
Algorithms 2024/25: Tick 2
Your task is to implement a form of Doug Lea’s Malloc Algorithm in Java. The use-case is to
support a program that will use your implementation to create a single, long array of primitive
integers (type int[]), to be used by variable-sized chunks of integers that need to be allocated
within it. Doug Lea’s linked list pointers (prev/next) can be represented as the array indices where
neighbouring list cells begin.

Your class, Storage, will manage free/busy space within an array and offer three methods:

1. void initialise(int length) – should create a new int[] with the specified
length, and initialise any elements of the array that your solution needs to represent an
initially empty storage space (see slide “The free/busy list”). This method should throw an
OutOfMemoryException if it is unable to allocate an array of the specified size.

2. int malloc(int numInts) – provided initialise(..) has previously been called
on your Storage object, malloc(..) should find a large enough region within the array
to hold numInts-many integers (plus whatever overhead your linked list cells require), and
leave the remaining space in the array free for future allocations. The allocated space
should be marked as busy, preventing it from being used to satisfy future calls to
malloc(..). The method should return the array index where the allocated chunk begins
(N.B.: not the start of your linked list cell; the start of the space where the user can store
their numInts-many integers). If allocation was impossible, your method should return -1.

3. void free(int index) – given a (non-negative) index that was previously returned by
malloc(..), this method should mark the space as free, such that a future call to
malloc(..) can reuse the space (perhaps together with neighbouring free space) to
satisfy future allocation requests. (See slides “Freeing up memory: FREE(p) [1]” and “[2]”.)

Your implementation should not require any libraries or external code, and should succeed in
finding free space whenever it is reasonable to do so – e.g. you cannot mark the entire space as
busy, always return -1 from malloc(..), and expect to be awarded this tick!

What to submit:

1. Your Java implementation: a single Java source containing a class that implements the
interface provided. Helper functions are allowed and encouraged to make your code
readable! You may write unit tests and a class containing a main(String[]) function in
other files but are not asked to submit those.

Submit >> here << You may re-submit if you wish. The deadline is 12:00 on Fri 14 Mar 2025.

interface Algs202425Tick2 {
 void initialise(int length);
 int malloc(int numInts);
 void free(int index);
}
Save this ^^ into Algs202425Tick2.java, then write your solution in Storage.java:
public class Storage implements Algs202425Tick2 {...}

There is a starred tick available – read on!

Dr John Fawcett, Feb 2025

https://docs.google.com/forms/d/e/1FAIpQLSe0oBALSXRoUkG53707xsQ7OFmKzszCKaG8-hWjccoBmB-KNw/viewform?usp=dialog

Algorithms 2024/25: Tick 2
Tick 2*
Add the following lazy-update heuristic to your implementation.

Each cell in the linked list maintained by Doug Lea’s Malloc Algorithm should store the free/busy
status of the neighbouring chunks (in addition to what was already stored for Tick 2).

- When malloc(..) marks a chunk as busy, you do update the copies of its free/busy
status in the neighbouring cells.

- When free(..) marks a chunk as free, you do not update the copies of its free/busy
status in the neighbouring cells (which saves CPU cache misses), and you only merge with
previous/next chunks if your copy of their free/busy status tells you that they are free.

- As malloc(..) walks down the list, it updates any cell’s free/busy status flag for the
previous node if it does not match what it just saw as it walked over the previous node; and
it merges any adjacent free blocks.

What’s going on here? Because we lazily do not update the free/busy flags for the prev/next
chunks when freeing a chunk, they can become out-of-date and must only be used as a hint, not
as definitive knowledge of the status of the neighbours. In this case, a neighbour marked as ‘free’
really is free but a ‘busy’ neighbour could be either free or busy. While malloc(..) is walking
down the list, it corrects any stale free/busy flags it encounters along the way: this is ‘free’ because
the CPU data cache has already had to load the data in order to walk along the list.

Dr John Fawcett, Feb 2025

	Tick 2*

