Type Systems for Programming Languages

- Type systems lead a double life
- They are an essential part of modern programming languages
- They are a fundamental concept from logic and proof theory
- As a result, they form the most important channel for connecting theoretical computer science to practical programming language design.
What are type systems used for?

- Error detection via *type checking*
- Support for structuring large (or even medium) sized programs
- Documentation
- Efficiency
- Safety
A Language of Booleans and Integers

Terms \(e \ ::= \) true | false | \(n \) | \(e \leq e \) | \(e + e \) | \(e \land e \) | \(\neg e \)

Some terms make sense:

\begin{itemize}
 \item 3 + 4
 \item 3 + 4 \leq 5
 \item (3 + 4 \leq 7) \land (7 \leq 3 + 4)
\end{itemize}

Some terms don’t:

\begin{itemize}
 \item 4 \land true
 \item 3 \leq true
 \item true + 7
\end{itemize}
Types for Booleans and Integers

Types \(\tau \ ::= \) bool | \(\mathbb{N} \)

Terms \(e \ ::= \) true | false | \(n \) | \(e \leq e \) | \(e + e \) | \(e \land e \)

• How to connect term (like \(3 + 4 \)) with a type (like \(\mathbb{N} \))?
• Via a typing judgement \(e : \tau \)
• A two-place relation saying that “the term \(e \) has the type \(\tau \)”
• So \(_ : _ \) is an infix relation symbol
• How do we define this?
Typing Rules

- Above the line: premises
- Below the line: conclusion
An Example Derivation Tree

\[
\begin{array}{c}
\text{3 : } \mathbb{N} \\
\hline
\text{4 : } \mathbb{N} \\
\hline
3 + 4 : \mathbb{N} \\
\hline
\text{5 : } \mathbb{N} \\
\hline
3 + 4 \leq 5 : \text{bool}
\end{array}
\]
Adding Variables

Types \(\tau ::= \) bool \mid \mathbb{N} \\
Terms \(e ::= \ldots \mid x \mid \text{let } x = e \text{ in } e' \)

- Example: let \(x = 5 \) in \((x + x) \leq 10\)
- But what type should \(x \) have: \(x : ? \)
- To handle this, the typing judgement must know what the variables are.
- So we change the typing judgement to be \(\Gamma \vdash e : \tau \), where \(\Gamma \) associates a list of variables to their types.
Contexts

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[\begin{align*}
\Gamma & \vdash n : N \\
\Gamma & \vdash \text{true} : \text{bool} \\
\Gamma & \vdash \text{false} : \text{bool}
\end{align*} \]

\[\begin{align*}
\Gamma & \vdash e : N \\
\Gamma & \vdash e' : N
\end{align*} \]

\[\Gamma \vdash e + e' : N \]

\[\begin{align*}
\Gamma & \vdash e : \text{bool} \\
\Gamma & \vdash e' : \text{bool}
\end{align*} \]

\[\Gamma \vdash e \land e' : \text{bool} \]

\[\begin{align*}
\Gamma & \vdash e : N \\
\Gamma & \vdash e' : N
\end{align*} \]

\[\Gamma \vdash e \leq e' : \text{bool} \]

\[\begin{align*}
\Gamma & \vdash x : \tau \\
\Gamma & \vdash x : \tau
\end{align*} \]

\[\Gamma \vdash \text{let } x = e \text{ in } e' : \tau' \]

\[\begin{align*}
\Gamma & \vdash x : \tau
\end{align*} \]
Does this make sense?

- We have: a type system, associating elements from one grammar (the terms) with elements from another grammar (the types)
- We *claim* that this rules out “bad” terms
- But does it really?
- To prove, we must show *type safety*
We have introduced variables into our language, so we should introduce a notion of substitution as well:

\[
\begin{align*}
[e/x]\text{true} & = \text{true} \\
[e/x]\text{false} & = \text{false} \\
[e/x]n & = n \\
[e/x](e_1 + e_2) & = [e/x]e_1 + [e/x]e_2 \\
[e/x](e_1 \leq e_2) & = [e/x]e_1 \leq [e/x]e_2 \\
[e/x](e_1 \land e_2) & = [e/x]e_1 \land [e/x]e_2 \\
[e/x]z & = \begin{cases} e & \text{when } z = x \\ z & \text{when } z \neq x \end{cases} \\
[e/x](\text{let } z = e_1 \text{ in } e_2) & = \text{let } z = [e/x]e_1 \text{ in } [e/x]e_2 \quad (\ast) \end{align*}
\]

\((\ast)\) α-rename to ensure \(z\) does not occur in \(e\)!
1. (Weakening) If \(\Gamma, \Gamma' \vdash e : \tau \) then \(\Gamma, x : \tau'', \Gamma' \vdash e : \tau \). If a term typechecks in a context, then it will still typecheck in a bigger context.

