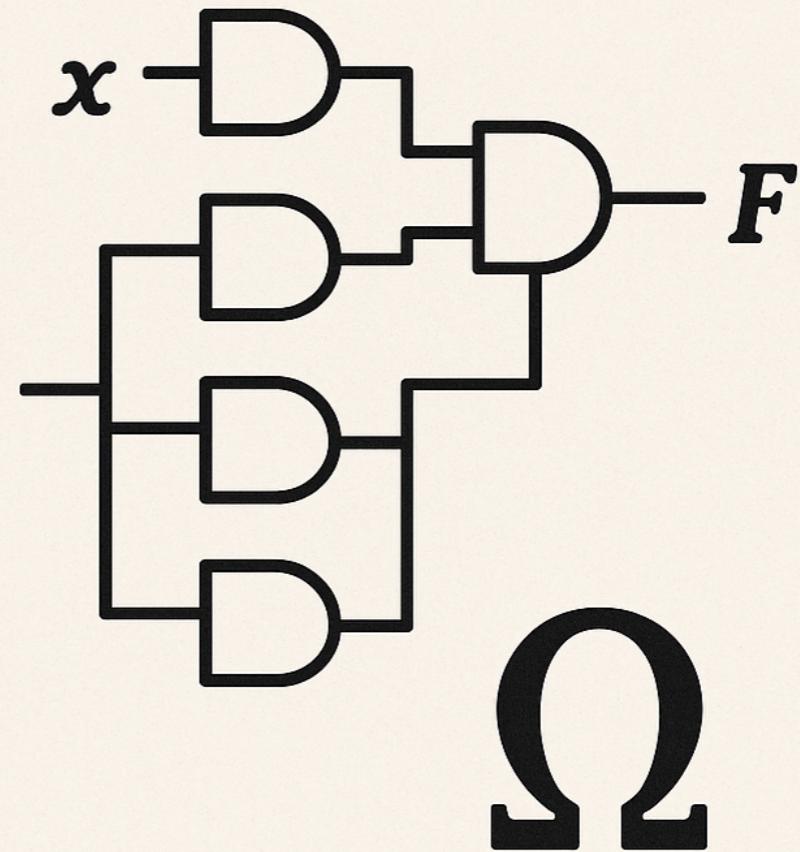


Complexity Theory

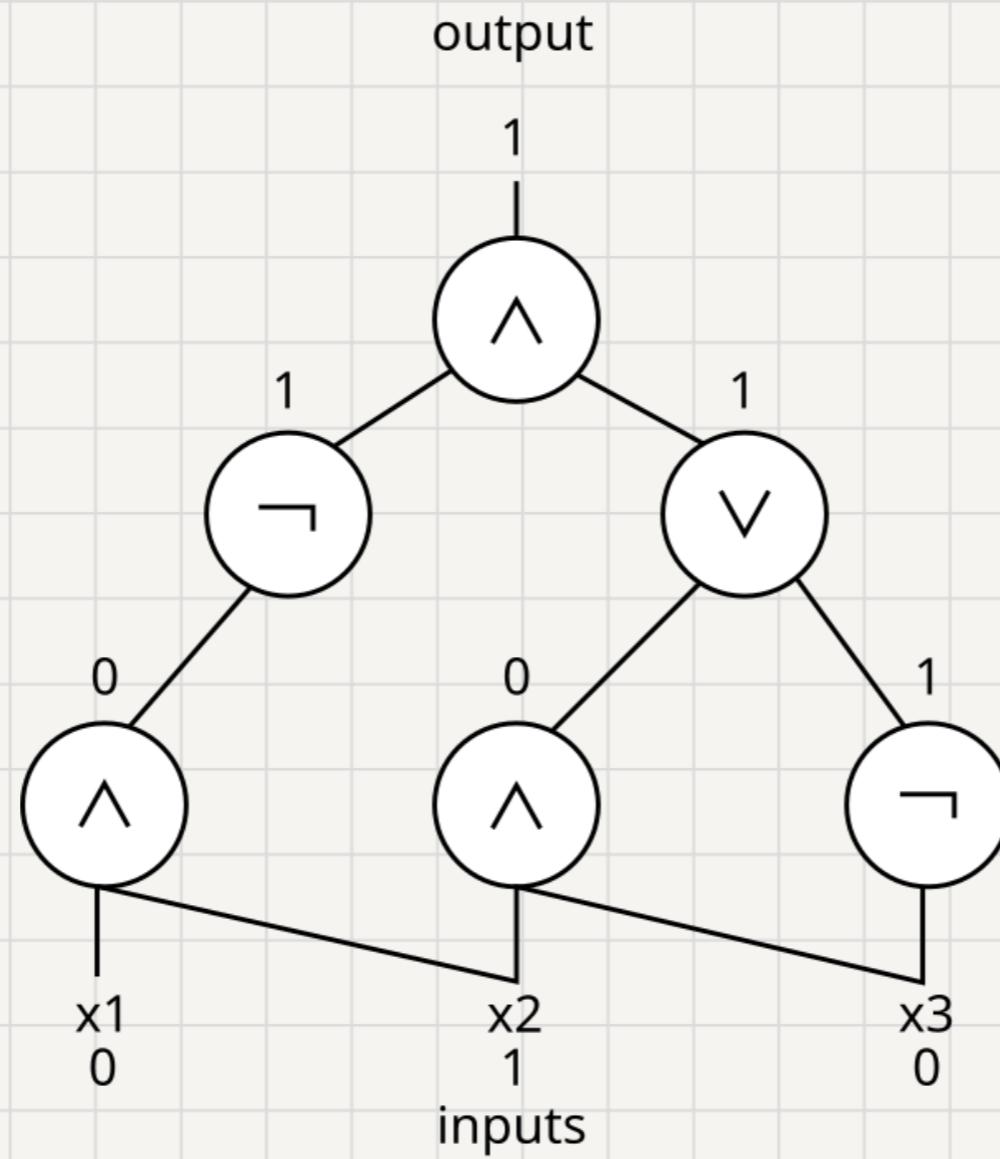


0	1	1	0	0
1	0	1	1	1
0	0	0	1	1
0	0	1	1	1



Circuits & Communication

Circuit complexity



To solve a problem L , we need a family $\{C_n\}_{n \in \mathbb{N}}$ for each input length.

The class P/Poly consists of all problems solved by poly-size circuits.

Is this model equivalent to poly-time Turing machines?

P/Poly and advice

Interestingly P/Poly is not equal to P!

In fact, it contains undecidable problems...

Note that P/Poly is not uniform: Each C_n could be completely different!

