
Functors

morphisms of categories

129

Given categories C and D, a functor � : C→ D is
specified by:

◮ a function objC→ objD whose value at - is
wri�en � -

◮ for all -,. ∈ C, a function C(-,.) → D(� -, � .)

whose value at 5 : - → . is wri�en
� 5 : � - → � .

and which is required to preserve composition and
identity morphisms:

� (6 ◦ 5) = � 6 ◦ � 5

� (id-) = id� -

130

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2

131

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2

Similarly * : Preord→ Set.

131

Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �

132

Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �

Given a function 5 : �→ �, we get a function
� 5 : List�→ List� by mapping 5 over finite lists:

� 5 [01, . . . , 0=] = [5 01, . . . , 5 0=]

This gives a monoid morphism � �→ � �; and mapping over lists preserves
composition (� (6 ◦ 5) = � 6 ◦ � 5) and identities (� id� = id� �). So we do get a
functor from Set to Mon.

132

Examples of functors

If C is a category with binary products and - ∈ C, then
the function () ×- : objC→ objC extends to a
functor () ×- : C→ C mapping morphisms
5 : . → . ′ to

5 × id- : . ×- → . ′ × -

(
recall that 5 × 6 is the unique morphism with

{
c1 ◦ (5 × 6) = 5 ◦ c1

c2 ◦ (5 × 6) = 6 ◦ c2

)

since it is the case that{
id- × id. = id-×.

(5 ′ ◦ 5) × id- = (5 ′ × id-) ◦ (5 × id-)

133

Examples of functors

If C is a cartesian closed category and - ∈ C, then the
function ()- : objC→ objC extends to a functor

()- : C→ C mapping morphisms 5 : . → . ′ to

5 - , cur(5 ◦ app) : .- → . ′-

since it is the case that{
(id.)

-
= id.-

(6 ◦ 5)- = 6- ◦ 5 -

134

Contravariance
Given categories C and D, a functor � : Cop→ D is
called a contravariant functor from C to D.

Note that if -
5
−→ .

6
−→ / in C, then -

5
←− .

6
←− / in Cop

so � -
� 5
←−− � .

� 6
←−− � / in D and hence

� (6 ◦C 5) = � 5 ◦D � 6

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.

135

Example of a contravariant functor

If C is a cartesian closed category and - ∈ C, then the
function - () : objC→ objC extends to a functor

- () : Cop → C mapping morphisms 5 : . → . ′ to

- 5
, cur(app ◦(id-. ′ × 5)) : -

. ′ → -.

since it is the case that{
- id. = id-.

-6◦5 = - 5 ◦ -6

136

Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

-
5

ℎ.

6

/

�
↦→

� -
� 5

� ℎ=� (6◦5)=� 6◦� 5� .

� 6

� /

137

Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

-
5

id-

.

6
id.

-
5
.

�
↦→

� -
� 5

id� -

� .

� 6
id� .

� -
� 5

� .

so � (5 −1) = (� 5)−1

137

Composing functors

Given functors � : C→ D and� : D→ E, we get a
functor � ◦ � : C→ E with

� ◦ �
©­
«
-

5

.

ª®
¬
=

� (� -)

� (� 5)

� (� .)

(this preserves composition and identity morphisms, because � and � do)

138

Identity functor

on a category C is idC : C→ C where

idC
©­«
-

5

.

ª®¬
=

-

5

.

139

Functor composition and identity functors satisfy

associativity � ◦ (� ◦ �) = (� ◦�) ◦ �

unity idD ◦ � = � = � ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .

140

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.

141

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

�0 ∈ �1 ∈ �2 ∈ · · ·

where “big” means each�= is a Grothendieck universe. . .

141

Grothendieck universes

A Grothendieck universe � is a set of sets satisfying

◮ - ∈ . ∈ �⇒ - ∈ �

◮ -, . ∈ �⇒ {-, . } ∈ �

◮ - ∈ �⇒�- , {. | . ⊆ - } ∈ �

◮ � ∈ � ∧ � ∈ �� ⇒

{G | ∃8 ∈ �, G ∈ � 8} ∈ �

The above properties are satisfied by� = ∅, but we will always assume

◮ N ∈ �

142

Size

We assume

there is an infinite sequence �0 ∈ �1 ∈ �2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set= = category whose objects are all the sets in�= and
with Set= (-,.) = .

-
= all functions from - to . .

Notation: Set , Set0 — its objects are called small sets
(and other sets we call large).

143

Size

Set is the category of small sets.

Definition. A category C is locally small if for all
-,. ∈ C, the set of C-morphisms - → . is small;
that is, C(-,.) ∈ Set.

C is a small category if it is both locally small and
objC ∈ Set.

E.g. Set, Preord, and Mon are all locally small (but not small).

