Type Systems

Lecture 2: The Curry-Howard Correspondence

Neel Krishnaswami
University of Cambridge

Type Systems for Programming Languages

- Type systems lead a double life
- They are a fundamental concept from logic and proof theory

- They are an essential part of modern programming languages

Natural Deduction

- In the early part of the 20th century, mathematics grew very abstract

- As a result, simple numerical and geometric intuitions no longer seemed to
be sufficient to justify mathematical proofs (eg, Cantor’s proofs about infinite
sets)

- Big idea of Frege, Russell, Hilbert: what if we treated theorems and proofs as
ordinary mathematical objects?

- Dramatic successes and failures, but the formal systems they introduced
were unnatural — proofs didn't look like human proofs

- In 1933 (at age 23!) Gerhard Gentzen invented natural deduction

- “Natural” because the proof style is natural (with a little squinting)

Natural Deduction: Propositional Logic

What are propositions?

- T is a proposition
- PAQ s a proposition, if Pand Q are propositions
- L is a proposition
- PV Qs a proposition, if P and Q are propositions

- P D Qs a proposition, if P and Q are propositions

These are the formulas of propositional logic (i.e., no quantifiers of the form “for
all x, P(x)" or “there exists x, P(x)").

- Some claims follow (e.g. PAQ D> QA P).

- Some claims don’t. (e.g, T D 1)

- We judge which propositions hold, and which don’t with judgements
- In particular, “P true” means we judge P to be true.

- How do we justify judgements? With inference rules!

Truth and Conjunction

Tl

T true

P true Q true
P A Q true

Al

P AQ true PAQ true
— NE AE;
P true Q true

Implication

- To prove P D Q in math, we assume P and prove Q

- Therefore, our notion of judgement needs to keep track of assumptions as
well!

- So we introduce W P true, where W is a list of assumptions

- Read: “Under assumptions W, we judge P true”

Pew V. Pk Qtrue VEPDAQtrue YV Ptrue
—— Hyp Dl DE
V= Ptrue Vi P>DAQtrue V- Qtrue

Disjunction and Falsehood

VI Ptrue VI Q true
— VI — Vb
VEPVQtrue VEPVQtrue

V= PVvAQtrue V. P+ Rtrue Vv, QF Rtrue

VU R true

VE

VI | true
. - IF
(no intro for 1) U+ R true

(PVQ)DR,PF Ptrue
(PVQ)DR,P-(PVQ)DRtrue (PVQ)DR,PFPVQtrue
(PVQ)DR,PERtrue
(PVQ)DREPDRtrue
(PVQ)DRE(PDR)A(QDR)true
“F((PVQ)DR)D((PDR)A(QDR))true

The Typed Lambda Calculus

Types X o= 1| XxXY |0 |X+Y | X=Y

Terms e == x| () | (e,e) | fste | snde

abort | Le | Re | case(e,Lx — €¢',Ry —¢€")
M:X.e | eée

] Fyxe X

|
|
Contexts I =

A typing judgement is of the form ' e: X.

Units and Pairs

— 1
M=) 1

Me: X rFeée':y
M (e, e):XxY

X|

[Fe: XxY Fe: XxY
— xk — Xk
-fste: X Fsnde:Y

10

Functions and Variables

x:Xerl Mx:Xke:Y lFe:X—Y r-e :x
— HypP —1 —E
MEx:X NEX:Xe: X—=Y FFee Yy

1

Sums and the Empty Type

MN-e: X M-e:Y

— 4 —
M-Le:X+Y [-Re:X+Y

NFe: X+Y Mx:Xke:z ry:Yre':z

+E
I+ case(e,Lx — e Ry —e"):Z

N-e:0

— 0OE
(no intro for 0) I+ aborte: Z

12

M:(X+Y) = Z (X f(Lx), Ay : Y. f(Ry))

((X—I—Y)—>Z)—>(.X—>Z)><(Y—>Z)

You may notice a similarity here...!