Put differently: P/Poly = poly-time TM with polynomial-size advice

For every input size $n \in \mathbb{N}$ we can store advice string $a_n \in \{0,1\}^{p(n)}$

If the problem is encoded in unary, we can just write the answer!

Randomised circuits

Unlike P vs BPP , for circuits randomness doesn't matter!

We can use the advice to derandomise the circuit.

Suppose we have $\Pr_r[C_n(x; r) = 1_L(x)] \geq 2/3$.

Idea: provide a good random string as advice.

Problem: for every x , there might be different good string.

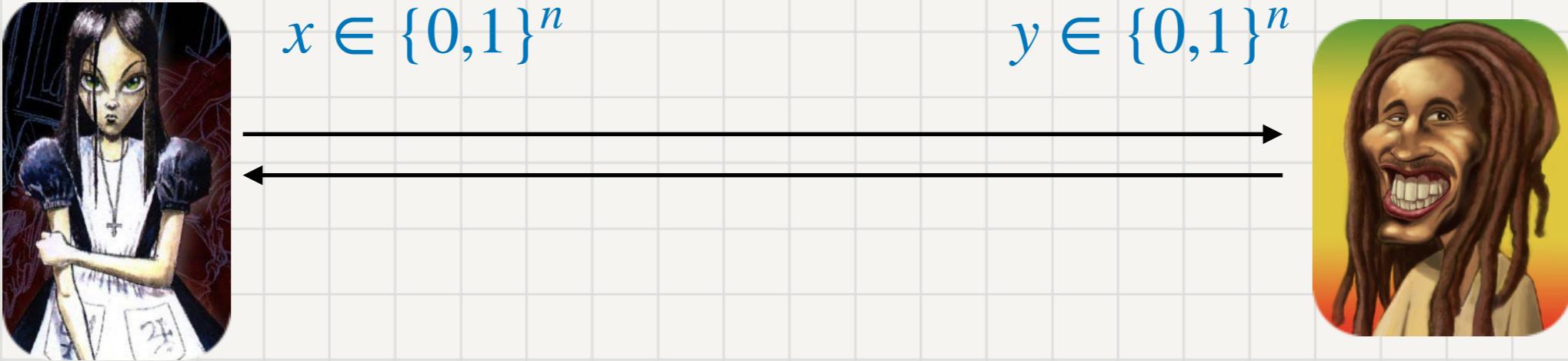
Solution: Use Chernoff to reduce the soundness to $\epsilon = 1/2^{n+2}$,

