
The Principle of Duality

Whenever one defines a concept / proves a theorem

in terms of commutative diagrams in a category C,

one obtains another concept / theorem, called its dual,

by reversing the direction or morphisms throughout,

that is, by replacing C by its opposite category Cop.

For example, “isomorphism” is a self-dual concept.

62

Initial object
(the dual notion to “terminal object”)

An object 0 of a category C is initial if for all - ∈ C,
there is a unique C-morphism 0→ - , which we write as
[]- : 0→ - .

So we have

{
∀- ∈ C, []- ∈ C(0, -)

∀- ∈ C,∀5 ∈ C(0, -), 5 = []-

(In particular, id0 = []0.)

NB: By duality, we have that initial objects are unique
up to unique isomorphism and that any object
isomorphic to an initial object is itself initial.

63

Examples of initial objects

◮ The empty set is initial in Set.

◮ Any singleton set has a uniquely determined
monoid structure and is initial inMon. (why?)

So initial and terminal objects coincide inMon

An object that is both initial and terminal in a category is called a

zero object.

◮ A preorder % = (%,⊑), regarded as a category C% ,
has an initial object iff it has a least element ⊥, that
is: ∀G ∈ %,⊥ ⊑ G .

64

Free monoids as initial objects

The free monoid on a set - is
List - = (List-,@, nil) where

List- = set of finite lists of elements of -
@ = list concatenation

nil = empty list

65

Free monoids as initial objects

The free monoid on a set - is
List - = (List-,@, nil) where

List- = set of finite lists of elements of -
@ = list concatenation

nil = empty list

The singleton-list function

s- : - → List-

G ↦→ [G] = G :: nil

has the following (initial) universal property . . .

65

Free monoids as initial objects
Theorem. For any monoid " = (", •, y) and function
5 : - → " , there is a unique monoid morphism
5 # ∈ Mon(List -,") making

-
s-

5

List-

5 #

"

commute in Set.

65

Free monoids as initial objects
Theorem. ∀" ∈ Mon,∀5 ∈ Set(-,"), ∃!5 # ∈ Mon(List -,"), 5 # ◦ s- = 5

The theorem just says that s- : - → List- is an initial
object in the category -/Mon:

◮ objects: (", 5) where " ∈ objMon and
5 ∈ Set(-,")

◮ morphisms in -/Mon(("1, 51) , ("2, 52)) are
ℎ ∈ Mon("1, "2) such that ℎ ◦ 51 = 52

◮ identities and composition as inMon

65

Free monoids as initial objects
Theorem. ∀" ∈ Mon,∀5 ∈ Set(-,"), ∃!5 # ∈ Mon(List -,"), 5 # ◦ s- = 5

The theorem just says that s- : - → List- is an initial
object in the category -/Mon:

So this “universal property” determines the monoid List- uniquely up to
isomorphism inMon.

We will see later that - ↦→ List- is part of a functor (= morphism of categories)
which is le� adjoint to the “forgetful functor”Mon→ Set : " ↦→ " .

65

Products

Problem: In a category, find a universal construction
specifying a product object - × . that internalises pairs
of generalised elements of objects - and . .

66

Products

Problem: In a category, find a universal construction
specifying a product object - × . that internalises pairs
of generalised elements of objects - and . .

That is,

� −→ - × .

� −→ - � −→ .

where the passage from top to bo�om is given by
projecting on the first and second components.

66

More precisely,

-
c1
←− - × .

c2
−→ .

such that

hom(�,- × .)
〈 c1◦ , c2◦ 〉

hom(�,-) × hom(�,.)

is an isomorphism.

67

Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that the following diagram commutes in
C: �

G ~
D

- %c1 c2
.

68

Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that
G = c1 ◦ D and ~ = c2 ◦ D

So (%, c1, c2) is a terminal object in the category with

◮ objects: (�, G,~) where -
G
←− �

~
−→ . in C

◮ morphisms 5 : (�1, G1,~1) → (�2, G2,~2) are 5 ∈ C(�1,�2) such that
G1 = G2 ◦ 5 and ~1 = ~2 ◦ 5

◮ composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to
(unique) isomophism.

68

Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that
G = c1 ◦ D and ~ = c2 ◦ D

N.B. products of objects in a category do not always exist. For example in the
category

0id0 1 id1

two objects, no non-identity morphisms

the objects 0 and 1 do not have a product, because there is no diagram of the
form 0← ?→ 1 in this category.

68

Notation for binary products

Assuming C has binary products of objects, the product
of -, . ∈ C is wri�en

-
c1
←− - × .

c2
−→ .

and given -
G
←− �

~
−→ . , the unique D : � → - × . with

c1 ◦D = G and c2 ◦ D = ~ is wri�en

〈G , ~〉 : � → - × .