2. (Exchange) If \(\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e : \tau \) then \(\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash e : \tau \). If a term typechecks in a context, then it will still typecheck after reordering the variables in the context.

3. (Substitution) If \(\Gamma \vdash e : \tau \) and \(\Gamma, x : \tau \vdash e' : \tau' \) then \(\Gamma \vdash [e/x]e' : \tau' \). Substituting a type-correct term for a variable will preserve type correctness.
A Proof of Weakening

- Proof goes by *structural induction*
- Suppose we have a derivation tree of $\Gamma, \Gamma' \vdash e : \tau$
- By case-analysing the root of the derivation tree, we construct a derivation tree of $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$, assuming inductively that the theorem works on subtrees.
Proving Weakening, 1/4

\[\Gamma, \Gamma' \vdash n : \mathbb{N} \]

By assumption

\[\frac{}{\Gamma, x : \tau'', \Gamma' \vdash n : \mathbb{N}} \text{Num} \]

By rule Num

• Similarly for TRUE and FALSE rules
Proving Weakening, 2/4

\[
\frac{\Gamma, \Gamma' \vdash e_1 : \mathbb{N} \quad \Gamma, \Gamma' \vdash e_2 : \mathbb{N}}{\Gamma, \Gamma' \vdash e_1 + e_2 : \mathbb{N}} \quad \text{PLUS}
\]

By assumption

Subderivation 1

Subderivation 2

Induction on subderivation 1

Induction on subderivation 2

By rule PLUS

• Similarly for LEQ and AND rules
Proving Weakening, 3/4

\[
\frac{\Gamma, \Gamma' \vdash e_1 : \tau_1 \quad \Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2} \quad \text{LET}
\]

By assumption

\[
\begin{align*}
\Gamma, \Gamma' &\vdash e_1 : \tau_1 \\
\Gamma, \Gamma', z : \tau_1 &\vdash e_2 : \tau_2 \\
\Gamma, x : \tau'', \Gamma' &\vdash e_1 : \tau_1
\end{align*}
\]

Subderivation 1

Subderivation 2

Induction on subderivation 1

Extended context

\[
\begin{align*}
\Gamma, x : \tau'', \quad \Gamma', z : \tau_1 &\vdash e_2 : \tau_2 \\
\Gamma, x : \tau'', \Gamma' &\vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2
\end{align*}
\]

Induction on subderivation 2

By rule LET
\[
\frac{z : \tau \in \Gamma, \Gamma'}{
\Gamma, \Gamma' \vdash z : \tau}
\]
\text{VAR} \quad \text{By assumption}

\text{By assumption}

An element of a list is also in a bigger list

\text{By rule VAR}
Proving Exchange, 1/4

\[
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash n : \mathbb{N} \quad \text{By assumption}
\]

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash n : \mathbb{N} \quad \text{By rule Num}
\]

• Similarly for TRUE and FALSE rules
\[
\frac{
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 : \mathbb{N} \quad \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_2 : \mathbb{N}
}{
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 + e_2 : \mathbb{N}
}\quad \text{PLUS}
\]

By assumption

\[
\begin{align*}
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' & \vdash e_1 : \mathbb{N} & \text{Subderivation 1} \\
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' & \vdash e_2 : \mathbb{N} & \text{Subderivation 2} \\
\Gamma, x_2 : \tau_2, x_1 : \tau_1, , \Gamma' & \vdash e_1 : \mathbb{N} & \text{Induction on subderivation 1} \\
\Gamma, x_2 : \tau_2, x_1 : \tau_1, , \Gamma' & \vdash e_2 : \mathbb{N} & \text{Induction on subderivation 2} \\
\Gamma, x_2 : \tau_2, x_1 : \tau_1, , \Gamma' & \vdash e_1 + e_2 : \mathbb{N} & \text{By rule PLUS}
\end{align*}
\]

\[\cdot \text{ Similarly for LEQ and AND rules}\]
Proving Exchange, 3/4

\[
\frac{\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 : \tau' \quad \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma', z : \tau' \vdash e_2 : \tau''}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau''} \quad \text{LET}
\]

