
Compiler Construction
Lecture 16

Bootstrapping
Jeremy Yallop, Lent 2025
jeremy.yallop@cl.cam.ac.uk

Recommended book

Chapter 13 of
Basics of Compiler Design
Torben Ægidius Mogensen
http://hjemmesider.diku.dk/~torbenm/Basics/

http://hjemmesider.diku.dk/~torbenm/Basics/

Notation

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Notation: programs, interpreters, machines

f

L L1

L2

L

A program

Computes function f
written in language L

An interpreter

Interprets language L2
written in language L1

A machine

Executes code
in language L

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Notation: compilers

C

A B

A compiler

Translates language A into language B
Written in language C

Examples

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Executing programs

To execute a program

we run it on a machine

To execute an interpreter

we run it on a machine

To execute a compiler

we run it on a machine

C

C

C

B

C

C

A B

C

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Interpreting a program

C

D

C

D

Run a program
written in language C

on an interpreter for C
written in language D

on a D machine

(Note: the languages must match)

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Interpreting a Java program

jbc

x86

jbc
jvm

x86

Run a program
written in Java byte code

on an interpreter for Java byte code
written in x86 code

on a x86 machine

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Running a compiler on an interpreter

C

A BA B

D

C

D

compile a program
in language A

into a program
in language B

using a compiler
written in language C

running on
an interpreter for C
written in language D

running on a D machine

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Running javac on the JVM

jbc

Java jbc
javac

Java jbc

x86

jbc
jvm

x86

compile a program
in Java

into a program
in Java byte code

using the javac compiler
written in Java byte code

running on the JVM
written in x86 code

running on an x86 machine

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Ahead-of-time compilation for Java

c++

jbc
jvm

x86

c++ x86
gcc

x86

x86

jbc
jvm

x86

jbc

Java jbc
javac

hello

Java

hello

jbc

jbc

jbc x86aot

x86

jbc
jvm

x86

hello

x86

x86

Thanks to David Greaves for the example

Compiling
compilers

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

A puzzle

The OCaml compiler
is written in OCaml

Puzzle: how was the compiler compiled?

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Translating translators

Compilers can be translated, just like any other program:

A

D C
dc.a

E

A B B

D C
dc.b

a compiler from D to C
in language A

a compiler from D to C
in language B

compile programs from A to B

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Porting a compiler to a new platform
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from ML to x86

that runs on x86arm

ML arm

x86

ML x86

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Porting a compiler to a new platform
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from ML to x86

that runs on x86arm

ML arm

x86

ML x86

1. write an ML-to-x86 compiler in ML
ML

ML x86

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Porting a compiler to a new platform
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from ML to x86

that runs on x86arm

ML arm

x86

ML x86

1. write an ML-to-x86 compiler in ML

2. compile the compiler for arm
ML

ML x86

arm

ML arm arm

ML x86

arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Porting a compiler to a new platform
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from ML to x86

that runs on x86arm

ML arm

x86

ML x86

1. write an ML-to-x86 compiler in ML

2. compile the compiler for arm

3. run the compiler on arm to compile itself

ML

ML x86

arm

ML x86 x86

ML x86

arm

Full bootstrap

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Half and full bootstraps

Previous example: half bootstrap (needs existing compiler for the language).
New example: full bootstrap (no existing ML compiler for the language)

We have:
a compiler from ML to arm

that runs on arm

We want:
a compiler from XL to arm

that runs on arm

arm

ML arm

arm

XL arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

ML

XL ML
qad

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

2. compile the QAD compiler for arm

ML

XL ML
qad

arm

ML arm arm

XL ML
qad

arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

2. compile the QAD compiler for arm

3. Write a real XL-to-arm compiler in XL
XL

XL armreal

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

2. compile the QAD compiler for arm

3. Write a real XL-to-arm compiler in XL

4. Use the QAD compiler to compile
the real compiler to ML

XL

XL armreal

arm

XL ML
qad

ML

XL armreal

arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

2. compile the QAD compiler for arm

3. Write a real XL-to-arm compiler in XL

4. Use the QAD compiler to compile
the real compiler to ML

5. Compile the resulting ML program to arm

ML

XL armreal

arm

ML arm arm

XL armreal

arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Full bootstrap
We have:

a compiler from ML to arm
that runs on arm

We want:
a compiler from XL to arm

that runs on armarm

ML arm

arm

XL arm

1. write a quick-and-dirty (QAD)
XL-to-ML compiler in ML

2. compile the QAD compiler for arm

3. Write a real XL-to-arm compiler in XL

4. Use the QAD compiler to compile
the real compiler to ML

5. Compile the resulting ML program to arm

6. Use the generated compiler to compile itself

XL

XL armreal

arm

XL armreal arm

XL armreal

arm

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Observations

The speed of the quick-and-dirty compiler does not matter much
(We could even use a quick-and-dirty interpreter instead)

We don’t need to give the quick-and-dirty compiler to users

Once the real compiler works,
we can discard the quick-and-dirty compiler altogether

Trusting trust

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Escaping characters

“The cutest program I ever wrote”
– Ken Thompson

(Reflections on Trusting Trust)
Aim: modify a compiler to compromise login

Warm up: teach a compiler about vertical tabs

C compilers have code to interpret escape sequences like \n in "Hello, world\n:
...
c = next ();
i f (c != '\\') r e tu rn c;
c = next ();
i f (c == '\\') r e tu rn '\\';
i f (c == 'n') r e tu rn '\n';
...

Q: how can we add support for vertical tabs \v?
(Assume the C compiler is bootstrapped.)

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Teaching the compiler about \v
Step 1: hard-code the ASCII code for \v in the compiler source:

c = next ();
i f (c == '\\') r e tu rn '\\';
i f (c == 'n') r e tu rn '\n';
i f (c == 'v') r e tu rn 11;
...

Recompile the compiler source using the installed C compiler:

C

C\v x86hardcode

x86

C x86C x86

C\v x86hardcode

x86

Now we have a C compiler that supports \v in C programs. Install it.

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

The compiler has learnt about \v
Step 2: modify the compiler source again to remove the hardcoded constant:

c = next ();
i f (c == '\\') r e tu rn '\\';
i f (c == 'n') r e tu rn '\n';
i f (c == 'v') r e tu rn '\v';
...

Recompile the modified source using the freshly installed C compiler:

C\v

C\v x86
escape-code

x86

C\v x86hardcode x86

C\v x86
escape-code

x86

The C compiler has learnt to translate \v (but there’s no record in the source!)

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Teaching the compiler to insert backdoors
Plan: repeat the process to compromise the login command.
Step 1: update the C compiler’s code to detect login.c and insert a bug:

vo id compile(const char *program) {
i f (matches(program , "< login code >") {

compile("< code for backdoor >");
}
...

Compile and install the new C compiler:

C

C x86
login-bug

x86

C x86C x86

C x86
login-bug

x86

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

Compromising login

Now the compiler will miscompile login:

x86

C x86
login-bug

login

C

loginbad

x86

x86

Problem: people will easily spot the bug in the compiler source.

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

The subterfuge
Step 2: update the C compiler code to detect compiler.c and insert a 2nd bug:

vo id compile(const char *program) {
i f (matches(program , "< login code >") {

compile("< code for backdoor >");
}
i f (matches(program , "< compiler code >") {

compile("< code for miscompilation >");
}

Compile and install the new C compiler:

C

C x86
subterfuge

x86

C x86C x86

C x86
subterfuge

x86

Finally: remove the bugs from the compiler source.

Notation

Examples

Compiling
compilers

Full
bootstrap

Trusting
trust

The compiler has learnt to insert backdoors

The compiler will still miscompile
login:

x86

C x86
subterfuge

login

C

loginbad

x86

x86

The compiler will now also miscompile
the compiler:

C

C x86

x86

C x86
subterfuge

x86

C x86
subterfuge

x86

The system is compromised, with no trace in the login or compiler source.
We need to debootstrap to recover an uncompromised compiler.

	Notation
	Examples
	Compiling compilers
	Full bootstrap
	Trusting trust

