
Software and Security

Engineering
Lecture 1

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

1

Aims

• Introduce software engineering with focus on:
• Large systems
• Safety-critical systems
• Systems to withstand attack by capable opponents

• Illustrate what goes wrong

• Best practice to avoid failure

2

Objectives

• By the end of the course you should be able to:
• Write programs with tough assurance targets
• Work effectively as part of a team

• Understand
• Software development models
• Development lifecycle
• Understand bugs, vulnerabilities and hazards

3

Books

4

Make use of additional reading

F.P. Brooks, The Mythical Man Month

J. Reason, The Human Contribution

S.W. Thames, Report of the Inquiry into the London

Ambulance Service

S. Maguire, Writing Solid Code

H. Thimbleby, Improving safety in medical devices and

systems

O. Campion-Awwad et al, The National Programme for IT

in the NHS – A Case History

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/
materials.html

5

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

Use the ICAP framework to guide

your learning

• Interactive
• Constructive
• Active
• Passive

6

“Teachers open the door,

But you must enter by yourself.

Tell me and I forget.

Teach me and I remember.

Involve me and I learn.”

– Benjamin Franklin

Or: reading is essential but insufficient

Using laptops in lectures can harm

everyone’s learning outcomes

7

Course Outline – key topics

• Security policy
• Safety case
• Security protocols
• User behaviour
• Bugs

• Software crisis
• Development lifecycle
• Critical systems
• Testability

• Software-as-a-service

8

What is Security Engineering?

Security engineering is about building systems to

remain dependable in the face of malice, error and

mischance.

9

The Design Hierarchy

Policy

Architecture, protocols, …

Hardware, crypto, access control, …

What are we trying to do? How? With what?

10

A system can be…

• equipment or a component (laptop, smartcard, …)
• a collection of products, their operating systems,

and some networking equipment
• The above plus applications
• The above plus internal staff
• The above plus external users

Common failure: policy drawn too narrowly

11

Electric bike should not propel bicycle

when speed exceeds 15.5 mph

12

Security vs Dependability

Dependability = Reliability + Security

• Malice is different from error
• Reliability and security are often strongly correlated

13

Subjects and principals

Subject: a physical person
Person: a subject or a legal person (firm)
Principal:

• A person
• Equipment
• A role, including complex roles

14

Secrecy and privacy

Secrecy: mechanism to control which principals can
access information

Privacy: control of your own secrets

Confidentiality: an obligation to protect someone
else’s secrets.

15

Anonymity, integrity, authenticity

• Anonymity: restrict access to metadata

• Integrity: an object has not been altered since the
last authorised modification

• Authenticity has two common meanings:
• an object has integrity plus freshness
• You are speaking to the right principal

16

Trust is hard; several meanings…

1. A warm fuzzy feeling
2. A trusted system or component is one that can

break my security policy

3. A trusted system is one I can insure
4. A trusted system won’t get me fired when it

breaks
5. …

17

Errors, failures, reliability, accidents

• Error: a design flaw or deviation from intended
state

• Failure: nonperformance of the system when inside
specified environmental conditions

• Reliability: probability of failure within a specified
period of time

• Accident: an undesired, unplanned event resulting
in a specified kind or level of loss

18

Hazards and risks

• Hazard: a set of conditions in a system or its
environment where failure can lead to an accident

• A critical system, process or component is one
whose failure will lead to an accident

• Risk is the probability of an accident
• Often combined with unit of exposure; e.g. a micromort

• Uncertainty is where the risk is not quantifiable
• Safety is simple: freedom from accidents

19

Security policy, profile, and target

• A security policy is a succinct statement of
protection goals

• A protection profile is a detailed statement of
protection goals

• A security target is a detailed statement of
protection goals applied to a particular system

20

What often passes as ‘policy’

1. This policy is approved by Management.
2. All staff shall obey this security policy.
3. Data shall be available only to those with a need-

to-know.
4. All breaches of this policy shall be reported at

once to Security.