By assumption

\[
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e_1 : \tau' \quad \text{Subderivation 1}
\]

\[
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma', z : \tau' \vdash e_2 : \tau'' \quad \text{Subderivation 2}
\]

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash e_1 : \tau' \quad \text{Induction on s.d. 1}
\]

Extended context

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma', z : \tau_1 \vdash e_2 : \tau'' \quad \text{Induction on s.d. 2}
\]

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau'' \quad \text{By rule LET}
\]
\[
\frac{z : \tau \in \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma'}{\Gamma, \Gamma' \vdash z : \tau \quad \text{VAR}}
\]

By assumption

\[
z : \tau \in \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma'
\]

By assumption

\[
z : \tau \in \Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma'
\]

An element of a list is also in a permutation of the list

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash z : \tau
\]

By rule VAR
Proof also goes by *structural induction*

Suppose we have derivation trees $\Gamma \vdash e : \tau$ and $\Gamma, x : \tau \vdash e' : \tau'$.

By case-analysing the root of the derivation tree of $\Gamma, x : \tau \vdash e' : \tau'$, we construct a derivation tree of $\Gamma \vdash [e/x]e' : \tau'$, assuming inductively that substitution works on subtrees.
\[\Gamma, x : \tau \vdash n : \mathbb{N} \quad \text{By assumption} \]
\[\Gamma \vdash e : \tau \quad \text{By assumption} \]
\[\Gamma \vdash n : \mathbb{N} \quad \text{By rule Num} \]
\[\Gamma \vdash [e/x]n : \mathbb{N} \quad \text{Def. of substitution} \]

• Similarly for TRUE and FALSE rules
\[\Gamma, x : \tau \vdash e_1 : \mathbb{N} \quad \Gamma, x : \tau \vdash e_2 : \mathbb{N} \]

\[\Gamma, x : \tau \vdash e_1 + e_2 : \mathbb{N} \quad \text{By assumption: (1)} \]

\[\Gamma \vdash e : \tau \quad \text{By assumption: (2)} \]

\[\Gamma, x : \tau \vdash e_1 : \mathbb{N} \quad \text{Subderivation of (1): (3)} \]

\[\Gamma, x : \tau \vdash e_2 : \mathbb{N} \quad \text{Subderivation of (1): (4)} \]

\[\Gamma \vdash [e/x]e_1 : \mathbb{N} \quad \text{Induction on (2), (3): (5)} \]

\[\Gamma \vdash [e/x]e_2 : \mathbb{N} \quad \text{Induction on (2), (4): (6)} \]

\[\Gamma \vdash [e/x](e_1 + e_2) : \mathbb{N} \quad \text{By rule PLUS on (5), (6)} \]

\[\Gamma \vdash [e/x](e_1 + e_2) : \mathbb{N} \quad \text{Def. of substitution} \]

• Similarly for LEQ and AND rules
\[
\frac{
\Gamma, x : \tau \vdash e_1 : \tau' \\
\Gamma, x : \tau, z : \tau' \vdash e_2 : \tau_2
}{
\Gamma, x : \tau \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2
}\]

\[\text{LET}\]

By assumption: (1)

\[
\begin{align*}
\Gamma & \vdash e : \tau \\
\Gamma, x : \tau & \vdash e_1 : \tau' \quad \text{By assumption: (2)} \\
\Gamma, x : \tau, z : \tau' & \vdash e_2 : \tau_2 \quad \text{Subderivation of (1): (3)} \\
\Gamma & \vdash [e/x]e_1 : \tau' \quad \text{Subderivation of (1): (4)} \\
\Gamma, z : \tau' & \vdash e : \tau \quad \text{Induction on (2) and (3): (4)} \\
\Gamma, z : \tau', x : \tau & \vdash e_2 : \tau_2 \quad \text{Weakening on (2): (5)} \\
\Gamma, z : \tau' & \vdash [e/x]e_2 : \tau_2 \quad \text{Exchange on (4): (6)} \\
\Gamma & \vdash \text{let } z = [e/x]e_1 \text{ in } [e/x]e_2 : \tau_2 \\
\Gamma & \vdash [e/x](\text{let } z = e_1 \text{ in } e_2) : \tau_2 \quad \text{Induction on (5) and (6): (7)} \\
\end{align*}
\]