Given % ∈ Preord, the category C% it determines is small; similarly, the category
C" determined by" ∈ Mon is small.

144

The category of small categories, Cat

◮ objects are all small categories

◮ morphisms in Cat(C,D) are all functors C→ D

◮ composition and identity morphisms as for functors

Cat is a locally small category

145

Problem: Is Cat a bicartesian closed category?

146

Cat has an initial object

The empty category
(with no objects and no morphisms)

is initial in Cat.

147

Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:

148

Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:

◮ objects: obj(C + D) , obj(C) + obj(D)

◮ morphisms:

(C + D)
(
y1 (�), y2 (�

′)
)
, C(�,�′)

(C + D)
(
y2 (�), y2 (�

′)
)
, D(�, �′)

(C + D)
(
y1 (�), y2 (�)

)
, ∅

(C + D)
(
y2 (�), y1 (�)

)
, ∅

◮ composition and identity morphisms are given by those of C
(between objects tagged by]1) or D (between objects tagged
by]2)

148

◮ 

]1(�

5
−→ �′) , y1(�)

y1(5)
−−−→ y1(�

′)

]2(�
6
−→ �′) , y2(�)

y2(6)
−−−→ y1(�

′)

149

Cat has a terminal object

The category

∗ id∗

one object, one morphism

is terminal in Cat

150

Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:

151

Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:

◮ objects: obj(C × D) , obj(C) × obj(D)

◮ morphisms:

(C × D)
(
(�, �), (�′, �′)

)
, C(�,�′) × D(�, �′)

◮ composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)

151

◮ 


c1

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

5
−→ �′

c2

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

6
−→ �′

152

Cat has exponentials

Exponentials in Cat are called functor categories.

To define them we need to consider natural
transformations, which are the appropriate
notion of morphism between functors.

153

Natural transformations

Definition. Given categories and functors �,� : C→ D,
a natural transformation \ : � → � is a family of
D-morphisms \- ∈ D(� -,� -), one for each - ∈ C,
such that for all C-morphisms 5 : - → . , the diagram

� -
\-

� 5

� -

� 5

� .
\.

� .

commutes in D, that is, \. ◦ � 5 = � 5 ◦ \- .

154

Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)

155

Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)

Check naturality:

� 5 ◦ (i ◦ \)- , � 5 ◦ i- ◦ \-

= i. ◦� 5 ◦ \- naturality of i

= i. ◦ \. ◦ � 5 naturality of \

, (i ◦ \). ◦ � 5

155

Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id�)- = � -
id� -
−−−−→ � -

156

Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id�)- = � -
id� -
−−−−→ � -

Check naturality:

� 5 ◦ (id�)- , � 5 ◦ id� - = � 5 = id� . ◦ � 5 , (id�). ◦ � 5

156

Functor categories

It is easy to see that composition and identities for natural transformations
satisfy

(k ◦ i) ◦ \ = k ◦ (i ◦ \)

id� ◦ \ = \ ◦ id�

so that we get a category:

Definition. Given categories C and D, the functor

category DC has

◮ objects are all functors C→ D

◮ given �,� : C→ D, morphism from � to� in DC

are the natural transformations � → �

◮ composition and identity morphisms as above

157

If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value -) we also have that �, - ∈ � implies - � ∈ �.

158

If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value -) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � .)

C(-,.)

DC(�,�) ⊆
∏
-∈objCD(� -,� -)

158

If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value -) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � .)

C(-,.)

DC(�,�) ⊆
∏
-∈objCD(� -,� -)

Aim to show that functor category DC is the exponential of C and D in Cat . . .
158

Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Given (�,-) ∈ DC × C, we define

app(�,-) , � -

and given (\, 5) : (�, -) → (�,.) in DC × C, we define

app

(
(�,-)

(\,5)
−−−−→ (�,.)

)
, � -

� 5
−−→ � .

\.
−−→ � .

= � -
\-
−−→ � -

� 5
−−→ � .

Check:

{
app(id� , id-) = id� -

app(i ◦ \,6 ◦ 5) = app(i,6) ◦ app(\, 5)

159

Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Definition of currying: given functor � : E × C→ D, we get a functor
cur � : E→ DC as follows. For each / ∈ E, cur � / ∈ DC is the functor

cur � /
©­­­
«

-

5

- ′

ª®®®
¬
,

� (/,-)

� (id/ ,5)

� (/,- ′)

For each 6 : / → / ′ in E, cur � 6 : cur � / → cur � / ′ is the natural
transformation whose component at each - ∈ C is

(cur � 6)- , � (6, id-) : � (/,-) → � (/ ′, -)

(Check that this is natural in - ; and that cur � preserves composition and
identities in E.)

159

Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Have to check that cur � is the unique functor� : E→ DC that makes

E × C
�

�×idC

D

DC × C

app

commute in Cat (exercise).

159