What’s wrong with this?

21

Traditional government approach

• Start from the threat model: an insider who is
disloyal or careless.

• Solution: limit the number of people you trust, and
make it harder for them to be untrustworthy

Basic idea since 1940: a clerk with ‘Secret’ clearance
can read documents at ‘Confidential’ and ‘Secret’ but
not at ‘Top Secret’

22

Multilevel Secure Systems (MLS)

• Classify all documents and data with a level, such as
official, secret, top secret; or high and low.

• Principals have clearances; clearance must equal or
exceed classification of any documents viewed.

• Enforce handling rules for material at each level.
• Information flows upwards only:

• No read up
• No write down

23

Bell-LaPadula formal model

• Bell-LaPadula (1973):
• simple security policy (no read up)
• *-policy (no write down)

• With these two rules, one can prove that a system
that starts in a secure state will remain in one

• Aim is to minimise the Trusted Computing Base

24

Covert channels cause havoc

• BLP lets malware move from Low to High, just not
to signal down again.

• What if malware at High modulates shared
resource (e.g. CPU usage) to signal to Low?

• How can you let message traffic pass from Low to
High, if any acknowledgement of receipt could be
delayed and used to signal?

Moral: covert channel bandwidth is a complex.
It’s an emergent property of whole systems!

25

High assurance MLS system

• The pump simplifies the
problem: replace the
complex emergent
property of the whole
system with a simple
property of a testable
component

• Nevertheless, often
harder than it looks!

26

Multilateral Security

Stop lateral flow, examples:

• Intelligence, typically with
compartments

• Medical records
• Competing clients of an

accounting firm

27

Biba formal model for integrity

• Biba (1975)
• Simple integrity policy (no read down)
• *-integrity policy (no write up)

• Dual of the Bell-LaPadula model
• Examples:

• Medical devices with calibrate and operate modes
• Electricity grid controls with safety at the highest level,

operational control as the next, and so on.

28

Software and Security

Engineering
Lecture 2

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

29

30

Architecture matters

• Lots of legacy protocols
trust all network nodes

• Chrysler Jeep recall

• Defence in depth:
separate subnets,
capable firewalls,

31

Swiss Cheese Model

• Defense in depth
• Layers could include hardware, software, policy,

human factors, etc.

Diagram by
Davidmack
CC-BY-SA 3.0

32

Safety policies

• Industries have their own standards, cultures, often
with architectural assumptions embedded in
component design

• Plethora of safety legislation
• Sometimes brand new standards, but in more

mature industries safety standards tend to evolve
• Two basic ways to evolve:

• failure modes and effects analysis

• fault tree analysis

33

Failure modes and effects analysis

(bottom-up)

• Look at each component and list failure modes
• Figure out what to do about each failure

• Reduce risk by overdesign?
• Redundancy?
• …

• Use secondary mechanisms to deal with
interactions

• Developed by NASA

34

Fault tree analysis (top-down)

Work backwards from bad outcome we must avoid to

identify critical components
35

Example: nuclear bomb safety

Don’t want Armageddon caused by a rogue pilot, a
stolen bomb, or a mad president, so require

• Authorisation: president releases code
• Intent: pilot puts key in bomb release
• Environment: N seconds zero gravity

Independent, simple, technical mechanisms

36

Bookkeeping, 8-4th millennium

BCE

37

Bookkeeping, circa 1100 AD

• Double-entry bookkeeping: each entry in one
ledger is matched by opposite entries in another

• Ensure each ledger is maintained by a different
subject so bookkeepers have to collude to defraud

• Example: a firm sells £100 of goods on credit, so
credit the sales account, debit the receivables
account. Customer subsequently pays, so credit the
receivables account, debit the cash account.