By rule LET on (6), (7)

By def. of substitution
Proving Substitution, 4a/4

\[
\begin{align*}
 z : \tau' & \in \Gamma, x : \tau \\
 \Gamma, x : \tau & \vdash z : \tau' & \text{VAR} \\
 \Gamma & \vdash e : \tau & \text{By assumption} \\
 \Gamma & \vdash e : \tau & \text{By assumption} \\
 \text{Case } x = z: \\
 \Gamma & \vdash [e/x]x : \tau & \text{By def. of substitution}
\end{align*}
\]
Proving Substitution, 4b/4

\[
\begin{align*}
 z : \tau' \in \Gamma, x : \tau & \quad \text{VAR} \\
 \Gamma, x : \tau \vdash z : \tau' & \quad \text{By assumption} \\
 \Gamma \vdash e : \tau & \quad \text{By assumption} \\
 \text{Case } x \neq z : \\
 z : \tau' \in \Gamma & \quad \text{since } x \neq z \text{ and } z : \tau' \in \Gamma, x : \tau \\
 \Gamma, z : \tau' \vdash z : \tau' & \quad \text{By rule VAR} \\
 \Gamma, z : \tau' \vdash [e/x]z : \tau' & \quad \text{By def. of substitution}
\end{align*}
\]
Operational Semantics

• We have a language and type system
• We have a proof of substitution
• How do we say what value a program computes?
• With an operational semantics
• Define a grammar of values
• Define a two-place relation on terms $e \leadsto e'$
• Pronounced as “e steps to e'”
An operational semantics

Values \(v \) ::= \(n \) | true | false

\[
\begin{align*}
\frac{e_1 \sim e'_1}{e_1 \land e_2 \sim e'_1 \land e_2} \quad \text{ANDCONG} \\
\frac{\text{true} \land e \sim e}{\text{ANDTRUE}} \\
\frac{\text{false} \land e \sim \text{false}}{\text{ANDFALSE}} \\
\end{align*}
\]

(similar rules for \(\leq \) and \(+\))

\[
\begin{align*}
\frac{e_1 \sim e'_1}{\text{let } z = e_1 \text{ in } e_2 \sim \text{let } z = e'_1 \text{ in } e_2} \quad \text{LETCONG} \\
\frac{\text{let } z = v \text{ in } e_2 \sim [v/z]e_2}{\text{LETSTEP}}
\end{align*}
\]
• A reduction sequence is a sequence of transitions \(e_0 \leadsto e_1, e_1 \leadsto e_2, \ldots, e_{n-1} \leadsto e_n \).

• A term \(e \) is stuck if it is not a value, and there is no \(e' \) such that \(e \leadsto e' \).

<table>
<thead>
<tr>
<th>Successful sequence</th>
<th>Stuck sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3 + 4) \leq (2 + 3))</td>
<td>((3 + 4) \land (2 + 3))</td>
</tr>
<tr>
<td>(\leadsto 7 \leq (2 + 3))</td>
<td>(\leadsto 7 \land (2 + 3))</td>
</tr>
<tr>
<td>(\leadsto 7 \leq 5)</td>
<td>(\leadsto ???)</td>
</tr>
<tr>
<td>(\leadsto) false</td>
<td></td>
</tr>
</tbody>
</table>

Stuck terms are erroneous programs with no defined behaviour.
A program is *safe* if it never gets stuck.

1. (Progress) If \(\cdot \vdash e : \tau \) then either \(e \) is a value, or there exists \(e' \) such that \(e \leadsto e' \).
2. (Preservation) If \(\cdot \vdash e : \tau \) and \(e \leadsto e' \) then \(\cdot \vdash e' : \tau \).

- Progress means that well-typed programs are not stuck: they can always take a step of progress (or are done).
- Preservation means that if a well-typed program takes a step, it will stay well-typed.
- So a well-typed term won’t reduce to a stuck term: the final term will be well-typed (due to preservation), and well-typed terms are never stuck (due to progress).
(Progress) If $\cdot \vdash e : \tau$ then either e is a value, or there exists e' such that $e \leadsto e'$.

