
Functors

morphisms of categories
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Given categories C and D, a functor � : C→ D is
specified by:

◮ a function objC→ objD whose value at - is
wri�en � -

◮ for all -,. ∈ C, a function C(-,. ) → D(� -, � . )

whose value at 5 : - → . is wri�en
� 5 : � - → � .

and which is required to preserve composition and
identity morphisms:

� (6 ◦ 5 ) = � 6 ◦ � 5

� (id- ) = id� -
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2

Similarly * : Preord→ Set.
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Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �
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Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �

Given a function 5 : �→ �, we get a function
� 5 : List�→ List� by mapping 5 over finite lists:

� 5 [01, . . . , 0=] = [5 01, . . . , 5 0=]

This gives a monoid morphism � �→ � �; and mapping over lists preserves
composition (� (6 ◦ 5 ) = � 6 ◦ � 5 ) and identities (� id� = id� �). So we do get a
functor from Set to Mon.
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Examples of functors

If C is a category with binary products and - ∈ C, then
the function ( ) ×- : objC→ objC extends to a
functor ( ) ×- : C→ C mapping morphisms
5 : . → . ′ to

5 × id- : . ×- → . ′ × -

(
recall that 5 × 6 is the unique morphism with

{
c1 ◦ (5 × 6) = 5 ◦ c1

c2 ◦ (5 × 6) = 6 ◦ c2

)

since it is the case that{
id- × id. = id-×.

(5 ′ ◦ 5 ) × id- = (5 ′ × id- ) ◦ (5 × id- )
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Examples of functors

If C is a cartesian closed category and - ∈ C, then the
function ( )- : objC→ objC extends to a functor

( )- : C→ C mapping morphisms 5 : . → . ′ to

5 - , cur(5 ◦ app) : .- → . ′-

since it is the case that{
(id. )

-
= id.-

(6 ◦ 5 )- = 6- ◦ 5 -
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Contravariance
Given categories C and D, a functor � : Cop→ D is
called a contravariant functor from C to D.

Note that if -
5
−→ .

6
−→ / in C, then -

5
←− .

6
←− / in Cop

so � -
� 5
←−− � .

� 6
←−− � / in D and hence

� (6 ◦C 5 ) = � 5 ◦D � 6

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and - ∈ C, then the
function - ( ) : objC→ objC extends to a functor

- ( ) : Cop → C mapping morphisms 5 : . → . ′ to

- 5
, cur(app ◦(id-. ′ × 5 )) : -

. ′ → -.

since it is the case that{
- id. = id-.

-6◦5 = - 5 ◦ -6
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Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

-
5

ℎ.

6

/

�
↦→

� -
� 5

� ℎ=� (6◦5 )=� 6◦� 5� .

� 6

� /
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Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

-
5

id-

.

6
id.

-
5
.

�
↦→

� -
� 5

id� -

� .

� 6
id� .

� -
� 5

� .

so � (5 −1) = (� 5 )−1
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Composing functors

Given functors � : C→ D and� : D→ E, we get a
functor � ◦ � : C→ E with

� ◦ �
©­
«
-

5

.

ª®
¬
=

� (� - )

� (� 5 )

� (� . )

(this preserves composition and identity morphisms, because � and � do)
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Identity functor

on a category C is idC : C→ C where

idC
©­«
-

5

.

ª®¬
=

-

5

.
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Functor composition and identity functors satisfy

associativity � ◦ (� ◦ � ) = (� ◦�) ◦ �

unity idD ◦ � = � = � ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

�0 ∈ �1 ∈ �2 ∈ · · ·

where “big” means each�= is a Grothendieck universe. . .
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Grothendieck universes

A Grothendieck universe � is a set of sets satisfying

◮ - ∈ . ∈ �⇒ - ∈ �

◮ -, . ∈ �⇒ {-, . } ∈ �

◮ - ∈ �⇒�- , {. | . ⊆ - } ∈ �

◮ � ∈ � ∧ � ∈ �� ⇒

{G | ∃8 ∈ �, G ∈ � 8} ∈ �

The above properties are satisfied by� = ∅, but we will always assume

◮ N ∈ �
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Size

We assume

there is an infinite sequence �0 ∈ �1 ∈ �2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set= = category whose objects are all the sets in�= and
with Set= (-,. ) = .

-
= all functions from - to . .

Notation: Set , Set0 — its objects are called small sets
(and other sets we call large).
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Size

Set is the category of small sets.

Definition. A category C is locally small if for all
-,. ∈ C, the set of C-morphisms - → . is small;
that is, C(-,. ) ∈ Set.

C is a small category if it is both locally small and
objC ∈ Set.

E.g. Set, Preord, and Mon are all locally small (but not small).