38

Double-entry bookkeeping found

in the Genizah Collection

39

Separation of duties in practice

• Serial:
• Lecturer gets money from EPSRC, charity, …
• Lecturer gets Old Schools to register supplier
• Gets stores to sign order form and send to supplier
• Stores receives goods; Accounts gets invoice
• Accounts checks delivery and tell Old Schools to pay
• Lecturer gets statement of money left on grant
• Audit by grant giver, university, …

• Parallel: authorization from two distinct subjects

40

Role-Based Access Control (RBAC)

decouples policy and mechanism

Alice

Bob

Charlie

Examiner

Lecturer

Student

Past exam
questions

Future exam
questions

Subjects Roles Actions

41

Summary of security and safety

• What are we trying to do?
• Security: threat model, security policy
• Safety: hazard analysis, safety standard
• Refine to protection profile, safety case
• Typical mechanisms: usability engineering,

firewalls, protocols, access controls, …

42

Do not ignore user behaviour

• Many systems fail because users make mistakes
• Banks routinely tell victims of fraud “our systems

are secure so it must be your fault”
• Most car crashes are user error; yet we now build

cars with crumple zones

43

Chevrolet 1959 vs 2009

https://www.youtube.com/watch?v=fPF4fBGNK0U

44

https://www.youtube.com/watch?v=fPF4fBGNK0U

Hierarchy of

harms
Targeted

attacks

Generic
malware

Bulk password
compromise

Abuse of mechanism

So
ph

ist
ic

at
io

n
Vo

lu
m

e
of

 h
ar

m

45

Many abuses of mechanism

• Cyberbullying
• Doxing
• Fake rental apartments
• …

How can we protect against these attacks?

46

Useable privacy is also hard

• Traditional approaches – anonymisation and
consent – are really hard to deliver

• Problem gets harder as systems get larger
• Automated data collection (e.g. from sensors)

makes the situation more difficult again

47

48

49

50

51

Medical device safety

• Usability problems with medical devices kill about
the same number of people as cars do

• Biggest killer nowadays: infusion pumps
• Nurses typically get blamed, not vendors
• Avionics are safer, as incentives are more

concentrated
• Read Harold Thimbleby’s paper!

52

Bulk password compromise

• Example: in June 2012, 6.5m LinkedIn passwords
stolen, cracked (encryption did not have a salt) and
posted on a Russian forum

• Method: SQL injection (see later)
• Passwords were reused on other sites, from mail

services to PayPal.
• Reused passwords were used on those third-party sites

• There have been many, many such exploits!
• What can we do about password reuse?

53

Phishing and social engineering

• Card thieves call victims to ask for PINs
• A well-crafted email sent to company staff, with

apparently authority, can get 30% yield
• Some big consequences (see next)
• Think like a crook (see Mitnick reading)

54

Software and Security

Engineering
Lecture 3

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

55

Warm-up: Write down your own top

three pieces of password advice

• Talk to your neighbour
• What password advice would you give and why?

56

John Podesta email compromise

by Fancy Bear (allegedly Russia)

• White House chief-of-staff; chair of Hillary Clinton’s
2016 US Presidential Campaign

• Gmail account was compromised
• 20,000 emails subsequently published by WikiLeaks
• Authenticity of some emails questioned

57

Cognitive factors

• Many errors arise from our highly adaptive mental
processes

• We deal with novel problems in a conscious way
• Frequently encountered problems are dealt with using

rules we evolve, and are partly automatic
• Over time, the rules give way to skill

• Our ability to automate routine actions leads to
absent-minded slips, or following the wrong rule

• There are also systematic limits to rationality in
problem solving – so called heuristics and biases

58

Risk misperception

People offered £10 or a 50% chance of £20 usually
prefer the former; if offered a loss of £10 or a 50%
chance of a loss of £20 they tend to prefer the latter!

Rational

Actual

GainLoss

Utility

59

Framing decisions about risk, or

the Asian disease problem
Scenario A, choose between:
a) “200 lives will be saved”
b) “with p=1/3, 600 saved; with p=2/3, none saved”
Here 72% choose (a) over (b).

