The Principle of Duality

Whenever one defines a concept / proves a theorem in terms of commutative diagrams in a category C, one obtains another concept / theorem, called its dual, by reversing the direction or morphisms throughout, that is, by replacing C by its opposite category C^{op} .

For example, "isomorphism" is a self-dual concept.

Initial object

(the dual notion to "terminal object")

An object 0 of a category C is initial if for all $X \in C$, there is a unique C-morphism $0 \to X$, which we write as $[]_X : 0 \to X]$.

So we have
$$\begin{cases} \forall X \in \mathbf{C}, \ []_X \in \mathbf{C}(0, X) \\ \forall X \in \mathbf{C}, \forall f \in \mathbf{C}(0, X), \ f = []_X \end{cases}$$
(In particular, id₀ = []₀.)

NB: By duality, we have that initial objects are unique up to unique isomorphism and that any object isomorphic to an initial object is itself initial.

Examples of initial objects

- The empty set is initial in **Set**.
- Any singleton set has a uniquely determined monoid structure and is initial in Mon. (why?)

So initial and terminal objects coincide in Mon An object that is both initial and terminal in a category is called a zero object.

► A preorder $\underline{P} = (P, \sqsubseteq)$, regarded as a category $C_{\underline{P}}$, has an initial object iff it has a least element \bot , that is: $\forall x \in P, \bot \sqsubseteq x$.

The free monoid on a set X is List X = (List X, @, nil) where

List X = set of finite lists of elements of X

(a) = list concatenation

nil = empty list

The free monoid on a set X is List X = (List X, @, nil) where

List X = set of finite lists of elements of X
 @ = list concatenation
 nil = empty list

The singleton-list function

 $s_X : X \rightarrow \text{List} X$ $x \mapsto [x] = x :: \text{nil}$

has the following (initial) universal property ...

Theorem. For any monoid $\underline{M} = (M, \bullet, \iota)$ and function $f: X \to M$, there is a unique monoid morphism $f^{\#} \in \operatorname{Mon}(\operatorname{List} X, \underline{M})$ making

commute in Set.

Theorem. $\forall \underline{M} \in \text{Mon}, \forall f \in \text{Set}(X, M), \exists ! f^{\#} \in \text{Mon}(\underline{\text{List}} X, \underline{M}), f^{\#} \circ s_X = f$

The theorem just says that $s_X : X \rightarrow \text{List } X$ is an initial object in the category X/Mon:

- objects: (\underline{M}, f) where $\underline{M} \in obj$ Mon and $f \in Set(X, M)$
- morphisms in $X/Mon((\underline{M}_1, f_1), (\underline{M}_2, f_2))$ are $h \in Mon(\underline{M}_1, \underline{M}_2)$ such that $h \circ f_1 = f_2$
- identities and composition as in Mon

Theorem. $\forall \underline{M} \in \mathbf{Mon}, \forall f \in \mathbf{Set}(X, M), \exists ! f^{\#} \in \mathbf{Mon}(\underline{\text{List}} X, \underline{M}), f^{\#} \circ \mathbf{s}_{X} = f$

The theorem just says that $s_X : X \rightarrow \text{List } X$ is an initial object in the category X/Mon:

So this "universal property" determines the monoid List X uniquely up to isomorphism in **Mon**.

We will see later that $X \mapsto \texttt{List} X$ is part of a functor (= morphism of categories) which is left adjoint to the "forgetful functor" **Mon** \rightarrow **Set** : $\underline{M} \mapsto M$.

Products

Problem: In a category, find a universal construction specifying a product object $X \times Y$ that internalises pairs of generalised elements of objects X and Y.

Products

Problem: In a category, find a universal construction specifying a product object $X \times Y$ that internalises pairs of generalised elements of objects X and Y.

That is,

$$\frac{C \longrightarrow X \times Y}{C \longrightarrow X \quad C \longrightarrow Y}$$

where the passage from top to bottom is given by projecting on the first and second components.

More precisely,

 $X \xleftarrow{\pi_1} X \times Y \xrightarrow{\pi_2} Y$

such that

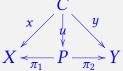
 $\hom(C, X \times Y) \xrightarrow{\langle \pi_1 \circ _, \pi_2 \circ _} \hom(C, X) \times \hom(C, Y)$

is an isomorphism.

