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Sets

1. For a set 𝐼 and an 𝐼 -indexed family of sets {𝑋𝑖 }𝑖∈𝐼 , define their

(a) product
∏

𝑖∈𝐼 𝑋𝑖 with projection functions { 𝜋𝑘 :
∏

𝑖∈𝐼 𝑋𝑖 → 𝑋𝑘 }𝑘∈𝐼 , and
(b) sum

∑
𝑖∈𝐼 𝑋𝑖 with tagging functions { 𝜄𝑘 : 𝑋𝑘 →

∑
𝑖∈𝐼 𝑋𝑖 }𝑘∈𝐼 .

2. (a) Show that for all functions between sets 𝑋
𝑓
←− 𝑍

𝑔
−→ 𝑌 , there exists a unique function

⟨𝑓 , 𝑔⟩ : 𝑍 → 𝑋 × 𝑌 such that 𝜋1 ◦ ⟨𝑓 , 𝑔⟩ = 𝑓 and 𝜋2 ◦ ⟨𝑓 , 𝑔⟩ = 𝑔.
Generalise this statement from binary to 𝐼 -indexed products.

(b) For functions 𝑓 : 𝐴 → 𝑋 and 𝑔 : 𝐵 → 𝑌 , give an explicit description of the function
𝑓 × 𝑔 ≜ ⟨𝑓 ◦ 𝜋1 , 𝑔 ◦ 𝜋2⟩ : 𝐴 × 𝐵 → 𝑋 × 𝑌 .
Show that id𝐴 × id𝐵 = id𝐴×𝐵 and that, for 𝑝 : 𝑋 → 𝑈 and 𝑞 : 𝑌 → 𝑉 , (𝑝 ×𝑞) ◦ (𝑓 ×𝑔) =
(𝑝 ◦ 𝑓 ) × (𝑞 ◦ 𝑔) : 𝐴 × 𝐵 → 𝑈 ×𝑉 .

3. (a) Show that for all functions between sets 𝑋
𝑓
−→ 𝑍

𝑔
←− 𝑌 , there exists a unique function

[𝑓 , 𝑔] : 𝑋 + 𝑌 → 𝑍 such that [𝑓 , 𝑔] ◦ 𝜄1 = 𝑓 and [𝑓 , 𝑔] ◦ 𝜄2 = 𝑔.
Generalise this statement from binary to 𝐼 -indexed sums.

(b) For functions 𝑓 : 𝐴 → 𝑋 and 𝑔 : 𝐵 → 𝑌 , give and explicit description of the function
𝑓 + 𝑔 ≜ [𝜄1 ◦ 𝑓 , 𝜄2 ◦ 𝑔] : 𝐴 + 𝐵 → 𝑋 + 𝑌 .
Show that id𝐴 + id𝐵 = id𝐴+𝐵 and that, for 𝑝 : 𝑋 → 𝑈 and 𝑞 : 𝑌 → 𝑉 , (𝑝 +𝑞) ◦ (𝑓 +𝑔) =
(𝑝 ◦ 𝑓 ) + (𝑞 ◦ 𝑔) : 𝐴 + 𝐵 → 𝑈 +𝑉 .

4. (a) Show that the sets 2 = {0, 1} and 3 = {0, 1, 2} are not isomorphic; that is, there is no
isomorphism between them.

(b) Why are the sets Z = {. . . ,−2,−1, 0, 1, 2, . . .} (integers) andQ (rational numbers) isomor-
phic?

5. Exhibit as many as possible isomorphisms as you can find between expressions built up from
arbitrary sets 𝑋,𝑌, 𝑍 , the sets 1, 0, and the constructions ×,⇒, +. For instance, (𝑋 ×𝑌 ) ×𝑍 �
𝑋 × (𝑌 × 𝑍 ).