Scenario B, choose between:
1) “400 will die”
2) “with p =1/3, no-one will die, p=2/3, 600 will die”
Here 78% prefer (2) over (1)

60

Social psychology

• Authority matters: Milgram showed over 60% of all
subjects would torture a ‘student’

• The herd matters: Asch showed most people could
deny obvious facts to please others

• Reciprocation is built-in: give a gift, to increase your
chance of receiving one

61

Fraud psychology

All the above plus:

• Appeal to the mark’s kindness
• Appeal to the mark’s dishonesty
• Distract them so they act automatically
• Arouse them so they act viscerally

Note: the mark is the person being defrauded

62

The Lottery Scam

63
https://www.youtube.com/watch?v=oI2gBLn6CU8

https://www.youtube.com/watch?v=oI2gBLn6CU8

People only follow advice which

confirms their own world view

• Users have different mental models. Explore how
your users see the problem – the ‘folk beliefs’

• Given a model of their world view, target approach
to appeal to it.

64

Affordances: Johnny Can’t Encrypt

65

The power of default

Most people don’t opt in or out; they go with default

Can exploit this for good (or evil):
• Pensions
• Privacy settings in an online service
• Use of crypto
• …

Therefore defaults may be contentious
66

Economics versus psychology

Most people don’t worry enough about computer

security, and worry too much about terrorism

How could we fix this, and why is it not likely to be?

67

The compliance budget

• ‘Blame and train’ as an approach is suboptimal
• It’s often rational to ignore warnings
• People will spend only so much time obeying rules,

so choose the rules that matter
• Violations of rules also matter: they’re often an

easier way of working, and sometimes necessary
• The ‘right’ way of working should be easiest: look

where people walk, and lay the path there

68

Where should the path be?

69

Differences between people

• Ability to perform certain tasks varies widely across
subgroups of the population, including by

• Age
• Gender
• Education
• …

• Yet all customers receive complex password rules
and anti-phishing advice

70

More accidents with Volvos?

Volvo ÖV 4, April 1927
71

Understanding error helps us

build better systems

• Significant psychology research into errors
• Slips and lapses

• Forgetting plans, intentions (strong habit intrusion)
• Misidentifying objects, signals
• Retrieval failures (“its on the tip of my tongue”)
• Premature exits from action sequences (using the ATM)

• Rule-based mistakes; applying the wrong procedure
• Knowledge-based mistakes; heuristics and biases

72

Training and practice reduce errors

Inexplicable errors, stress free, right cues 10-5

Regularly performed simple tasks, low stress 10-4

Complex tasks, little time, some cues needed 10-3

Unfamiliar task dependent on situation, memory 10-2

Highly complex task, much stress 10-1

Creative thinking, unfamiliar complex operations,
time short & stress high

~1

73

Passwords are cheap, but…

• Will users enter passwords correctly?
• Will they remember them?
• Will they choose a strong password?
• Will the write them down?
• Will the password be different in each context?
• Can the user be tricked into revealing passwords?

74

User studies are important

Experiment to see if first-year NatScis could be
trained to use passwords effectively. Three groups:
• Control group of 100 (+100 more observed)
• Green group: use a memorable phrase
• Yellow group: choose 8 chars at random

Expected strength: Y > G > C; got Y = G > C
Expected resets: Y > G > C; got Y = G = C

We had 10% non-compliance

75

76

Hardware and online support to

limit brute force is challenging

• Online services and tamperproof hardware can be
used to limit brute-force guessing, such as

• Bank card PIN (3 guesses on card; 3 online)
• iPhone PIN (timeouts)
• Login attempts to webservices (timeouts; care required)
• …

If the typical person has five cards with the same PIN,
how many wallets do you need to find before you get
lucky?