13

The Curry-Howard Correspondence, Part 1

Logic Programming
Formulas Types

Proofs Programs

Truth Unit

Falsehood Empty type
Conjunction Pairing/Records
Disjunction Tagged Union
Implication Functions

Something missing: language semantics?

Operational Semantics of the Typed Lambda Calculus

Values v == () | (vW) | :A.e | Lv | Rv

The transition relation is e ~ €/, pronounced “e steps to e'".

15

Operational Semantics: Units and Pairs

(no rules for unit)

eq«»eﬁ €2M€/2

(e1,e2) ~ (€],) (1, €2) ~ (v1,€3) fst (vi,v2) ~ v

snd <V1,V2> ~ V>

e~ e e~ e

fste ~» fste snde ~» snd e

Operational Semantics: Void and Sums

e~ e

aborte ~ aborte’

e~ e e~ e

Le~ Lé Re~ Re

e~ e

case(e,Lx — e1,Ry — ;) ~ case(e’,Lx — e;,Ry —)

case(Lv,Lx — e;,Ry — e) ~ [v/X]e; case(Rv,Lx — e, Ry — e3) ~ [v/y]ex

Operational Semantics: Functions

e~ e ey~ e

e1e;~ e e Vi €~ vy €

(M : X.e)v~ [v/x]e

Five Easy Lemmas

1. (Weakening) If I, " Fe: XthenT,z: Z, " e: X

2. (Exchange) If I,y :Y,z: Z,"e:XthenT,z: Zy: Y,["Fe:X
3. (Substitution) If T =e: Xand I, x: XF e :YthenT - [e/x]e’ : V.
4. (Progress) If - - e : X then e is a value, or e ~ €.

5. (

Preservation) If - e : Xand e~ ¢, then -+ e’ : X.

Proof technique similar to previous lecture. But what does it mean, logically?

Two Kinds of Reduction Step

Congruence Rules Reduction Rules
e~ @
(e1,€2) ~ (€],) fst (vy, V) ~ vy
e; ~ @,
vies ~ vi e (Mx: X.e)v~ [v/x]e

- Congruence rules recursively act on a subterm
- Controls evaluation order

- Reduction rules actually transform a term
- Actually evaluates!

20

A Closer Look at Reduction

Let's look at the function reduction case:
(M X.e)v~ [v/X]e

|
.

EXMXcXe: X—=Y -Fv:X
F (M Xev:Y

—E

- Reducible term = intro immediately followed by an elim

- Evaluation = removal of this detour

21

All Reductions Remove Detours

fst (v, v2) ~ v snd (v, v2) ~ vy

case(Lv,Lx — e;,Ry — e) ~ [v/x]e; case(Rv,Lx — e, Ry — e3) ~ [v/y]ex

(M X.e)v~ [v/X]e

Every reduction is of an introduction followed by an eliminator!

22

Values as Normal Forms

Values v == () | (vwwW) | :A.e | Lv | Rv

- Note that values are introduction forms

- Note that values are not reducible expressions

- So programs evaluate towards a normal form

- Choice of which normal form to look at it determined by evaluation order

23

Logic

Formulas
Proofs
Truth
Falsehood
Conjunction
Disjunction
Implication
Normal form
Proof normalization
Normalization strategy

The Curry-Howard Correspondence, Continued

Programming

Types
Programs
Unit
Empty type
Pairing/Records
Tagged Union
Functions
Value
Evaluation
Evaluation order

24

The Curry-Howard Correspondence is Not an Isomorphism

The logical derivation:

P,PF Ptrue P,PF Ptrue
P,PEPAPtrue

has 4 type-theoretic versions:

XX,y o XEOGX) X x X x: X,y XE(y,Y) : X x X

XXy XEXGY) X x X x: Xy XE(y,x) : X x X

25

Exercises

For the 1, — fragment of the typed lambda calculus, prove type safety.

1. Prove weakening.
2. Prove exchange.
3. Prove substitution.
4. Prove progress.
5.

Prove type preservation.

26

