Type Systems
Lecture 5: System F and Church Encodings

Neel Krishnaswami
University of Cambridge

System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types A = a| A=-B | Va. A
Terms e = X| M:Ae| ee | A.e | eA
Type Contexts © == - | ©,«
Term Contexts I == - | ILx:A
Judgement Notation
Well-formedness of types © - Atype

Well-formedness of term contexts | © - T ctx
Term typing O;f-e:A

Well-formedness of Types

a€0 © F Atype © F B type ©,a F Atype
© - «a type ©FA — Btype © F Va. A type

- Judgement © F A type checks if a type is well-formed

- Because types can have free variables, we need to check if a type is
well-scoped

Well-formedness of Term Contexts

Term Variable Contexts ' == - | Ix:A

© F T ctx © F Atype
© F - ctx ©FT,x:Actx

- Judgement © T type checks if a term context is well-formed

- We need this because contexts associate variables with types, and types now
have a well-formedness condition

Typing for System F

X:Ael
O;I-x:A
© F Atype ©;Nx:Ake:B O l'e:A—=B O;rFe:A
O;TFX:Ae:A—B O;T-ee:B
O,a;THe:B O;l'+e:Va.B © Atype
©;TFAa.e:Va.B O;f'-eA:|[A/a]B

- Note the presence of substitution in the typing rules!

Operational Semantics

Values v = M:A.e | Aa.e
/ /
— CONGFUN — CONGFUNARG
€0 €1~ €y ey Vo €1~ Vg €5
FUNEVAL

(M Ae)v~ [v/x]e

e~ e
———— CONGFORALL FORALLEVAL
eA~ e A (Aa.e)A~s [A/ale

The Bookkeeping

- Ultimately, we want to prove type safety for System F

- However, the introduction of type variables means that a fair amount of
additional administrative overhead is introduced

- This may look intimidating on first glance, BUT really it's all just about
keeping track of the free variables in types

- As a result, none of these lemmas are hard - just a little tedious

Structural Properties and Substitution for Types

1. (Type Weakening) If ©, 0" I- A type then ©, 3,0’ I- A type.
2. (Type Exchange) If ©, 8, v, ©’ - A type then ©,, 3,0’ F A type
3. (Type Substitution) If © - A type and ©, a - B type then © - [A/a]B type

- These follow the pattern in lecture 1, except with fewer cases

- Needed to handle the type application rule

Structural Properties and Substitutions for Contexts

1. (Context Weakening) If ©,0" - T ctx then ©,«, ©' T ctx
2. (Context Exchange) If ©,8,v,0" - T ctx then ©,~, 3,0 - T ctx
3. (Context Substitution) If © - A type and ©,a - T type then © - [A/a]l type

- This just lifts the type-level structural properties to contexts

+ Proof via induction on derivations of © I ctx

Regularity of Typing

Regularity: If© - T ctxand ©;T e : Athen © F A type
Proof: By induction on the derivation of ©;F e : A

- This just says if typechecking succeeds, then it found a well-formed type

Structural Properties and Substitution of Types into Terms

- (Type Weakening of Terms) If ©,©0’ T ctx and ©,©’;T - e : A then
0,a,0" TFe:A

- (Type Exchange of Terms) If ©,«, 3,0’ F T ctx and ©,a, 3,0";T e : A then
0,8,0,0 T e:A

- (Type Substitution of Terms) If ©,a - T ctxand © - A type and ©,a;T e : B
then ©;[A/a|l - [A/ale : [A/a]B.

10

Structural Properties and Substitution for Term Variables

- (Weakening for Terms) If @ - I, [’ ctx and © - B type and ©;T,[" I e : A then
O;My:BIMre:A

- (Exchange for Terms) If @ =T,y : B,z: C,I" ctxand ©;T,y: B,z: C,I" e : A,
then©;l,z:C,y:B,"Fe:A

- (Substitution of Terms) If©@ F M, x:Actxand ©;TFe:Aand ©;T,x :AF ¢ : B
then ©;T + [e/x]e’ : B.

1

- There are two sets of substitution theorems, since there are two contexts
- We also need to assume well-formedness conditions

- But proofs are all otherwise similar to the simply-typed case

12

Type Safety

Progress: If ;- - e : A then either e is a value ore ~ ¢’

Type preservation: If -;-Fe:Aand e~ e then ;- e’ : A

13

Progress: Big Lambdas

Proof by induction on derivations:
(2) 3)

w-Fe:Va.B - F Atype

(1) -FeA:[A/a]B Assumption
(4) e~ e oreisavalue Induction on (2)
Case on (&)
(5) Case e~ e :
(6) eA~s e'A by CONGFORALL on (5)
(7) Case e is a value:
(8) e=Aa.e By canonical forms on (2)
9) (Aa.€') A~ [A/ale By FORALLEVAL

Preservation: Big Lambdas

By induction on the derivation of e ~ ¢’

FORALLEVAL .
(1) (Aa.e)A~s [A/ale Assumption
(©)
—~
a-Fe:B (4)
—_———
- FAa.e:Va.B - Atype
(2) - F (Aa.e)A: [A/a]B Assumption

(5) --F[A/aJe:[A/a]B Type subst. on (3), (4)

15

Church Encodings: Representing Data with Functions

- System has the types Va.Aand A — B

- No booleans, sums, numbers, tuples or anything else
- Seemingly, there is no data in this calculus

- Surprisingly, it is unnecessary!

