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Terminal objects

1. A partial state transformer is a structure

𝑆
𝜎−→ 1 + 𝑆

in the category of sets.
A homomorphism of partial state transformers 𝑓 : (𝑆, 𝜎) → (𝑇, 𝜏) is a function 𝑓 : 𝑆 → 𝑇

such that the diagram
𝑆

𝜎 //

𝑓

��

1 + 𝑆
id1+𝑓
��

𝑇
𝜏
// 1 +𝑇

commutes; that is, for all 𝑠 ∈ 𝑆 ,

• if 𝜎 (𝑠) = 𝜄1( ) ∈ 1 + 𝑆 , then 𝜏 (𝑓 𝑠) = 𝜄1( ) ∈ 1 +𝑇 ;
• if 𝜎 (𝑠) = 𝜄2(𝑠′) ∈ 1 + 𝑆 , for 𝑠′ ∈ 𝑆 , then 𝜏 (𝑓 𝑠) = 𝜄2(𝑓 𝑠′) ∈ 1 +𝑇 .

Consider the category of partial state transformers and their homomorphisms, with composi-
tion and identities as for functions.
Construct a terminal object in the category of partial state transformers and prove its universal
property.

2. In a category with a terminal object 1, a morphism 𝑝 : 1→ 𝑋 is called a point or global element
of the object 𝑋 .
A category C with a terminal object 1 is said to be well-pointed if, for all objects 𝑋,𝑌 ∈ C, two
morphisms 𝑓 , 𝑔 : 𝑋 → 𝑌 in C are equal if their compositions with all points of 𝑋 are equal:

(∀𝑝 ∈ C(1, 𝑋 ), 𝑓 ◦ 𝑝 = 𝑔 ◦ 𝑝) ⇒ 𝑓 = 𝑔 (1)

(a) Show that Set is well-pointed.
(b) Is the opposite category Setop well-pointed?

[Hint: Observe that the left-hand side of the implication in (1) is vacuously true in the
case that C(1, 𝑋 ) is empty.]



Initial objects

1. A pointed state transformer is a structure

1 𝑠−→ 𝑆
𝜎−→ 𝑆

in the category of sets.
A morphism of pointed state transformers 𝑓 : (𝑆, 𝑠, 𝜎) → (𝑇, 𝑡, 𝜏) is a function 𝑓 : 𝑆 → 𝑇 such
that the diagram

𝑆
𝜎 //

𝑓

��

𝑆

𝑓

��
1

𝑠 77

𝑡 ''
𝑇

𝜏
// 𝑇

commutes.
Consider the category of pointed state transformers and their homomorphisms, with compo-
sition and identities as for functions.
Construct an initial object in the category of pointed state transformers and prove its universal
property.

Products

1. Let C be a category with binary products.

(a) For morphisms 𝑓 ∈ C(𝑋,𝑌 ), 𝑔1 ∈ C(𝑌, 𝑍1) and 𝑔2 ∈ C(𝑌, 𝑍2), show that

⟨𝑔1, 𝑔2⟩ ◦ 𝑓 = ⟨𝑔1 ◦ 𝑓 , 𝑔2 ◦ 𝑓 ⟩ ∈ C(𝑋,𝑍1 × 𝑍2)

(b) For morphisms 𝑓1 ∈ C(𝑋1, 𝑌1) and 𝑓2 ∈ C(𝑋2, 𝑌2), define

𝑓1 × 𝑓2 ≜ ⟨𝑓1 ◦ 𝜋1, 𝑓2 ◦ 𝜋2⟩ ∈ C(𝑋1 × 𝑋2, 𝑌1 × 𝑌2) (2)

For any 𝑔1 ∈ C(𝑍,𝑋1) and 𝑔2 ∈ C(𝑍,𝑋2), show that

(𝑓1 × 𝑓2) ◦ ⟨𝑔1, 𝑔2⟩ = ⟨𝑓1 ◦ 𝑔1, 𝑓2 ◦ 𝑔2⟩ ∈ C(𝑍,𝑌1 × 𝑌2)

(c) Show that the operation 𝑓1, 𝑓2 ↦→ 𝑓1 × 𝑓2 defined in (2) satisfies

(ℎ1 × ℎ2) ◦ (𝑘1 × 𝑘2) = (ℎ1 ◦ 𝑘1) × (ℎ2 ◦ 𝑘2)
id𝑋 × id𝑌 = id𝑋×𝑌

2. A pairing for a monoid (𝑀, •, 𝚤) consists of elements 𝑝1, 𝑝2 ∈ 𝑀 and a binary operation ⟨ , ⟩ :
𝑀 ×𝑀 → 𝑀 satisfying, for all 𝑥,𝑦, 𝑧 ∈ 𝑀 ,

𝑝1 · ⟨𝑥,𝑦⟩ = 𝑥

𝑝2 · ⟨𝑥,𝑦⟩ = 𝑦

⟨𝑝1, 𝑝2⟩ = 𝚤

⟨𝑥,𝑦⟩ · 𝑧 = ⟨𝑥 · 𝑧,𝑦 · 𝑧⟩

Given such a pairing, show that the monoid, when regarded as a one-object category, has
binary products.