For every $x \in \{0,1\}^n$, $\Pr_r[C_n(x; r) \neq 1_L(x)] \leq \epsilon$

Hence, $\Pr_r[\exists x C_n(x; r) \neq 1_L(x)] \leq 2^n \Pr_r[C_n(x; r) \neq 1_L(x)] \leq 1/4$

That is, w.p. $3/4$ there exists r s.t. for every $x \in \{0,1\}^n$, $C_n(x; r) = 1_L(x)$

Communication complexity



Goal: compute $f(x, y)$ using a minimal amount of communication.

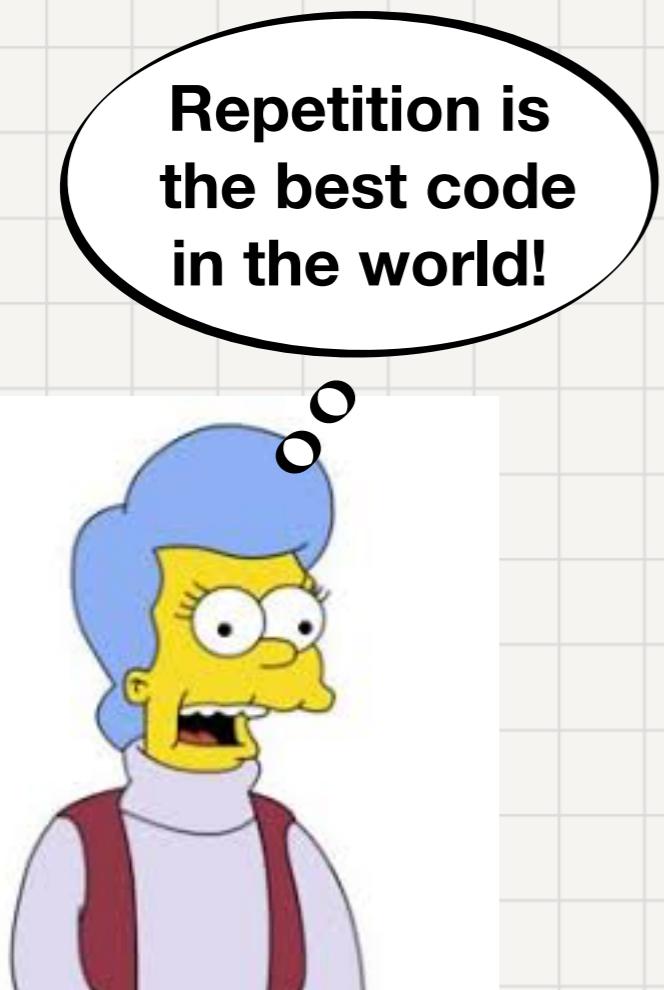
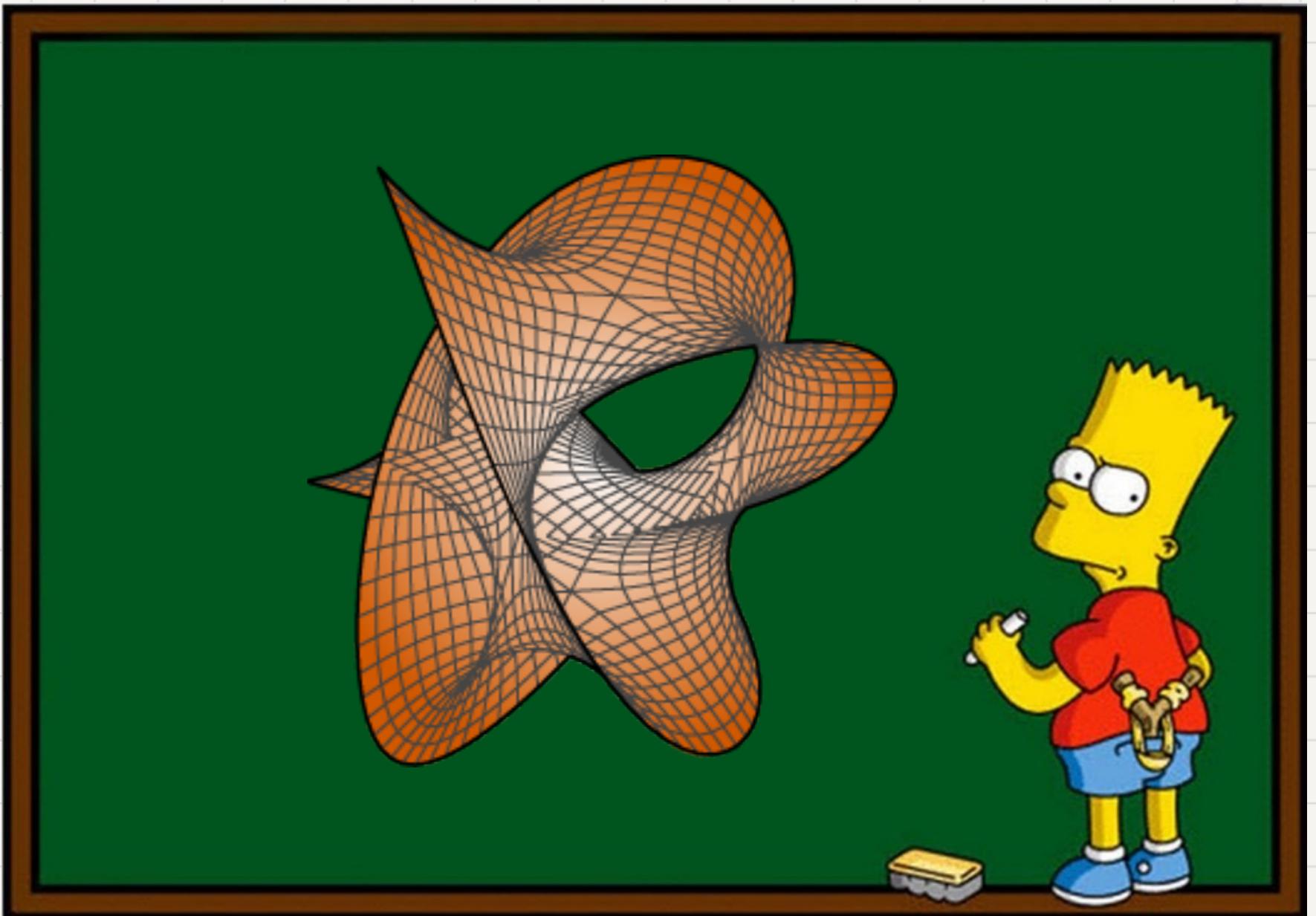
Test your intuition