6. A function 𝑓 : 𝑋 → 𝑌 is injective whenever for all 𝑥, 𝑥 ′ ∈ 𝑋 , 𝑓 (𝑥) = 𝑓 (𝑥 ′) implies 𝑥 = 𝑥 ′.

A function 𝑓 : 𝑋 → 𝑌 is a monomorphism whenever for every set 𝑍 and every pair of mor-
phisms 𝑔, ℎ : 𝑍 → 𝑋 we have

𝑓 ◦ 𝑔 = 𝑓 ◦ ℎ ⇒ 𝑔 = ℎ

Show that a function is injective if, and only if, it is a monomorphism.



7. A function 𝑓 : 𝑋 → 𝑌 is surjective whenever for all 𝑦 ∈ 𝑌 there exists 𝑥 ∈ 𝑋 such that
𝑓 (𝑥) = 𝑦.

A function 𝑓 : 𝑋 → 𝑌 is an epimorrphism whenever for every set 𝑍 and every pair of mor-
phisms 𝑔, ℎ : 𝑌 → 𝑍 we have

𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 ⇒ 𝑔 = ℎ

Show that a function is surjective if, and only if, it is an epimorphism.

Monoids

1. Show that for all monoid (resp. group) homomorphisms between monoids (resp. groups)

𝑀1
𝑓1←− 𝑀

𝑓2−→ 𝑀2, there exists a unique monoid (resp. group) homomorphism ⟨𝑓1, 𝑓2⟩ : 𝑀 →
𝑀1 ×𝑀2 such that 𝜋1 ◦ ⟨𝑓1, 𝑓2⟩ = 𝑓1 and 𝜋2 ◦ ⟨𝑓1, 𝑓2⟩ = 𝑓2.

In diagrammatic form:
𝑀1 ×𝑀2

𝜋1

zz

𝜋2

$$
𝑀1 𝑀2

𝑀

𝑓1

dd ⟨𝑓1,𝑓2 ⟩∃!

OO

𝑓2

::

2. Consider the following monoids and homorphisms between them

List(𝑋1)
map 𝜄1−−−−→ List(𝑋1 + 𝑋2)

map 𝜄2←−−−− List(𝑋2)

Show that for all monoids𝑀 and monoid homomorphisms as follows

List(𝑋1)
𝑓1−→ 𝑀

𝑓2←− List(𝑋2)

there exists a unique monoid homomorphism [𝑓1, 𝑓2] : List(𝑋1 + 𝑋2) → 𝑀 such that

[𝑓1, 𝑔1] ◦ map 𝜄1 = 𝑓1 and [𝑓1, 𝑓2] ◦ map 𝜄2 = 𝑓2

In diagrammatic form:

List(𝑋1 + 𝑋2)

∃! [ 𝑓1,𝑓2 ]

��

List(𝑋1)

map 𝜄1
77

𝑓1 ((

List(𝑋2)

map 𝜄2
gg

𝑓2vv
𝑀



Groups

1. (a) Show that if (𝐺, , •, 𝚤) and (𝐺, , •, 𝚤′) are groups, then 𝚤 = 𝚤′.
(b) Show that if (𝐺, , •, 𝚤) and (𝐺, ′, •, 𝚤) are groups, then =

′.

2. An endofunction 𝑓 : 𝑋 → 𝑋 is an involution whenever 𝑓 ◦ 𝑓 = id𝑋 .

For a group (𝐺, , •, 𝚤), show that is an involution.

3. For a group (𝐺, , •, 𝚤), show that:

(a) for all 𝑥,𝑦 ∈ 𝐺 , 𝑥 • 𝑦 = 𝚤 implies 𝑦 = 𝑥 and 𝑥 = 𝑦;
(b) 𝚤 = 𝚤;
(c) for all 𝑥,𝑦 ∈ 𝐺 , (𝑥 • 𝑦) = 𝑦 • 𝑥 .

Universal problems

1. Let𝑋 be a set and consider amonoid 𝐹𝑋 = (𝐹𝑋, •𝑋 , 𝚤𝑋 ) together with a function𝜑𝑋 : 𝑋 → 𝐹𝑋 .

Observe that 𝐹𝑋 and 𝜑𝑋 are a solution to the problem of freely generating a monoid from the
set 𝑋 if, and only if, for all monoids𝑀 = (𝑀, •, 𝚤) the function

◦ 𝜑𝑋 : Mon(𝐹𝑋,𝑀) → Set(𝑋,𝑀) : ℎ ↦→ ℎ ◦ 𝜑𝑋

is bijective.