77

Mitigate worst effects of a stolen

password file

• Use key stretching techniques such as PDBKF2:

public PBEKeySpec(char[] password, byte[] salt,

int iterCount, int keyLength)

• Establish breach reporting laws
• Externalise the problem with Oauth
• Use other factors to determine whether login legit

78

Password recovery is a weak point

• Password recovery often involves basic info which
doesn’t change:

• What was the name of your first school?
• What was the name of your first pet?
• …

• Little ability to change this information
• Accounts for public figures are especially vulnerable

79

A poor implementation of

password recovery…

“I did it. I found the all-time dumbest security

question answer requirement. Good job @fedex.”

Luke Millar (@ltm on Twitter), 28th April 2019

80

https://twitter.com/FedEx

Externalities need consideration

• One firm’s action has side-effects for others
• Password sharing a conspicuous example; we have

to enter credentials everywhere
• Everyone wants recovery questions too
• Many firms train customers in unsafe behaviour

from clicking on external links or redirecting the
browser to third-party domains for payment

• Much ‘training’ amounts to victim blaming

81

Iterative guessing of card details

with botnet on websites works

• Of Alexa top 500 websites, 26 use Primary Account
Number (PAN) and expiry date

• 37 use PAN + postcode (numeric digits only for
some, add door number for others)

• 291 ask for PAN, expiry date and CVV2

There is enough variation in requirements across
websites that you can iteratively generate valid
credentials

82

83

Amazon ⇢ Apple ID ⇢ Gmail ⇢ Twitter
(And all they wanted was his three letter Twitter handle!)

• Twitter: find personal website, then Gmail, home address
• Gmail: account recovery gave “m••••n@me.com”
• Amazon: call with name, address, email to associate a new

credit card number (fake) to the account
• Amazon: call (again) with name, address, credit card

number and associate new email address with the account
• Amazon: Use web password reset to new email address; get

last four digits of all credit cards in the account
• Apple: Call with billing address and last four digits credit

card to get temp password for “m••••n@me.com”
• Gmail: reset password sent to “m••••n@me.com”
• Twitter: reset password sent to Gmail

84

85

Software and Security

Engineering
Lecture 4

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

86

Warm-up: which password hashing

solution is the best? Why?

Alice Bob Charlie

Nothing Ltd 123456 qwerty 123456

Hash 1 Ltd a832gsl47g… 84hskubvg… a832gsl47g…

Hash 2 Ltd a832gsl47g… 84hskubvg… a832gsl47g…

Global Salt Plc salt: h3okl…
hash: slau44…

salt: h3okl…
hash: klasy3…

salt: h3okl…
hash: slau44…

Per-User Salt Inc salt: h3okl…
hash: glhy5…

salt: 9shk4…
hash: zay4a…

salt: 0ag3b…
hash: lav1za…

87

Security protocols

• Security protocols are another intellectual core of
security engineering

• They are where cryptography and system
mechanisms (such as access control) meet

• They introduce an important abstraction, and
illustrate adversarial thinking

• They often implement policy directly
• And they are much older then computers…

88

Ordering wine in a restaurant

1. Sommelier presents wine list to host
2. Host chooses wine; sommelier fetches it
3. Host samples wine; then it’s served to guests

Security properties?

89

Car unlocking protocols

N: nonce; a sequence number, random number or timestamp
E: engine unit
T: car key fob or transponder

K: secret key shared between E and T
{x}K : encrypt x with K

Static Non-interactive Interactive

T ® E: K T ® E: T, {T,N}K E ® T: N
T ® E: {T,N}K

90

Identify Friend or Foe (IFF)

• Basic idea: fighter challenges bomber
F ® B: N
B ® F: {N}K

• What can go wrong?

91

Person-in-the-middle attack…

• Basic idea: fighter (F) challenges bomber (B)
F ® B: N
B ® F: {N}K

• What if the bomber reflects the challenge back at
the fighter’s wingman (W)?

