The Principle of Duality

Whenever one defines a concept / proves a theorem

in terms of commutative diagrams in a category C,
one obtains another concept / theorem, called its dual,
by reversing the direction or morphisms throughout,

that is, by replacing C by its opposite category C°P.

For example, “isomorphism” is a self-dual concept.

62



Initial object

(the dual notion to “terminal object”)

An object 0 of a category C is initial if for all X € C,
there is a unique C-morphism 0 — X, which we write as
[Ix:0— X|

VX € C, []x € C(0,X)
VX € C,Vf € C(0,X), f=[]x

(In particular, idy = []o.)

So we have {

NB: By duality, we have that initial objects are unique
up to unique isomorphism and that any object
isomorphic to an initial object is itself initial.
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Examples of initial objects

> The empty set is initial in Set.

> Any singleton set has a uniquely determined
monoid structure and is initial in Mon. (why?)

So initial and terminal objects coincide in Mon
An object that is both initial and terminal in a category is called a

zero object.

> A preorder P = (P,C), regarded as a category Cp,
has an initial object iff it has a least element L, that
is:Vx € P, 1L C x.
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Free monoids as initial objects
The free monoid on a set X is
List X = (List X, @,nil) where

List X = set of finite lists of elements of X
@ = list concatenation
nil = empty list
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Free monoids as initial objects
The free monoid on a set X is
List X = (List X, @,nil) where

List X = set of finite lists of elements of X
@ = list concatenation
nil = empty list

The singleton-list function

sy : X — ListX
x — [x] =x:nil

has the following (initial) universal property ...
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Free monoids as initial objects

Theorem. For any monoid M = (M, e,1) and function
f : X — M, there is a unique monoid morphism
f* € Mon(List X, M) making

X X ListX

o

commute in Set.
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Free monoids as initial objects

Theorem. YM € Mon, V[ € Set(X, M), 3! f* € Mon(List X, M), ffesx = f

The theorem just says that sy : X — List X is an initial
object in the category X /Mon:

> objects: (M, f) where M € obj Mon and
f € Set(X, M)
> morphisms in X/Mon((M,, f1), (M,, f2)) are

h € Mon(M,, M,) such that ho f; = f;
> identities and composition as in Mon
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Free monoids as initial objects

Theorem. VM € Mon,Yf € Set(X, M),3!f* € Mon(List X,M), ffosx = f

The theorem just says that sy : X — List X is an initial
object in the category X /Mon:

So this “universal property” determines the monoid List X uniquely up to
isomorphism in Mon.

We will see later that X — List X is part of a functor (= morphism of categories)
which is left adjoint to the “forgetful functor” Mon — Set : M — M.
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Products

Problem: In a category, find a universal construction
specifying a product object X X Y that internalises pairs
of generalised elements of objects X and Y.
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Products

Problem: In a category, find a universal construction
specifying a product object X X Y that internalises pairs
of generalised elements of objects X and Y.

That is,

C—o XXY
C—X C—Y

where the passage from top to bottom is given by
projecting on the first and second components.
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More precisely,
X xxy Dy
such that
hom(C, X X Y) M>hom(C, X) X hom(C,Y)

is an isomorphism.
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Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

Forall X & C- Yin C, there is a unique C-morphism
u : C — P such that the following diagram commutes in

C- C
7N

v
1 2
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Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

Forall X & C- Yin C, there is a unique C-morphism
u : C — P such that

x=mouandy=rmou

So (P, 71, m2) is a terminal object in the category with

> objects: (C, x,y) where X Pullfe) N YinC

> morphisms f : (Ci,x1,y1) = (Ca, x2,12) are f € C(Cy,C2) such that
x1=x2°ofandy; =ys0f
> composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to
(unique) isomophism.
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Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

Forall X & C- Yin C, there is a unique C-morphism
u : C — P such that
x=mouandy=rmou