Given % ∈ Preord, the category C% it determines is small; similarly, the category
C" determined by" ∈ Mon is small.
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The category of small categories, Cat

◮ objects are all small categories

◮ morphisms in Cat(C,D) are all functors C→ D

◮ composition and identity morphisms as for functors

Cat is a locally small category
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Problem: Is Cat a bicartesian closed category?
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Cat has an initial object

The empty category
(with no objects and no morphisms)

is initial in Cat.
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Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:
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Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:

◮ objects: obj(C + D) , obj(C) + obj(D)

◮ morphisms:

(C + D)
(
y1 (�), y2 (�

′)
)
, C(�,�′)

(C + D)
(
y2 (�), y2 (�

′)
)
, D(�, �′)

(C + D)
(
y1 (�), y2 (�)

)
, ∅

(C + D)
(
y2 (�), y1 (�)

)
, ∅

◮ composition and identity morphisms are given by those of C
(between objects tagged by ]1) or D (between objects tagged
by ]2)
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◮ 

]1(�

5
−→ �′) , y1(�)

y1(5 )
−−−→ y1(�

′)

]2(�
6
−→ �′) , y2(�)

y2(6)
−−−→ y1(�

′)

149



Cat has a terminal object

The category

∗ id∗

one object, one morphism

is terminal in Cat
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Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:
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Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:

◮ objects: obj(C × D) , obj(C) × obj(D)

◮ morphisms:

(C × D)
(
(�, �), (�′, �′)

)
, C(�,�′) × D(�, �′)

◮ composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)
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◮ 


c1

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

5
−→ �′

c2

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

6
−→ �′
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Cat has exponentials

Exponentials in Cat are called functor categories.

To define them we need to consider natural
transformations, which are the appropriate
notion of morphism between functors.
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Natural transformations

Definition. Given categories and functors �,� : C→ D,
a natural transformation \ : � → � is a family of
D-morphisms \- ∈ D(� -,� - ), one for each - ∈ C,
such that for all C-morphisms 5 : - → . , the diagram

� -
\-

� 5

� -

� 5

� .
\.

� .

commutes in D, that is, \. ◦ � 5 = � 5 ◦ \- .
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Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)
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Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)

Check naturality:

� 5 ◦ (i ◦ \ )- , � 5 ◦ i- ◦ \-

= i. ◦� 5 ◦ \- naturality of i

= i. ◦ \. ◦ � 5 naturality of \

, (i ◦ \ ). ◦ � 5
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Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id� )- = � -
id� -
−−−−→ � -
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Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id� )- = � -
id� -
−−−−→ � -

Check naturality:

� 5 ◦ (id� )- , � 5 ◦ id� - = � 5 = id� . ◦ � 5 , (id� ). ◦ � 5
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Functor categories

It is easy to see that composition and identities for natural transformations
satisfy

(k ◦ i) ◦ \ = k ◦ (i ◦ \ )

id� ◦ \ = \ ◦ id�

so that we get a category:

Definition. Given categories C and D, the functor

category DC has

◮ objects are all functors C→ D

◮ given �,� : C→ D, morphism from � to� in DC

are the natural transformations � → �

◮ composition and identity morphisms as above
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � . )

C(-,. )

DC(�,�) ⊆
∏
-∈objCD(� -,� - )
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � . )

C(-,. )

DC(�,�) ⊆
∏
-∈objCD(� -,� - )

Aim to show that functor category DC is the exponential of C and D in Cat . . .
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Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Given (�,- ) ∈ DC × C, we define

app(�,- ) , � -

and given (\, 5 ) : (�, - ) → (�,. ) in DC × C, we define

app

(
(�,- )

(\,5 )
−−−−→ (�,. )

)
, � -

� 5
−−→ � .

\.
−−→ � .

= � -
\-
−−→ � -

� 5
−−→ � .

Check:

{
app(id� , id- ) = id� -

app(i ◦ \,6 ◦ 5 ) = app(i,6) ◦ app(\, 5 )
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Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Definition of currying: given functor � : E × C→ D, we get a functor
cur � : E→ DC as follows. For each / ∈ E, cur � / ∈ DC is the functor

cur � /
©­­­
«

-

5

- ′

ª®®®
¬
,

� (/,- )

� (id/ ,5 )

� (/,- ′)

For each 6 : / → / ′ in E, cur � 6 : cur � / → cur � / ′ is the natural
transformation whose component at each - ∈ C is

(cur � 6)- , � (6, id- ) : � (/,- ) → � (/ ′, - )

(Check that this is natural in - ; and that cur � preserves composition and
identities in E.)

159



Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Have to check that cur � is the unique functor� : E→ DC that makes

E × C
�

�×idC

D

DC × C

app

commute in Cat (exercise).
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