F ® B: N
B ® W: N
W ® B: {N}K

B ® F: {N}K

92

93

Two-factor authentication (2FA)

T ® U: N
U ® C: N, PIN
C ® U: {N, PIN}K

U ® T: {N, PIN}K

T: terminal U: user
C: calculator K: key known to bank and C
PIN: secret known to bank and U

94

Card authentication protocol

• Allows EMV cards to be used
in online banking

• Users compute codes for
access, authorisation

• A good design would take PIN
and challenge / data, encrypt
to get response

• But the UK one first tells you
if the PIN is correct

• What can go wrong with this?

95

Alice and Bob want to talk. They

each share a key with Sam. How?

• Alice contacts Sam and asks for a key for Bob
• Sam sends Alice a key encrypted in a blob only she

can read, and the same key also encrypted in
another blob only Bob can read

• Alice calls Bob and sends him the second blob

How can they check the protocol’s fresh?

96

Kerberos uses tickets to support

communication between parties

A ® S: A, B
S ® A: {TS, L, KAB, B, {TS, L, KAB, A}KBS}KAS
A ® B: {TS, L, KAB, A}KBS, {A, TA}KAB
B ® A: {TA+1}KAB

A: Alice B: Resource (e.g. printer)
S: Server TS: Server timestamp
KAS: Secret key shared between A and S
KBS: Secret key shared between B and S
KAB: Shared session key for A and B
L: Lifetime of the session key

97

Europay-Mastercard-Visa (EMV)

How might you attack this?

C ® M: sigB{C, card_data}
M ® C: N, date, Amt, PIN (if PIN used)
C ® M: {N, date, Amt, trans_data}KCB

M ® B: {{N, date, Amt, trans_data}KCB, trans_data}KMB

B ® M ® C: {OK}KCB

C: Card sig
Y
{x}: message x digisigned by Y

M: Merchant {x}
K
: Message x encrypted under K

B: Bank KXY: Shared key between X and Y
98

Replace insides of the terminal

with your own electronics

• Capture card details and
PINs from victims

• Use to perform person-in-
the-middle attack in real
time on a remote terminal
in a merchant selling
expensive goods

99

The relay attack: unstoppable but

unrealistic – too hard to scale

PIN

$2000$20

PIN

attackers can be on opposite
sides of the world

Dave

Carol

Alice
Bob

$

100

Magstripe

fraud is

scalable

• Install fake terminal and collect card data and PINs
• Either physically or wirelessly collect data

Photo credit: Brian Krebs, krebsonsecurity.com

101

The no-PIN attack (2010)

C ® M: sigB{C, card_data}
M ® Ć: N, date, Amt, PIN
Ć ® C: N, date, Amt, No PIN required
C ® M: {N, date, Amt, trans_data}KCB

M ® B: {{N, date, Amt, trans_data}KCB, trans_data’}KMB

B ® M ® C: {OK}KCB

Ć: MITM card shim
C: Card sig

Y
{x}: message x digisigned by Y

M: Merchant {x}
K
: Message x encrypted under K

B: Bank KXY: Shared key between X and Y
102

Fixing the no-PIN attack: simpler

protocol required

• In theory might compare card data with terminal
data at terminal, acquirer, or issuer

• In practice has to be the issuer since incentives for
terminal and acquirer are poor

• Barclays introduced a fix July 2010; removed
December 2010. Banks asked for student thesis to
be taken down from web instead.

• Eventually fixed for UK transactions in 2016
• Real problem: EMV spec now far too complex

103

The preplay attack (2014)

• In EMV, the terminal sends a random number N to
the card along with the date d and the amount Amt

• The card authenticates N, d and Amt using the key
it shares with the bank, KCB

• What happens if I can predict N for date d?
• Answer: if I have access to your card I can

precompute an authenticator for Amt and d

104

Symmetric key cryptography

requires careful sharing of keys

105

Software and Security

Engineering
Lecture 5

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

106

Public key cryptography

Allows two parties with no prior knowledge of each
other to jointly establish a shared secret key over

an insecure channel

Examples include Diffie-Hellman and RSA

107

Diffie Hellman revision

Alice and Bob publicly agree to use p = 23, g = 5

1. Alice chooses secret integer a = 4, then
A ® B: ga mod p = 54 mod 23 = 4

2. Bob chooses secret integer b = 3, then
B ® A: gb mod p = 53 mod 23 = 10

3. Alice computes 104 mod 23 = 18
4. Bob computes 43 mod 23 = 18

Alice and Bob now agree the secret integer is 18

Example derived from https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
108