N.B. products of objects in a category do not always exist. For example in the
category

i T
0&40 1\*~/1

two objects, no non-identity morphisms

the objects 0 and 1 do not have a product, because there is no diagram of the
form 0 «— ? — 1 in this category.
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Notation for binary products

Assuming C has binary products of objects, the product
of X, Y € C is written

1 9
X—XXY—>Y

and given X Ecd Y, the unique u : C — X X Y with
mou =x and my o u = y is written

(x,y):C—>XXY
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Examples:

> In Set, category-theoretic products are given by the
usual cartesian product of sets (set of all ordered
pairs) and their projections:

XxY={(xy) |xeXAyeY}
m(x,y) =x
m(x,y) =y
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» In Mon, can take product of (M, -1, e1) and
(M, -2, e) to be

(M; X M, -, (e1,e2))

product in Set

(xl ‘1 Y1, X2 2 yz)

(x1,%2) - (Y1,42) = |
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» In Mon, can take product of (M, -1, e1) and

(M, -5, €5) to be

(M; X Ma,

-, (e1,e2))

product in Set

(xhxz) : (yl,yz) =
(xl ‘1 Y1, X2 2 yz)

The projection functions M; i M; X M 2, M, are
monoid morphisms for this monoid structure on
M; X M, and have the universal property needed for

a product in Mon (check).
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> In Preord, we can take the product of (P;,C;) and

(Py,C5) to be

(Py X Py, C)

product in Set

(x1,x2) C (y1,92)
A
1=

x1Ciy1t Axa By
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> In Preord, we can take the product of (P;,C;) and
(P,, &) to be

(P1 X Pp,E)

(x1,x2) C (y1,92)
product in Set é

x1Ciy1t Axa By

The projection functions P; s P; X P, R P, are
monotone for this preorder on P; X P, and have the

universal property needed for a product in Preord
(check).
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> Recall that each preorder P = (P,C) determines a

category Cp.
Given p,q € P = obj Cp, the product p X q (if it
exists) is a greatest lower bound (or glb, or meet)
for pand g in P:
lower bound:

PXqEp AN pXqlq
greatest among all lower bounds:

VEeP, tCp N fEq = {CpXq

Notation: glbs are often written or
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Binary product of morphisms

Suppose a category C has binary products; that is,
for every pair of C-objects X and Y there is a product

diagram X Exxy Sy,

Given f € C(A,X) and g € C(B,Y), then

fXg:AXB—XXY

stands for (f o 71, g © m3); that is, the unique morphism
u € C(AX B, X xY) satisfying w1 cu = f o 1y and
Ty °U = g ° .
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Binary coproducts

A binary coproduct of two objects in a category C is
their product in the category C°P.
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Binary coproducts

A binary coproduct of two objects in a category C is
their product in the category C°P.

(Thus the coproduct of X, Y € Cif it exists,\
is a diagram X L X +Y & Y with the
universal property:
vixLz &y,

3 x+y 29 2)
. f=1fgleu Ag=1fglen
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Binary coproducts

A binary coproduct of two objects in a category C is
their product in the category C°P.

Thus the coproduct of X, Y € C if it exists,

is a diagram X 2 X +Y & Y with the
universal property:

(011, 1) : C(X+Y, Z) — C(X, Z)XC(Y, Z)
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Examples:

> In Set, the coproduct of X and Y
51 %)
X—>X+Y <Y
is given by their disjoint union (tagged sum)

X+Y={(Lx)|xeX}U{(2y) |yeY}
11(x) = (1,x)
1(y) = (2,y)

(prove this)

76



> Recall that each preorder P = (P,C) determines a

category Cp.
Given p,q € P = obj Cp, the coproduct p + g (if it
exists) is a least upper bound (or lub, or join)
for pand g in P:
upper bound:

pPEp+tq A qEptq
least among all upper bounds:

VueP, pCu AN qCu = p+qCu

Notation: lubs are often written or
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Binary coproduct of morphisms

Suppose a category C has binary coproducts; that is,
for every pair of C-objects X and Y there is a coproduct

diagram X LX+Y &Y.