Binary products

In a category C, a product for objects $X, Y \in C$ is a diagram $X \xleftarrow{\pi_1} P \xrightarrow{\pi_2} Y$ with the universal property:

For all $X \xleftarrow{x} C \xrightarrow{y} Y$ in C, there is a unique C-morphism $u: C \rightarrow P$ such that the following diagram commutes in C: C



Binary products

In a category C, a product for objects $X, Y \in C$ is a diagram $X \xleftarrow{\pi_1} P \xrightarrow{\pi_2} Y$ with the universal property:

For all $X \xleftarrow{x} C \xrightarrow{y} Y$ in C, there is a unique C-morphism $u: C \to P$ such that $x = \pi_1 \circ u$ and $y = \pi_2 \circ u$

So (P, π_1, π_2) is a terminal object in the category with

- objects: (C, x, y) where $X \xleftarrow{x} C \xrightarrow{y} Y$ in C
- ▶ morphisms $f : (C_1, x_1, y_1) \rightarrow (C_2, x_2, y_2)$ are $f \in C(C_1, C_2)$ such that $x_1 = x_2 \circ f$ and $y_1 = y_2 \circ f$
- composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to (unique) isomophism.

Binary products

In a category C, a product for objects $X, Y \in C$ is a diagram $X \xleftarrow{\pi_1} P \xrightarrow{\pi_2} Y$ with the universal property:

For all $X \xleftarrow{x} C \xrightarrow{y} Y$ in **C**, there is a unique **C**-morphism $u: C \to P$ such that $x = \pi_1 \circ u$ and $y = \pi_2 \circ u$

N.B. products of objects in a category do not always exist. For example in the category

the objects 0 and 1 do not have a product, because there is no diagram of the form $0 \leftarrow ? \rightarrow 1$ in this category.

Notation for binary products

Assuming C has binary products of objects, the product of $X, Y \in C$ is written

$$X \xleftarrow{\pi_1} X \times Y \xrightarrow{\pi_2} Y$$

and given $X \xleftarrow{x} C \xrightarrow{y} Y$, the unique $u : C \to X \times Y$ with $\pi_1 \circ u = x$ and $\pi_2 \circ u = y$ is written

$$\langle x, y \rangle : C \to X \times Y$$

Examples:

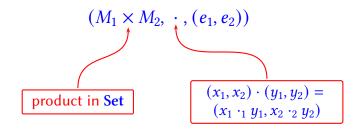
In Set, category-theoretic products are given by the usual cartesian product of sets (set of all ordered pairs) and their projections:

$$X \times Y = \{(x, y) \mid x \in X \land y \in Y\}$$
$$\pi_1(x, y) = x$$
$$\pi_2(x, y) = y$$

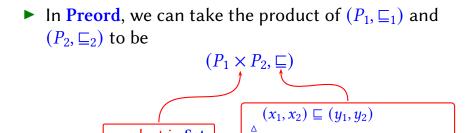
In Mon, can take product of (M₁, ·₁, e₁) and (M₂, ·₂, e₂) to be

 $(M_1 \times M_2, \cdot, (e_1, e_2))$ $(x_1, x_2) \cdot (y_1, y_2) = (x_1 \cdot_1 y_1, x_2 \cdot_2 y_2)$ product in Set

In Mon, can take product of (M₁, ·₁, e₁) and (M₂, ·₂, e₂) to be



The projection functions $M_1 \stackrel{\pi_1}{\leftarrow} M_1 \times M_2 \stackrel{\pi_2}{\rightarrow} M_2$ are monoid morphisms for this monoid structure on $M_1 \times M_2$ and have the universal property needed for a product in **Mon** (check).

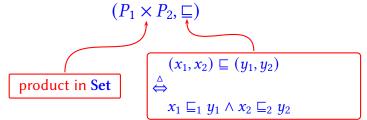


product in Set

 $\stackrel{\wedge}{\Leftrightarrow}$

 $x_1 \sqsubseteq_1 y_1 \wedge x_2 \sqsubseteq_2 y_2$

In Preord, we can take the product of (P₁, ⊑₁) and (P₂, ⊑₂) to be



The projection functions $P_1 \xleftarrow{\pi_1} P_1 \times P_2 \xrightarrow{\pi_2} P_2$ are monotone for this preorder on $P_1 \times P_2$ and have the universal property needed for a product in **Preord** (check).

Recall that each preorder <u>P</u> = (P, ⊑) determines a category C<u>P</u>.
 Given p, q ∈ P = obj C_P, the product p × q (if it exists) is a greatest lower bound (or glb, or meet) for p and q in <u>P</u>:
 lower bound:

 $p \times q \sqsubseteq p \land p \times q \sqsubseteq q$ greatest among all lower bounds: $\forall \ell \in P, \ \ell \sqsubseteq p \land \ell \sqsubseteq q \implies \ell \sqsubseteq p \times q$

Notation: glbs are often written $p \land q$ or $p \sqcap q$

Binary product of morphisms

Suppose a category C has binary products; that is, for every pair of C-objects X and Y there is a product diagram $X \xleftarrow{\pi_1} X \times Y \xrightarrow{\pi_2} Y$.