- Discovered in 1941 by Alonzo Church

- The idea:

1. Data is used to make choices
2. Based on the choice, you perform different results

3. So we can encode data as functions which take different possible results, and
return the right one

Church Encodings: Booleans

'k e: bool re:x ree”:x
[+ true : bool I+ false : bool I+ ifethen e elsee”: X

- Boolean type has two values, true and false
- Conditional switches between two X's based on e's value

Type Encoding

bool L2 VYaa—oa—a

True 2 A M a)y anx

False 2 A Ma dy:iay
A

if ethen e’ else e” : X exe' e

Evaluating Church conditionals

iftruethene’elsee”:A = trueAe' e’
= (N X:a.dy:a.x)Ae e
= (M:A Ny :Ax)e e
= (\:A¢€)e
_ e/

if false then e’ elsee”: A = falseAe' e’
= (A Xx:a.Ay:a.y)Ae e
= (M:A XAy e e
= (\:Ay)e
_ e//

Church Encodings: Pairs

Type Encoding

XxXY 2 Va.(X—=Y—a)—a
e,y & A dR:X—=Y—a.kee
fste £ eX(Wx:X.Ay:VY.X)
snde £ eY(M:XAy:VY.y)

Evaluating Church Pairs

fst(e,e’) = (e, &) X(M:X.Ay:Y.x)
= (A dAR:X—=Y—= a.kee) X (Ax: X Ay :Y.X)
= (AR:X=Y—=XRee)(Mx: X Ay:Y.x)
= (M: X Ay:Y.x)ee
= (\:Y.ee
e

snd{e,e’) = (e, &) Y(M: X Ay:VY.y)
= (A AR:X—=Y—= a.kee)Y(M: X Ay:VY.y)
= (AR:X=Y—=VY.Ree)(M: X Ay:VY.y)
= (M: X Ay:VY.y)ee
= (\:Y.y)e

e/ 20

Church Encodings: Sums

Type Encoding

X+Y Va.X—=a) = (Y= a) =«
Le N Af: X — a.Ag: Y — a.fe
Re AN Af: X —a.\g:Y—a.ge

case(e,Lx — e;,Ry — e) : Z

eZ(M:X—=2Ze) (N\y:Y—LZe)

21

Evaluating Church Sums

case(Le,Lx — e;,Ry — ey) : Z

=(Le)Z(M:X—=Ze) (\W:Y—Ze)

=N Mf: X—=a.Ag:Y— a.fe)
Z(M:X—=Ze)(\:Y—LZe)

=(NM:X—=2Z)Xg:Y—=Zfe)
(M:X—=Ze) (\W:Y—Ze)

=(Ag:Y—=>Z.(M:X—Zey)e)
(\:Y—Ze)

=(M:X—=>Ze)e

= [e/x]e

22

Church Encodings: Natural Numbers

Type Encoding
N Va.a = (o = a) = «
z N AZ: . As: o — .z
s(e) AN XZ:a.ds:a—a.S(eazs)

iter(e,z — e;,5(x) = es) : X eXe;(Mx: X es)

23

Evaluating Church Naturals

iter(z,z — ez, s(x) — es)
=zXe, (\x: X.es)
=(ANa.XZ:a.Xs:a— a.z)Xez (A : X.es)
=(AZ: X As: X = X.Z)e; (Mx: X es)
=(As: X = X.e;) (Ax: X es)
= eZ

2%

Evaluating Church Naturals

iter(s(e),z — ez,s(x) — es)
= (s(e)) Xe; (M\x: X.es)
=(Aw.\Z:a.Xs:a—a.s(eazs))Xe, (Ax: X es)
=(A: X As:X—=>X.s(eXzs))e;(Mx: X.es)
=(As: X = X.s(eXe;s))(Ax: X es)
= (M :X.es) (eXe;(Mx:X es)))
= (M : X.es) iter(e,z — ez, s(x) — es)
= [iter(e,z — ez, s(x) — es)/X]es

25

Church Encodings: Lists

Type Encoding

listX Va.a—-X—a—a)—a

(] A An:a. Xc: X —a—a.n

exe ANwin:a. X X—=a—ace(eanc

fold(e,[] = en,xir—ec):Z=eZey (M: X Ar:Z.e)

26

Conclusions

- System F is very simple, and very expressive
- Formal basis of polymorphism in ML, Java, Haskell, etc.

- Surprise: from polymorphism and functions, data is definable

27

Exercises

Prove the regularity lemma.
Define a Church encoding for the unit type.
Define a Church encoding for the empty type.

= @ N

Define a Church encoding for binary trees, corresponding to the ML datatype
type tree = Leaf | Node of tree x X * tree.

28