Given f € C(A,X) and g € C(B,Y), then

f+9g:A+B—->X+Y

stands for [1; © f, 13 © g]; that is, the unique morphism
ue C(A+B, X +Y) satisfyinguoi =1 ¢ f and
Uoly =1Iy°4g.
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Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) X = Y with generalised elements
corresponding to parameterised morphisms from X to Y.
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Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) X = Y with generalised elements
corresponding to parameterised morphisms from X to Y.

That is,
C—X=Y

CxX —>Y

where the passage from top to bottom is given by
application.
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More precisely,

app: (X = Y) XX —>Y

such that

hom(C,X = Y)

is an isomorphism.

app (- xidx)

hom(C X X,Y)
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Exponential objects

Suppose a category C has binary products

An exponential for C-objects X and Y is specified by
a C-object X = Y
a C-morphismapp: (X = Y) XX - Y
satisfying the universal property
forallC e Cand f € C(C x X,Y), there is a unique
ueC(C,X = Y)suchthat (X = Y)xX— 22 .y

uxide f/

commutes in C. CxX

Notation: we write | cur f | for the unique u such that
appe(u X idy) = f. y




Exponential objects

The universal property of app : (X = Y) X X — Y says
that there is a bijection

hom(C,X = Y) = hom(C X X, Y)
g > app°(g X idy)
cur f « f
appe(cur f X idx) = f
g = cur(app (g X idx))
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Exponential objects

The universal property of app : (X = Y) X X — Y says
that there is a bijection...
It also says that (X = Y, app) is a terminal object in the following category:

> objects: (C, f) where f € C(C X X,Y)

> morphisms g : (C, f) — (C’, f") are g € C(Z,Z’) such that
fre(gxidx) = f

> composition and identities as in C.

So when they exist, exponential objects are unique up to (unique) isomorphism.
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Example: Exponential objects in Set.

Given X,Y € Set, let (X = Y) € Set denote the set of all
functions from X to Y.

Function application gives a morphism
app: (X = Y) XX — Yin Set

app(f,x) =fx  (fe(X=Y)xeX)

The Currying operation transforms morphisms
f:CxX — Yin Set to morphisms
cur f : C = X = Y in Set

cur fex = f(c,x) (fe(X=Y),ce(CxeX)

83



For each function f : C X X — Y we get a commutative
diagram in Set:

(X=>YV)xX—2 _y

cur f X idXT f/

CxX

(cur fe,x)——cur fcx = f(c,x)

| _—

(¢, x)
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For each function f : C X X — Y we get a commutative
diagram in Set:

(X=Y)xX—P2 vy
curfxidXT /
CxX

Furthermore, if any functiong: C — X = Y also
satisfies

(X=>Y)xX——2F vy
id

gxi XT f/
CxX

then g = cur f, because of function extensionality.
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Indeed,

appe(g x idy) = f
= V(c,x) € C X X, app(gc,x) = f(c,x)
= VxeX,VceC,gcx=cur fcx
= Vce(Cgc=curfec
= g=curf
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Cartesian closed category

Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products, and
exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples:

> Set is a ccc — as we have seen.

> Preord is a ccc: we already saw that it has a terminal object and binary
products; the exponential of (P1,C1) and (P2, C2) is (Py = P,,E) where

Py = P = Preord((P1,Cy), (P2, C2))
fEyg & Vx e€Py, fxCygx
(check that this is a pre-order and does give an exponential in Preord)

> DiGph(Set) is a ccc.
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Bicartesian closed category

Definition. C is a bicartesian category if it is a category
with a terminal and initial object, and binary products
and coproducts of any pair of objects.

Definition. C is a bicartesian closed category (biccc) if
it is a bicartesian category with exponentials of any pair
of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples: Set, Preord, DiGph(Set) are bicccs.
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