69

Examples:

◮ In Set, category-theoretic products are given by the
usual cartesian product of sets (set of all ordered
pairs) and their projections:

- × . = {(G, ~) | G ∈ - ∧ ~ ∈ . }

c1(G,~) = G

c2(G,~) = ~

70

◮ In Mon, can take product of ("1, ·1, 41) and
("2, ·2, 42) to be

("1 ×"2, · , (41, 42))

product in Set
(G1, G2) · (~1, ~2) =
(G1 ·1 ~1, G2 ·2 ~2)

71

◮ In Mon, can take product of ("1, ·1, 41) and
("2, ·2, 42) to be

("1 ×"2, · , (41, 42))

product in Set
(G1, G2) · (~1, ~2) =
(G1 ·1 ~1, G2 ·2 ~2)

The projection functions "1
c1
←− "1 ×"2

c2
−→ "2 are

monoid morphisms for this monoid structure on
"1 ×"2 and have the universal property needed for
a product inMon (check).

71

◮ In Preord, we can take the product of (%1, ⊑1) and
(%2, ⊑2) to be

(%1 × %2, ⊑)

product in Set

(G1, G2) ⊑ (~1, ~2)
△

⇔

G1 ⊑1 ~1 ∧ G2 ⊑2 ~2

72

◮ In Preord, we can take the product of (%1, ⊑1) and
(%2, ⊑2) to be

(%1 × %2, ⊑)

product in Set

(G1, G2) ⊑ (~1, ~2)
△

⇔

G1 ⊑1 ~1 ∧ G2 ⊑2 ~2

The projection functions %1
c1
←− %1 × %2

c2
−→ %2 are

monotone for this preorder on %1 × %2 and have the
universal property needed for a product in Preord

(check).

72

◮ Recall that each preorder % = (%,⊑) determines a
category C% .
Given ?, @ ∈ % = objC% , the product ? × @ (if it
exists) is a greatest lower bound (or glb, or meet)
for ? and @ in % :
lower bound:
? × @ ⊑ ? ∧ ? × @ ⊑ @

greatest among all lower bounds:
∀ℓ ∈ %, ℓ ⊑ ? ∧ ℓ ⊑ @ ⇒ ℓ ⊑ ? × @

Notation: glbs are o�en wri�en ? ∧ @ or ? ⊓ @

73

Binary product of morphisms

Suppose a category C has binary products; that is,
for every pair of C-objects - and . there is a product

diagram -
c1
←− - × .

c2
−→ . .

Given 5 ∈ C(�,-) and 6 ∈ C(�,.), then

5 × 6 : � × � → - × .

stands for 〈5 ◦ c1 , 6 ◦ c2〉; that is, the unique morphism
D ∈ C(� × �,- × .) satisfying c1 ◦D = 5 ◦ c1 and
c2 ◦D = 6 ◦ c2.

74

Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.

75

Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.

Thus the coproduct of -,. ∈ C if it exists,

is a diagram -
]1
−→ - + .

]2
←− . with the

universal property:

∀ (-
5
−→ /

6
←− .),

∃! (- + .
[5 ,6]
−→ /),

5 = [5 , 6] ◦]1 ∧ 6 = [5 , 6] ◦]2

75

Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.

Thus the coproduct of -,. ∈ C if it exists,

is a diagram -
]1
−→ - + .

]2
←− . with the

universal property:

〈 ◦]1 , ◦]2〉 : C(-+., /)
�

−→ C(-, /)×C(., /)

75

Examples:

◮ In Set, the coproduct of - and .

-
]1
−→ - + .

]2
←− .

is given by their disjoint union (tagged sum)

- + . = {(1, G) | G ∈ - } ∪ {(2, ~) | ~ ∈ . }

]1(G) = (1, G)

]2(~) = (2, ~)

(prove this)

76

◮ Recall that each preorder % = (%,⊑) determines a
category C% .
Given ?, @ ∈ % = objC% , the coproduct ? + @ (if it
exists) is a least upper bound (or lub, or join)
for ? and @ in % :
upper bound:
? ⊑ ? + @ ∧ @ ⊑ ? + @

least among all upper bounds:
∀D ∈ %, ? ⊑ D ∧ @ ⊑ D ⇒ ? + @ ⊑ D

Notation: lubs are o�en wri�en ? ∨ @ or ? ⊔ @

77

Binary coproduct of morphisms

Suppose a category C has binary coproducts; that is,
for every pair of C-objects - and . there is a coproduct

diagram -
]1
−→ - + .