Given $f \in \mathbf{C}(A, X)$ and $g \in \mathbf{C}(B, Y)$, then

$$f \times g : A \times B \to X \times Y$$

stands for $\langle f \circ \pi_1, g \circ \pi_2 \rangle$; that is, the unique morphism $u \in \mathbb{C}(A \times B, X \times Y)$ satisfying $\pi_1 \circ u = f \circ \pi_1$ and $\pi_2 \circ u = g \circ \pi_2$.

Binary coproducts

A binary coproduct of two objects in a category C is their product in the category C^{op} .

Binary coproducts

A binary coproduct of two objects in a category C is their product in the category C^{op} .

Thus the coproduct of $X, Y \in \mathbb{C}$ if it exists, is a diagram $X \xrightarrow{\iota_1} X + Y \xleftarrow{\iota_2} Y$ with the universal property: $\forall (X \xrightarrow{f} Z \xleftarrow{g} Y),$ $\exists ! (X + Y \xrightarrow{[f,g]} Z),$ $f = [f,g] \circ \iota_1 \land g = [f,g] \circ \iota_2$

Binary coproducts

A binary coproduct of two objects in a category C is their product in the category C^{op} .

Thus the coproduct of $X, Y \in \mathbb{C}$ if it exists, is a diagram $X \xrightarrow{\iota_1} X + Y \xleftarrow{\iota_2} Y$ with the universal property: $\langle _\circ \iota_1, _\circ \iota_2 \rangle : \mathbb{C}(X+Y, Z) \xrightarrow{\cong} \mathbb{C}(X, Z) \times \mathbb{C}(Y, Z)$

Examples:

► In Set, the coproduct of *X* and *Y*

$$X \xrightarrow{\iota_1} X + Y \xleftarrow{\iota_2} Y$$

is given by their disjoint union (tagged sum)

 $X + Y = \{(1, x) \mid x \in X\} \cup \{(2, y) \mid y \in Y\}$ $\iota_1(x) = (1, x)$ $\iota_2(y) = (2, y)$

(prove this)

Recall that each preorder <u>P</u> = (P, ⊑) determines a category C<u>P</u>.
Given p, q ∈ P = obj C_P, the coproduct p + q (if it exists) is a least upper bound (or lub, or join) for p and q in <u>P</u>:
upper bound:
p ⊑ p + q ∧ q ⊑ p + q

least among all upper bounds:

 $\forall u \in P, \ p \sqsubseteq u \land q \sqsubseteq u \implies p + q \sqsubseteq u$ Notation: lubs are often written $p \lor q$ or $p \sqcup q$

77

Binary coproduct of morphisms

Suppose a category C has binary coproducts; that is, for every pair of C-objects X and Y there is a coproduct diagram $X \xrightarrow{\iota_1} X + Y \xleftarrow{\iota_2} Y$.

Given $f \in \mathbf{C}(A, X)$ and $g \in \mathbf{C}(B, Y)$, then

$$f + g : A + B \to X + Y$$

stands for $[\iota_1 \circ f, \iota_2 \circ g]$; that is, the unique morphism $u \in \mathbf{C}(A + B, X + Y)$ satisfying $u \circ \iota_1 = \iota_1 \circ f$ and $u \circ \iota_2 = \iota_2 \circ g$.

Exponentials

Problem: In a category with binary products, find a universal construction specifying an exponential object (or internal hom) $X \Rightarrow Y$ with generalised elements corresponding to parameterised morphisms from X to Y.

Exponentials

Problem: In a category with binary products, find a universal construction specifying an exponential object (or internal hom) $X \Rightarrow Y$ with generalised elements corresponding to parameterised morphisms from X to Y. That is,

 $\frac{C \longrightarrow X \Rightarrow Y}{C \times X \longrightarrow Y}$

where the passage from top to bottom is given by application.

More precisely,

$$\operatorname{app}: (X \Longrightarrow Y) \times X \to Y$$

such that

$$\hom(C, X \Longrightarrow Y) \xrightarrow{\operatorname{app}\circ(_\times \operatorname{id}_X)} \hom(C \times X, Y)$$

is an isomorphism.

