# University of Cambridge 2024/25 Part II / Part III / MPhil ACS *Category Theory* Exercise Sheet 1 by Andrew Pitts and Marcelo Fiore

#### Sets

- 1. For a set *I* and an *I*-indexed family of sets  $\{X_i\}_{i \in I}$ , define their
  - (a) product  $\prod_{i \in I} X_i$  with projection functions  $\{\pi_k : \prod_{i \in I} X_i \to X_k\}_{k \in I}$ , and
  - (b) sum  $\sum_{i \in I} X_i$  with tagging functions  $\{\iota_k : X_k \to \sum_{i \in I} X_i\}_{k \in I}$ .
- (a) Show that for all functions between sets X ← Z → Y, there exists a unique function ⟨f,g⟩: Z → X × Y such that π<sub>1</sub> ∘ ⟨f,g⟩ = f and π<sub>2</sub> ∘ ⟨f,g⟩ = g. Generalise this statement from binary to *I*-indexed products.
  - (b) For functions f : A → X and g : B → Y, give an explicit description of the function f × g ≜ ⟨f ∘ π₁, g ∘ π₂⟩ : A × B → X × Y.
    Show that id<sub>A</sub>×id<sub>B</sub> = id<sub>A×B</sub> and that, for p : X → U and q : Y → V, (p×q) ∘ (f×g) = (p ∘ f) × (q ∘ g) : A × B → U × V.
- 3. (a) Show that for all functions between sets X → Z ← Y, there exists a unique function [f,g]: X + Y → Z such that [f,g] ∘ ι₁ = f and [f,g] ∘ ι₂ = g. Generalise this statement from binary to *I*-indexed sums.
  - (b) For functions f : A → X and g : B → Y, give and explicit description of the function f + g ≜ [l<sub>1</sub> ∘ f, l<sub>2</sub> ∘ g] : A + B → X + Y.
    Show that id<sub>A</sub> + id<sub>B</sub> = id<sub>A+B</sub> and that, for p : X → U and q : Y → V, (p + q) ∘ (f + g) = (p ∘ f) + (q ∘ g) : A + B → U + V.
- 4. (a) Show that the sets  $2 = \{0, 1\}$  and  $3 = \{0, 1, 2\}$  are not isomorphic; that is, there is no isomorphism between them.
  - (b) Why are the sets  $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$  (integers) and  $\mathbb{Q}$  (rational numbers) isomorphic?
- 5. Exhibit as many as possible isomorphisms as you can find between expressions built up from arbitrary sets *X*, *Y*, *Z*, the sets 1, 0, and the constructions  $\times$ ,  $\Rightarrow$ , +. For instance,  $(X \times Y) \times Z \cong X \times (Y \times Z)$ .
- 6. A function f : X → Y is *injective* whenever for all x, x' ∈ X, f(x) = f(x') implies x = x'.
  A function f : X → Y is a *monomorphism* whenever for every set Z and every pair of morphisms g, h : Z → X we have

$$f \circ g = f \circ h \implies g = h$$

Show that a function is injective if, and only if, it is a monomorphism.

7. A function  $f : X \to Y$  is surjective whenever for all  $y \in Y$  there exists  $x \in X$  such that f(x) = y.

A function  $f : X \to Y$  is an *epimorrphism* whenever for every set *Z* and every pair of morphisms  $g, h : Y \to Z$  we have

$$g \circ f = h \circ f \implies g = h$$

Show that a function is surjective if, and only if, it is an epimorphism.

### Monoids

1. Show that for all monoid (resp. group) homomorphisms between monoids (resp. groups)  $M_1 \stackrel{f_1}{\leftarrow} M \stackrel{f_2}{\rightarrow} M_2$ , there exists a unique monoid (resp. group) homomorphism  $\langle f_1, f_2 \rangle : M \rightarrow M_1 \times M_2$  such that  $\pi_1 \circ \langle f_1, f_2 \rangle = f_1$  and  $\pi_2 \circ \langle f_1, f_2 \rangle = f_2$ .