- To show this, we do structural induction on the derivation of $\cdot \vdash e : \tau$.
- For each typing rule, we show that either e is a value, or can step.
Progress: Values

\[
\begin{align*}
\text{Num} & \cdot \vdash n : \mathbb{N} & \text{By assumption} \\
\text{Def. of value grammar} \\
n \text{ is a value} &
\end{align*}
\]

Similarly for boolean literals...
Progress: Let-bindings

\[\vdash e_1 : \tau \quad x : \tau \vdash e_2 : \tau' \]
\[\vdash \text{let } x = e_1 \text{ in } e_2 : \tau' \quad \text{LET} \]

By assumption: (1)

\[\vdash e_1 : \tau \]
\[x : \tau \vdash e_2 : \tau' \quad \text{Subderivation of (1): (2)} \]
\[e_1 \leadsto e'_1 \text{ or } e_1 \text{ value} \quad \text{Subderivation of (1): (3)} \]

Induction on (2)

Case \(e_1 \leadsto e'_1 \):
\[\text{let } x = e_1 \text{ in } e_2 \leadsto \text{let } x = e'_1 \text{ in } e_2 \quad \text{By rule LETCONG} \]

Case \(e_1 \text{ value} \):
\[\text{let } x = e_1 \text{ in } e_2 \leadsto [e_1/x]e_2 \quad \text{By rule LETSTEP} \]
(Preservation) If \(\cdot \vdash e : \tau \) and \(e \leadsto e' \) then \(\cdot \vdash e' : \tau \).

1. We will use structural induction again, but on which derivation?
2. Two choices: (1) \(\cdot \vdash e : \tau \) and (2) \(e \leadsto e' \)
3. The right choice is induction on \(e \leadsto e' \)
4. We will still need to deconstruct \(\cdot \vdash e : \tau \) alongside it!
Type Preservation: Let Bindings 1

\[
e_1 \leadsto e'_1
\]

\[
\begin{array}{c}
\text{let } x = e_1 \text{ in } e_2 \leadsto \text{let } x = e'_1 \text{ in } e_2
\end{array}
\]

By assumption: (1)

\[
\begin{array}{c}
\cdot \vdash e_1 : \tau \\
x : \tau \vdash e_2 : \tau'
\end{array}
\]

\[
\cdot \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'
\]

By assumption: (2)

\[
\begin{array}{c}
e_1 \leadsto e'_1 \\
\cdot \vdash e_1 : \tau
\end{array}
\]

Subderivation of (1): (3)

\[
\begin{array}{c}
x : \tau \vdash e_2 : \tau'
\end{array}
\]

Subderivation of (2): (4)

\[
\begin{array}{c}
\cdot \vdash e'_1 : \tau
\end{array}
\]

Subderivation of (2): (5)

\[
\begin{array}{c}
\cdot \vdash \text{let } x = e'_1 \text{ in } e_2 : \tau'
\end{array}
\]

Induction on (3), (4): (6)

\[
\begin{array}{c}
\cdot \vdash \text{let } x = e'_1 \text{ in } e_2 : \tau'
\end{array}
\]

Rule LET on (6), (4)
Type Preservation: Let Bindings 2

\[
\text{let } x = v_1 \text{ in } e_2 \leadsto [v_1/x]e_2
\]

By assumption: (1)

\[
\begin{align*}
\vdash v_1 : \tau \\
x : \tau \vdash e_2 : \tau'
\end{align*}
\]

\[
\vdash \text{let } x = v_1 \text{ in } e_2 : \tau'
\]

By assumption: (2)

\[
\begin{align*}
\vdash v_1 : \tau \\
x : \tau \vdash e_2 : \tau'
\end{align*}
\]

Subderivation of (2): (3)

Subderivation of (2): (4)

\[
\vdash [v_1/x]e_2 : \tau'
\]

Substitution on (3), (4)
Conclusion

Given a language of program terms and a language of types:

- A type system ascribes types to terms
- An operational semantics describes how terms evaluate
- A type safety proof connects the type system and the operational semantics
- Proofs are intricate, but not difficult
Exercises

1. Give cases of the operational semantics for \leq and $+$.
2. Extend the progress proof to cover $e \land e'$.
3. Extend the preservation proof to cover $e \land e'$.

(This should mostly be review of IB Semantics of Programming Languages.)