]2
←− . .

Given 5 ∈ C(�,-) and 6 ∈ C(�,.), then

5 + 6 : � + � → - + .

stands for []1 ◦ 5 ,]2 ◦ 6]; that is, the unique morphism
D ∈ C(� + �,- + .) satisfying D ◦]1 =]1 ◦ 5 and
D ◦]2 =]2 ◦ 6.

78

Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) - ⇒ . with generalised elements
corresponding to parameterised morphisms from - to . .

79

Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) - ⇒ . with generalised elements
corresponding to parameterised morphisms from - to . .

That is,
� −→ - ⇒ .

� ×- −→ .

where the passage from top to bo�om is given by
application.

79

More precisely,

app : (- ⇒ .) ×- → .

such that

hom(�,- ⇒ .)
app ◦(×id-)

hom(� × -,.)

is an isomorphism.

80

Exponential objects

Suppose a category C has binary products

An exponential for C-objects - and . is specified by
a C-object - ⇒ .

a C-morphism app : (- ⇒ .) × - → .

satisfying the universal property

for all� ∈ C and 5 ∈ C(� ×-, .), there is a unique

D ∈ C(�,- ⇒ .) such that (- ⇒ .) ×-
app

.

� × -

D×id-
5

commutes in C.

Notation: we write cur 5 for the unique D such that
app ◦(D × id-) = 5 .

81

Exponential objects

The universal property of app : (- ⇒ .) × - → . says
that there is a bijection

hom(�,- ⇒ .) � hom(� ×-, .)

6 ↦→ app ◦(6 × id-)

cur 5 ←[5

app ◦(cur 5 × id-) = 5

6 = cur(app ◦(6 × id-))

82

Exponential objects

The universal property of app : (- ⇒ .) × - → . says
that there is a bijection. . .
It also says that (- ⇒ ., app) is a terminal object in the following category:

◮ objects: (�, 5) where 5 ∈ C(� × -,.)

◮ morphisms 6 : (�, 5) → (�′, 5 ′) are 6 ∈ C(/,/ ′) such that
5 ′ ◦ (6 × id-) = 5

◮ composition and identities as in C.

So when they exist, exponential objects are unique up to (unique) isomorphism.

82

Example: Exponential objects in Set.

Given -,. ∈ Set, let (- ⇒ .) ∈ Set denote the set of all
functions from - to . .

Function application gives a morphism
app : (- ⇒ .) ×- → . in Set

app(5 , G) = 5 G (5 ∈ (- ⇒ .), G ∈ -)

The Currying operation transforms morphisms
5 : � ×- → . in Set to morphisms

cur 5 : � → - ⇒ . in Set

cur 5 2 G = 5 (2, G) (5 ∈ (- ⇒ .), 2 ∈ �, G ∈ -)

83

For each function 5 : � ×- → . we get a commutative
diagram in Set:

(- ⇒ .) × -
app

.

� ×-

cur 5 × id-
5

(cur 5 2, G) cur 5 2 G = 5 (2, G)

(2, G)

84

For each function 5 : � ×- → . we get a commutative
diagram in Set:

(- ⇒ .) ×-
app

.

� × -

cur 5 × id-
5

Furthermore, if any function 6 : � → - ⇒ . also
satisfies

(- ⇒ .) × -
app

.

� ×-

6× id-
5

then 6 = cur 5 , because of function extensionality.
84

Indeed,

app ◦(6 × id-) = 5

⇒ ∀(2, G) ∈ � × -, app(6 2, G) = 5 (2, G)

⇒ ∀G ∈ -,∀2 ∈ �,6 2 G = cur 5 2 G

⇒ ∀2 ∈ �,6 2 = cur 5 2

⇒ 6 = cur 5

85

Cartesian closed category
Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products, and
exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples:

◮ Set is a ccc — as we have seen.

◮ Preord is a ccc: we already saw that it has a terminal object and binary
products; the exponential of (%1,⊑1) and (%2,⊑2) is (%1 ⇒ %2,⊑) where

%1 ⇒ %2 , Preord((%1,⊑1), (%2,⊑2))

5 ⊑ 6
△

⇔ ∀G ∈ %1, 5 G ⊑2 6 G

(check that this is a pre-order and does give an exponential in Preord)

◮ DiGph(Set) is a ccc.

86

Bicartesian closed category
Definition. C is a bicartesian category if it is a category
with a terminal and initial object, and binary products
and coproducts of any pair of objects.

Definition. C is a bicartesian closed category (biccc) if
it is a bicartesian category with exponentials of any pair
of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples: Set, Preord, DiGph(Set) are bicccs.

87