In diagrammatic form:



2. Consider the following monoids and homorphisms between them

$$\texttt{List}(X_1) \xrightarrow[]{\texttt{map}\,\iota_1} \texttt{List}(X_1 + X_2) \xleftarrow[]{\texttt{map}\,\iota_2} \texttt{List}(X_2)$$

Show that for all monoids M and monoid homomorphisms as follows

$$\text{List}(X_1) \xrightarrow{f_1} M \xleftarrow{f_2} \text{List}(X_2)$$

there exists a unique monoid homomorphism  $[f_1, f_2]$ : List $(X_1 + X_2) \rightarrow M$  such that

$$[f_1, g_1] \circ \max \iota_1 = f_1 \text{ and } [f_1, f_2] \circ \max \iota_2 = f_2$$

In diagrammatic form:



### Groups

- (a) Show that if (G, -, •, ı) and (G, -, •, ı') are groups, then ı = ı'.
   (b) Show that if (G, -, •, ı) and (G, -', •, ı) are groups, then = -'.
- An endofunction f : X → X is an *involution* whenever f ∘ f = id<sub>X</sub>.
   For a group (G, ¬, •, ı), show that ¬ is an involution.
- 3. For a group  $(G, \bar{}, \bullet, \iota)$ , show that:
  - (a) for all  $x, y \in G$ ,  $x \bullet y = i$  implies  $y = \overline{x}$  and  $x = \overline{y}$ ;
  - (b)  $\overline{\imath} = \imath$ ;
  - (c) for all  $x, y \in G$ ,  $\overline{(x \bullet y)} = \overline{y} \bullet \overline{x}$ .

## Universal problems

1. Let *X* be a set and consider a monoid  $\underline{F}X = (FX, \bullet_X, \iota_X)$  together with a function  $\varphi_X : X \to FX$ . Observe that  $\underline{F}X$  and  $\varphi_X$  are a solution to the problem of freely generating a monoid from the set *X* if, and only if, for all monoids  $\underline{M} = (M, \bullet, \iota)$  the function

$$_{-} \circ \varphi_X : \mathbf{Mon}(\underline{F}X, \underline{M}) \to \mathbf{Set}(X, M) : h \mapsto h \circ \varphi_X$$

is bijective.

Derive the following *proof technique*:

For all monoids  $\underline{M}$  and monoid homomorphisms  $f, g: \underline{F}X \to \underline{M}$ ,

 $f = g : FX \to M$  if, and only if,  $f \circ \varphi_X = g \circ \varphi_X : X \to M$ .

2. (a) For a set A, let  $s_A : A \to \text{List} A$  be the function given, for all  $a \in A$ , by

$$s_A(a) = [a] \triangleq (a :: nil)$$

Show that  $(\text{List} A, @_A, \text{nil}_A)$  and  $s_A : A \to \text{List} A$  are a solution to the problem of freely generating a monoid from the set A.

(b) For a function  $f : X \to Y$ , define the monoid homomorphism map  $f : List(X) \to List(Y)$  as

$$\operatorname{map} f \triangleq (\mathtt{s}_Y \circ f)^{\#}$$

Observe that, by definition, the diagram below commutes:

$$\begin{array}{c} X \xrightarrow{\mathbf{s}_X} \mathsf{List} X \\ f \\ \downarrow & \qquad \qquad \downarrow^{\mathsf{map}\,f} \\ Y \xrightarrow{\mathbf{s}_Y} \mathsf{List} Y \end{array}$$

Show that:

i. map  $id_X = id_{List(X)}$ , and

ii. for all functions  $f: X \to Y$  and  $g: Y \to Z$ ,  $map(g \circ f) = map g \circ map f$ . (c) Let

 $\operatorname{flat}_A \triangleq (\operatorname{id}_{\operatorname{List}(A)})^{\#} : \operatorname{List}(\operatorname{List} A) \to \operatorname{List}(A)$ 

Observe that, by definition, the diagram on the left below commutes

$$\begin{array}{c|c} \text{List}(A) & \xrightarrow{\mathbf{s}_{\text{List}(A)}} \text{List}(\text{List}(A)) & \text{List}(A) & \xrightarrow{\text{map}\,\mathbf{s}_A} \text{List}(\text{List}(A)) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Show that the diagram on the right above and the diagram below also commute.



[Hint: Use the above proof technique.]

3. Freely generating a monoid from a pointed set.

A *pointed set* is a structure  $\underline{X} = (X, x)$  consisting of a set X and an element  $x \in X$ . A pointedset homomorphism  $h : (X, x) \to (Y, y)$  between pointed sets is a function  $h : X \to Y$  such that h(x) = y.