Exponential objects

Suppose a category C has binary products An exponential for C-objects X and Y is specified by a C-object $X \Rightarrow Y$ a C-morphism app : $(X \Rightarrow Y) \times X \rightarrow Y$ satisfying the universal property for all $C \in \mathbf{C}$ and $f \in \mathbf{C}(C \times X, Y)$, there is a unique $u \in C(C, X \Rightarrow Y)$ such that $(X \Rightarrow Y) \times X$ $u \times \mathrm{id}_X$ $C \times X$ commutes in C.

Notation: we write $\operatorname{cur} f$ for the unique u such that $\operatorname{app} \circ (u \times \operatorname{id}_X) = f$.

Exponential objects

The universal property of app : $(X \Rightarrow Y) \times X \rightarrow Y$ says that there is a bijection

 $hom(C, X \Rightarrow Y) \cong hom(C \times X, Y)$ $g \mapsto app \circ (g \times id_X)$ $cur f \leftarrow f$ $app \circ (cur f \times id_X) = f$ $g = cur(app \circ (g \times id_X))$

Exponential objects

The universal property of app : $(X \Rightarrow Y) \times X \rightarrow Y$ says that there is a bijection...

It also says that $(X \Rightarrow Y, app)$ is a terminal object in the following category:

- objects: (C, f) where $f \in \mathbf{C}(C \times X, Y)$
- morphisms $g: (C, f) \to (C', f')$ are $g \in \mathbb{C}(Z, Z')$ such that $f' \circ (g \times id_X) = f$
- composition and identities as in C.

So when they exist, exponential objects are unique up to (unique) isomorphism.

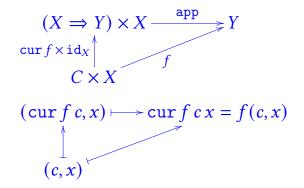
Example: Exponential objects in Set.

Given $X, Y \in$ **Set**, let $(X \Rightarrow Y) \in$ **Set** denote the set of all functions from *X* to *Y*.

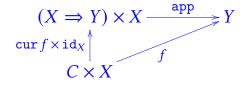
Function application gives a morphism app : $(X \Rightarrow Y) \times X \rightarrow Y$ in **Set**

app(f, x) = f x $(f \in (X \Rightarrow Y), x \in X)$

The Currying operation transforms morphisms $f: C \times X \to Y$ in Set to morphisms $\operatorname{cur} f: C \to X \Rightarrow Y$ in Set $\operatorname{cur} f c x = f(c, x)$ $(f \in (X \Rightarrow Y), c \in C, x \in X)$ For each function $f : C \times X \rightarrow Y$ we get a commutative diagram in Set:



For each function $f : C \times X \rightarrow Y$ we get a commutative diagram in Set:



Furthermore, if any function $g : C \rightarrow X \Rightarrow Y$ also satisfies

$$(X \Longrightarrow Y) \times X \xrightarrow{\text{app}} Y$$

$$g \times \operatorname{id}_X \uparrow f$$

$$C \times X$$

then $g = \operatorname{cur} f$, because of function extensionality.

Indeed,

 $\begin{aligned} \operatorname{app} \circ (g \times \operatorname{id}_X) &= f \\ \Rightarrow \forall (c, x) \in C \times X, \operatorname{app}(g c, x) = f(c, x) \\ \Rightarrow \forall x \in X, \forall c \in C, g c x = \operatorname{cur} f c x \\ \Rightarrow \forall c \in C, g c = \operatorname{cur} f c \\ \Rightarrow g = \operatorname{cur} f \end{aligned}$

Cartesian closed category

Definition. C is a cartesian closed category (ccc) if it is a category with a terminal object, binary products, and exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations of functional programming languages.

Examples:

- ▶ Set is a ccc as we have seen.
- ▶ **Preord** is a ccc: we already saw that it has a terminal object and binary products; the exponential of (P_1, \sqsubseteq_1) and (P_2, \sqsubseteq_2) is $(P_1 \Rightarrow P_2, \sqsubseteq)$ where

 $P_1 \Rightarrow P_2 \triangleq \mathbf{Preord}((P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2))$

$$f \sqsubseteq g \stackrel{\scriptscriptstyle \Delta}{\Leftrightarrow} \forall x \in P_1, \ f \ x \sqsubseteq_2 g \ x$$

(check that this is a pre-order and does give an exponential in Preord)

DiGph(Set) is a ccc.

Bicartesian closed category

Definition. C is a bicartesian category if it is a category with a terminal and initial object, and binary products and coproducts of any pair of objects.

Definition. C is a bicartesian closed category (biccc) if it is a bicartesian category with exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations of functional programming languages.

Examples: Set, Preord, DiGph(Set) are bicccs.