3. LetC be a categorywith binary products × and a terminal object 1. Given objects𝑋,𝑌, 𝑍 ∈ C,
construct natural isomorphisms

𝛼𝑋,𝑌,𝑍 : (𝑋 × 𝑌 ) × 𝑍 � 𝑋 × (𝑌 × 𝑍 )
𝜆𝑋 : 1 × 𝑋 � 𝑋

𝜌𝑋 : 𝑋 × 1 � 𝑋

𝜏𝑋,𝑌 : 𝑋 × 𝑌 � 𝑌 × 𝑋

4. A category C is called locally finite if, for all 𝑋,𝑌 ∈ objC, the set of morphisms C(𝑋,𝑌 ) is
finite. C is said to be finite if it is both locally finite and objC is finite.

(a) Prove that any finite category with binary products is a pre-order; that is, there is at most
one morphism between any pair of objects.
[Hint: If 𝑓 , 𝑔 : 𝑋 → 𝑌 were distinct, use them to construct too large a number of mor-
phisms from𝑋 to the product𝑌𝑛 of𝑌 with itself 𝑛 ( > 0) times, for some suitable number
𝑛.]

(b) Is every locally finite category with binary products a pre-order? (Either prove it, or give
a counterexample.)

Coproducts

1. A monoid (𝑀, •, 𝚤) is said to be abelian (or commutative) if its multiplication is commutative:
∀𝑥,𝑦 ∈ 𝑀, 𝑥 • 𝑦 = 𝑦 • 𝑥 .
LetAbMon be the category whose objects are abelianmonoids andwhosemorphisms, identity
morphisms and composition are as inMon.

(a) Show that the product inMon of two abelian monoids gives their product in AbMon.
(b) Given𝑀1, 𝑀2 ∈ objAbMon define morphisms

𝜄1 ∈ AbMon(𝑀1, 𝑀1 ×𝑀2) and 𝜄2 ∈ AbMon(𝑀2, 𝑀1 ×𝑀2)

that make𝑀1 ×𝑀2 into a coproduct in AbMon.

2. In this question I use the notation 𝐴
inl𝐴,𝐵−−−−→ 𝐴 + 𝐵

inr𝐴,𝐵←−−−− 𝑌 for the coproduct of two objects 𝐴
and 𝐵 in a category, as it will be clearer to make explicit the objects 𝐴 and 𝐵 in the notation
for the associated coproduct injections, inl𝐴,𝐵 and inr𝐴,𝐵 .
A category C is distributive if it has all binary products and binary coproducts, and for all
𝑋,𝑌, 𝑍 ∈ objC, using the defining property of the coproduct

𝑋 × 𝑌
inl𝑋×𝑌,𝑋×𝑍−−−−−−−−−→ (𝑋 × 𝑌 ) + (𝑋 × 𝑍 )

inr𝑋×𝑌,𝑋×𝑍←−−−−−−−−− 𝑋 × 𝑍

the unique morphism

𝛿𝑋,𝑌,𝑍 : (𝑋 × 𝑌 ) + (𝑋 × 𝑍 ) → 𝑋 × (𝑌 + 𝑍 )



that makes the following diagram commute

𝑋 × 𝑌
inl𝑋×𝑌,𝑋×𝑍

��

id𝑋 ×inl𝑌,𝑍

**
(𝑋 × 𝑌 ) + (𝑋 × 𝑍 )

𝛿𝑋,𝑌,𝑍 // 𝑋 × (𝑌 + 𝑍 )

𝑋 × 𝑍

inr𝑋×𝑌,𝑋×𝑍

OO

id𝑋 ×inr𝑌,𝑍

44

is an isomorphism.

(a) Using the usual product and coproduct constructs in the category Set, show that it is a
distributive category.

(b) Give, with justification, an example of a category with binary products and coproducts
that is not distributive.

(c) If C is a distributive category and 0 is an initial object in C, prove that for all 𝑋 ∈ objC,
the unique morphism 0→ 𝑋 × 0 is an isomorphism.

Algebras

1. A monoid object in a cartesian category C is a structure

𝑀 ×𝑀 𝑚−→ 𝑀
𝑢←− 1

in C such that the following diagrams commute:

(𝑀 ×𝑀) ×𝑀
𝑚×id𝑀

��

𝛼𝑀,𝑀,𝑀
� // 𝑀 × (𝑀 ×𝑀) id𝑀×𝑚// 𝑀 ×𝑀

𝑚

��
𝑀 ×𝑀

𝑚
// 𝑀

(associativity)

1 ×𝑀

𝜆𝑀
�

%%

𝑢×id𝑀 // 𝑀 ×𝑀
𝑚

��

𝑀 × 1id𝑚×𝑢oo

𝜌𝑀
�

yy
𝑀

(left and right unit)

(a) Show that a monoid object in Set is equivalently a monoid.
(b) Define a notion of morphism between monoid objects in C such that for C = Set it is

equivalently the notion of monoid homomorphism.
(c) If 𝑀 = (𝑀, •, 𝚤) is an abelian monoid, show that the functions 𝑚 : 𝑀 × 𝑀 → 𝑀 and

𝑢 : 1→ 𝑀 defined by

𝑚(𝑥,𝑦) = 𝑥 • 𝑦 (𝑥,𝑦 ∈ 𝑀)
𝑢 ( ) = 𝚤

determine morphisms 𝑚 ∈ Mon(𝑀 × 𝑀,𝑀) and 𝑢 ∈ Mon(1, 𝑀). Show further that
(𝑀,𝑚,𝑢) is a monoid object inMon.
Show that every monoid object in Mon arises as above. [Hint: If necessary, search the
internet for “Eckmann-Hilton argument”.]