Given a pointed set  $\underline{X} = (X, x)$ ,

(a) construct a monoid  $\underline{FX} = (F\underline{X}, \bullet_{\underline{X}}, \iota_{\underline{X}})$  and a pointed-set homomorphism  $\varphi_{\underline{X}} : (X, x) \to (F\underline{X}, \iota_{\underline{X}})$ 

such that

(a) for all monoids  $\underline{M} = (M, \bullet, \iota)$  and all pointed-set homomorphisms  $f : (X, x) \to (M, \iota)$ , there exists a unique monoid homomorphism  $f^{\#} : \underline{F} \underline{X} \to \underline{M}$  such that  $f^{\#} \circ \varphi_{\underline{X}} = f$ .

In diagrammatic form:

- 4. Given a set X,
  - (a) construct a group  $\underline{F}X = (FX, {}^{-X}, \bullet_X, \iota_X)$  and a function  $\varphi_X : X \to FX$

such that

(a) for all groups  $\underline{G} = (G, \bar{}, \bullet, \iota)$  and all functions  $f : X \to G$ , there exists a unique group homomorphism  $f^{\#} : \underline{F}X \to \underline{G}$  such that  $f^{\#} \circ \varphi_X = f$ .

In diagrammatic form:

$$X \xrightarrow{\varphi_X} FX \qquad \underline{FX}$$

$$\textcircled{@}_{\forall f} & \swarrow \\ G \qquad \textcircled{@}_{\forall g} \exists ! f^{\#}$$

## Categories

- 1. For  $f : X \to Y$  and  $g, h : Y \to X$ , show that if  $g \circ f = id_X$  and  $f \circ h = id_Y$  then g = h.
- 2. Let C be a category. A morphism  $f : X \to Y$  in C is called a *monomorphism*, if for every object  $Z \in C$  and every pair of morphisms  $g, h : Z \to X$  we have

$$f \circ g = f \circ h \implies g = h$$

It is called a *split monomorphism* if there is some morphism  $g : Y \to X$  with  $g \circ f = id_X$ , in which case we say that g is a *left inverse* for f.

- (a) Prove that every split monomorphism is a monomorphism.
- (b) Prove that if  $f : X \to Y$  and  $g : Y \to Z$  are monomorphisms then  $g \circ f : X \to Z$  is a monomorphism.
- (c) Prove that, for morphisms  $f : X \to Y$  and  $g : Y \to Z$ , if  $g \circ f$  is a monomorphism then f is a monomorphism.
- (d) Is every monomorphism in Set a split monomorphism?
- (e) Show that a split monomorphism can have more than one left inverse.
- 3. Let C be a category. A morphism  $f : X \to Y$  in C is called an *epimorphism*, if for every object  $Z \in C$  and every pair of morphisms  $g, h : Y \to Z$  we have

$$g \circ f = h \circ f \implies g = h$$

It is called a *split epimorphism* if there is some morphism  $g : Y \to X$  with  $f \circ g = id_Y$ , in which case we say that g is a *right inverse* for f.

- (a) Prove that every split epimorphism is an epimorphism.
- (b) Prove that if  $f : X \to Y$  and  $g : Y \to Z$  are epimorphisms then  $g \circ f : X \to Z$  is an epimorphism.
- (c) Prove that, for morphisms  $f : X \to Y$  and  $g : Y \to Z$ , if  $g \circ f$  is a epimorphism then g is an epimorphism.
- (d) Is every epimorphism in Set a split epimorphism?
- (e) Show that a split epimorphism can have more than one right inverse.

## Isomorphism

- 1. Let **Mat** be a category whose objects are the positive natural numbers and whose morphisms  $M \in Mat(m, n)$  are  $m \times n$  matrices with real number entries. If composition is given by matrix multiplication, what are the identity morphisms? Give an example of an isomorphism in **Mat** that is not an identity. Can two objects *m* and *n* be isomorphic in **Mat** if  $m \neq n$ ?
- 2. Let  $f : X \to Y$  and  $g : Y \to Z$  be morphisms in a category.
  - (a) Prove that if f and g are both isomorphisms, with inverses  $f^{-1}$  and  $g^{-1}$  respectively, then  $g \circ f$  is an isomorphism and its inverse is  $f^{-1} \circ g^{-1}$ .
  - (b) Prove that if f and  $g \circ f$  are both isomorphisms then so is g.
  - (c) If  $g \circ f$  is an isomorphism, does that necessarily imply that either of f or g are isomorphisms?
- 3. Give an example of a category containing a morphism that is both a monomorphism and an epimorphism, but not an isomorphism.