Derive the following proof technique:

For all monoids𝑀 and monoid homomorphisms 𝑓 , 𝑔 : 𝐹𝑋 → 𝑀 ,

𝑓 = 𝑔 : 𝐹𝑋 → 𝑀 if, and only if, 𝑓 ◦ 𝜑𝑋 = 𝑔 ◦ 𝜑𝑋 : 𝑋 → 𝑀 .

2. (a) For a set 𝐴, let s𝐴 : 𝐴→ List𝐴 be the function given, for all 𝑎 ∈ 𝐴, by

s𝐴 (𝑎) = [𝑎] ≜ (𝑎 :: nil)

Show that (List𝐴,@𝐴, nil𝐴) and s𝐴 : 𝐴 → List𝐴 are a solution to the problem of
freely generating a monoid from the set 𝐴.

(b) For a function 𝑓 : 𝑋 → 𝑌 , define the monoid homomorphism map 𝑓 : List(𝑋 ) →
List(𝑌 ) as

map 𝑓 ≜ (s𝑌 ◦ 𝑓 )#

Observe that, by definition, the diagram below commutes:

𝑋

𝑓

��

s𝑋 // List𝑋

map 𝑓

��
𝑌 s𝑌

// List𝑌

Show that:
i. map id𝑋 = idList(𝑋 ) , and



ii. for all functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , map(𝑔 ◦ 𝑓 ) = map𝑔 ◦ map 𝑓 .
(c) Let

flat𝐴 ≜ (idList(𝐴) )# : List(List𝐴) → List(𝐴)

Observe that, by definition, the diagram on the left below commutes

List(𝐴)

idList(𝐴) ))

sList(𝐴) // List(List(𝐴))
flat𝐴
��

List(𝐴)

List(𝐴) map s𝐴 //

idList(𝐴) ))

List(List(𝐴))
flat𝐴
��

List(𝐴)

Show that the diagram on the right above and the diagram below also commute.

List(List(List(𝐴)))
flat𝐿𝑖𝑠𝑡 (𝐴)

��

map(flat𝐴 ) // List(List(𝐴))
flat𝐴
��

List(List(𝐴))
flat𝐴

// List(𝐴)

[Hint: Use the above proof technique.]

3. Freely generating a monoid from a pointed set.

A pointed set is a structure 𝑋 = (𝑋, 𝑥) consisting of a set 𝑋 and an element 𝑥 ∈ 𝑋 . A pointed-
set homomorphism ℎ : (𝑋, 𝑥) → (𝑌,𝑦) between pointed sets is a function ℎ : 𝑋 → 𝑌 such
that ℎ(𝑥) = 𝑦.

Given a pointed set 𝑋 = (𝑋, 𝑥),

(a) construct a monoid 𝐹 𝑋 = (𝐹𝑋, •𝑋 , 𝚤𝑋 ) and a pointed-set homomorphism 𝜑𝑋 : (𝑋, 𝑥) →
(𝐹𝑋, 𝚤𝑋 )

such that

(a) for all monoids 𝑀 = (𝑀, •, 𝚤) and all pointed-set homomorphisms 𝑓 : (𝑋, 𝑥) → (𝑀,𝚤),
there exists a unique monoid homomorphism 𝑓 # : 𝐹 𝑋 → 𝑀 such that 𝑓 # ◦ 𝜑𝑋 = 𝑓 .

In diagrammatic form:
(𝑋, 𝑥)

𝜑𝑋 //

2⃝∀ 𝑓 ((

4⃝s.t.