$$f(x, y) = \gcd(x, y)$$

$$f(x, y) = \text{parity}(x \circ y)$$

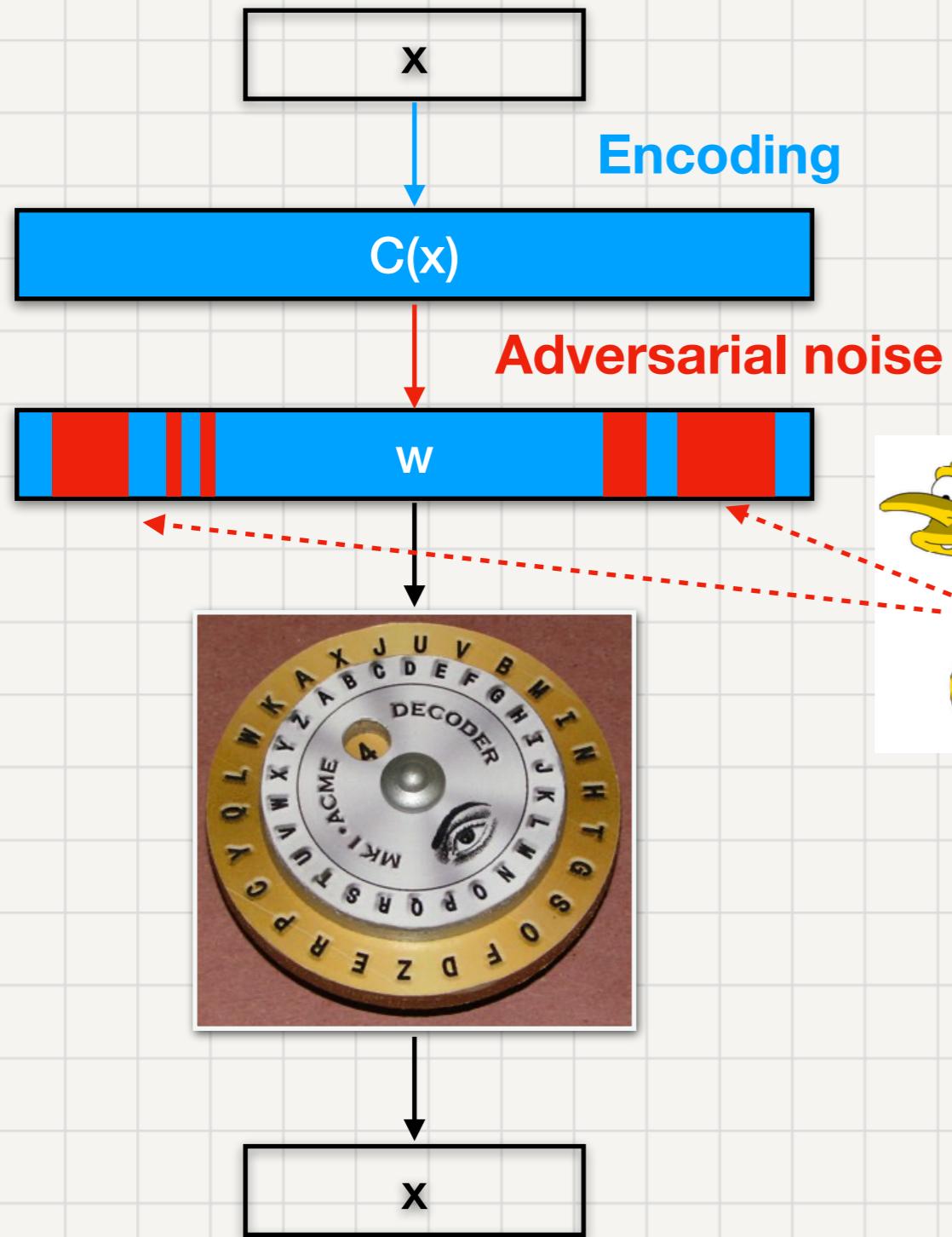
$$f(x, y) = \text{equal}(x, y)$$

Detour: error-correcting codes in a nutshell

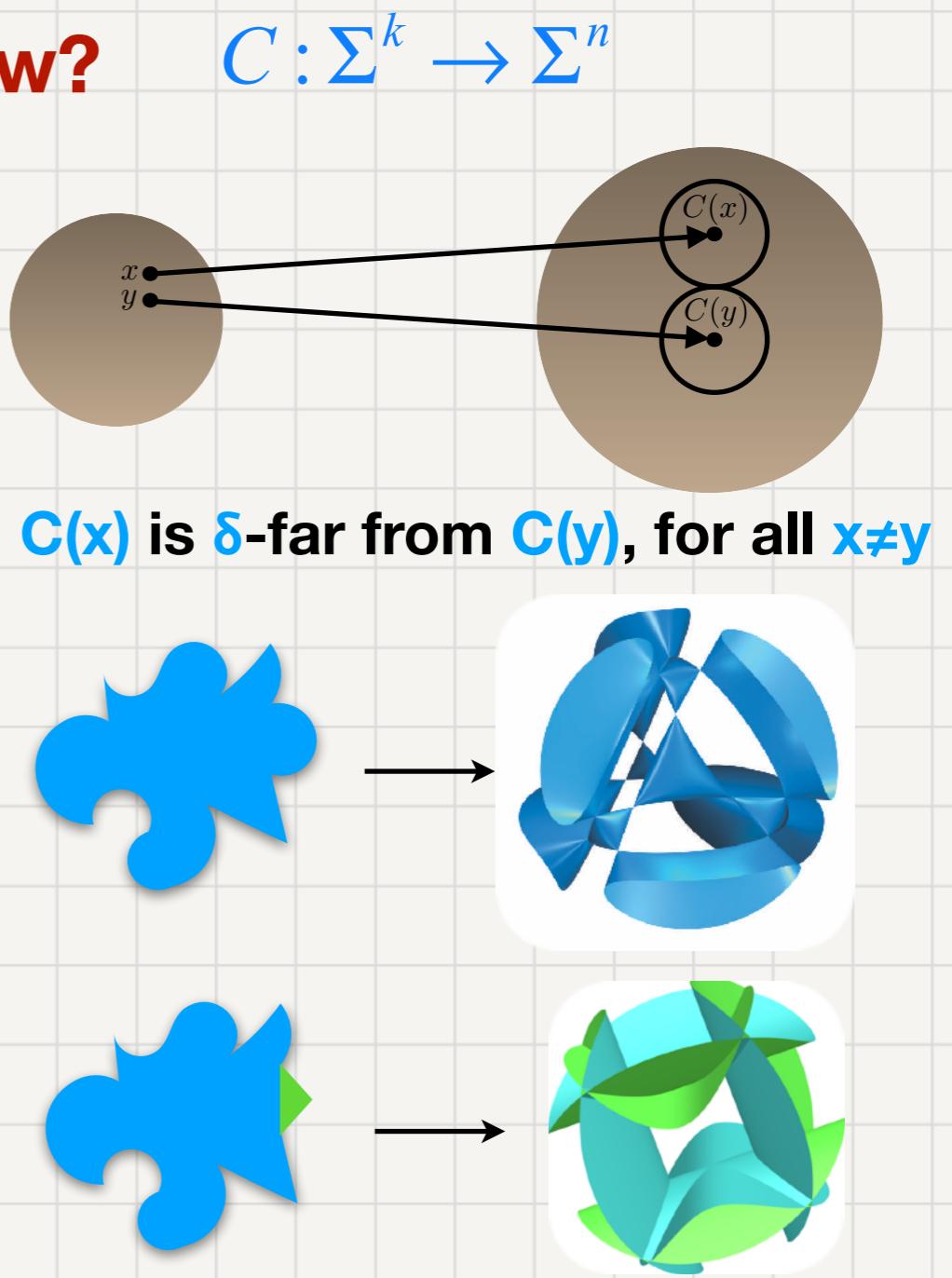


Error-correcting codes

What?

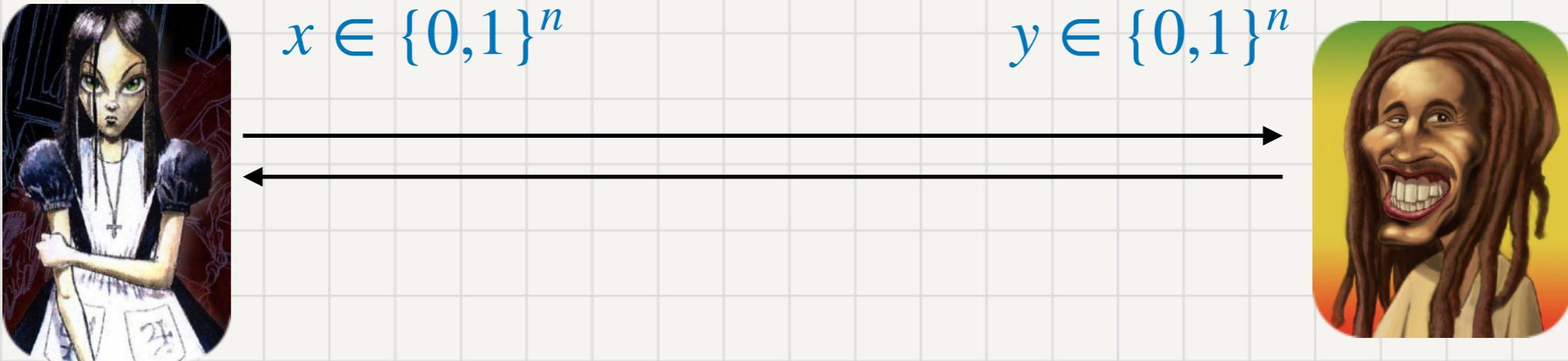


How?



Theorem There exists a code C with length $n = O(k)$ and distance $\delta = \Omega(n)$

Communication complexity



Goal: compute $\text{equal}(x, y)$ using a minimal amount of communication.

Protocol: Let a C be a code with length $n = O(k)$ and distance $\delta = \Omega(n)$

Alice computes $C(x)$

Bob computes $C(y)$

Alice and Bob choose a random $S \subset \{1, \dots, n\}$ of size $O(1/\delta)$

They accept iff $x|_S = y|_S$ (communication $O(\log n)$)

Note that if $x \neq y$, then $\Pr_i[C(x)_i \neq C(y)_i] \geq \delta$

Questions?