(𝐹𝑋, 𝚤𝑋 )

𝑓 #

��

𝐹 𝑋

3⃝∃! 𝑓 #
��

(𝑀,𝚤) 1⃝∀𝑀

4. Given a set 𝑋 ,

(a) construct a group 𝐹𝑋 = (𝐹𝑋, 𝑋 , •𝑋 , 𝚤𝑋 ) and a function 𝜑𝑋 : 𝑋 → 𝐹𝑋

such that

(a) for all groups 𝐺 = (𝐺, , •, 𝚤) and all functions 𝑓 : 𝑋 → 𝐺 , there exists a unique group
homomorphism 𝑓 # : 𝐹𝑋 → 𝐺 such that 𝑓 # ◦ 𝜑𝑋 = 𝑓 .



In diagrammatic form:
𝑋

𝜑𝑋 //

2⃝∀ 𝑓
&&

4⃝s.t.

𝐹𝑋

𝑓 #

��

𝐹𝑋

3⃝∃! 𝑓 #
��

𝐺 1⃝∀𝐺

Categories

1. For 𝑓 : 𝑋 → 𝑌 and 𝑔, ℎ : 𝑌 → 𝑋 , show that if 𝑔 ◦ 𝑓 = id𝑋 and 𝑓 ◦ ℎ = id𝑌 then 𝑔 = ℎ.

2. Let C be a category. A morphism 𝑓 : 𝑋 → 𝑌 in C is called amonomorphism, if for every object
𝑍 ∈ C and every pair of morphisms 𝑔, ℎ : 𝑍 → 𝑋 we have

𝑓 ◦ 𝑔 = 𝑓 ◦ ℎ ⇒ 𝑔 = ℎ

It is called a split monomorphism if there is some morphism 𝑔 : 𝑌 → 𝑋 with 𝑔 ◦ 𝑓 = id𝑋 , in
which case we say that 𝑔 is a left inverse for 𝑓 .

(a) Prove that every split monomorphism is a monomorphism.
(b) Prove that if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are monomorphisms then 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is a

monomorphism.
(c) Prove that, for morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , if 𝑔 ◦ 𝑓 is a monomorphism then 𝑓

is a monomorphism.
(d) Is every monomorphism in Set a split monomorphism?
(e) Show that a split monomorphism can have more than one left inverse.

3. Let C be a category. A morphism 𝑓 : 𝑋 → 𝑌 in C is called an epimorphism, if for every object
𝑍 ∈ C and every pair of morphisms 𝑔, ℎ : 𝑌 → 𝑍 we have

𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 ⇒ 𝑔 = ℎ

It is called a split epimorphism if there is some morphism 𝑔 : 𝑌 → 𝑋 with 𝑓 ◦𝑔 = id𝑌 , in which
case we say that 𝑔 is a right inverse for 𝑓 .

(a) Prove that every split epimorphism is an epimorphism.
(b) Prove that if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are epimorphisms then 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is an

epimorphism.
(c) Prove that, for morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , if 𝑔 ◦ 𝑓 is a epimorphism then 𝑔 is

an epimorphism.
(d) Is every epimorphism in Set a split epimorphism?
(e) Show that a split epimorphism can have more than one right inverse.



Isomorphism

1. Let Mat be a category whose objects are the positive natural numbers and whose morphisms
𝑀 ∈ Mat(𝑚,𝑛) are𝑚 ×𝑛 matrices with real number entries. If composition is given by matrix
multiplication, what are the identity morphisms? Give an example of an isomorphism inMat
that is not an identity. Can two objects𝑚 and 𝑛 be isomorphic in Mat if𝑚 ≠ 𝑛?

2. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be morphisms in a category.

(a) Prove that if 𝑓 and 𝑔 are both isomorphisms, with inverses 𝑓 −1 and 𝑔−1 respectively, then
𝑔 ◦ 𝑓 is an isomorphism and its inverse is 𝑓 −1 ◦ 𝑔−1.

(b) Prove that if 𝑓 and 𝑔 ◦ 𝑓 are both isomorphisms then so is 𝑔.
(c) If 𝑔 ◦ 𝑓 is an isomorphism, does that necessarily imply that either of 𝑓 or 𝑔 are isomor-

phisms?

3. Give an example of a category containing a morphism that is both a monomorphism and an
epimorphism, but not an isomorphism.