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Physical public key crypto with

locks

• Anthony sends a message in a box to Brutus. Since
the messenger is loyal to Caesar, Anthony puts a
padlock on it

• Brutus adds his own padlock and sends it back to
Anthony

• Anthony removes his padlock and sends it to
Brutus, who can now unlock it

Is this secure?

109

Asymmetric public-key crypto

• Separate keys for encryption and decryption
• Publish encryption key widely (the “public key”)

allowing anyone to create an encrypted message;
only holder of decryption key (“private key”) can
decode the message and read it

• Digital signatures are the other way around: only
you can sign but anyone can verify

• Example: RSA

110

Public-key Needham-Shroeder

• Proposed in 1978:

A ® B: {NA, A}KB
B ® A: {NA, NB}KA
A ® B: {NB}KB

• NA and NB are nonces generated by A and B respectively
• KA and KB are public keys for A and B respectively
• The idea is to use NAÅNB as a shared key

Is this okay?

111

MITM attack found 18 years later

A ® C: {NA, A}KC

C ® B: {NA, A}KB

B ® C: {NA, NB}KA

C ® A: {NA, NB}KA

A ® C: {NB}KC

C ® B: {NB}KB

The fix is explicitness. Put all names in all messages.

112

Binding keys to principals is hard

• Physically install binding on machines
• IPSEC, SSH

• Trust on first use; optionally verify later
• SSH, Signal, simple Bluetooth pairing

• Use certificates with trusted certificate authority
• Sam signs certificate to bind Alice’s key with her name
• Certificate = sigs{A, KA , Timestamp, Length}
• Basis of Transport Layer Security (TLS) as used in HTTPS

• Use certificate pinning inside an app
• Used by some smartphone apps

113

Transport Layer Security (TLS)

• Uses public key cryptography and certificates to
establish a secure channel between two machines

• Protocol proven correct (Paulson, 1999)
• Yet, the protocol is broken annually
• Often a large number of root certificate authorities.

Are these all trustworthy?

114

DigiNotar went bust after issuing

bogus certificates

• Dutch certificate authority
• More than 300,000 Iranian Gmail users targeted
• More than 500 fake certificates issued
• Major web browsers blacklisted all DigiNotar certs

115

TLS security landscape is complex

116

Chosen protocol attack

The Mafia asks people to sign a random
challenge as proof of age for porn sites!

117

Bugs are found in and around code

• Bugs in the code
• Arithmetic
• Syntactic
• Logic
• Concurrency

• Bugs around the code
• Code injection
• Usability traps

118

Patriot missile failures in Gulf War I

• Failed to intercept an Iraqi Scud missile in first Gulf
War on 25th February 1991

• Scud struck US barracks in Dhahran; 28 dead
• Other Scuds hit Saudi Arabia, Israel

German Air Force; CC-BY-SA, Darkone, Wikipedia Afgan National Army; PD, Davric, Wikipedia

119

Caused by arithmetic bug

• System measured time in 1/10 sec, truncated from
0.0001100110011…b

• Accuracy upgraded as system upgraded from air-
defence to anti-ballistic-missile defence

• Code not upgraded everywhere (assembly)
• Modules out by 1/3rd sec after 100h operation
• Not found in testing as spec only called for 4h tests

Lesson: Critical system failures are typically
multifactorial

120

Syntactic bugs arise from features

of the specific language

For example, in Java:

1 + 2 + "" evaluates to "3"

"" + 1 + 2 evaluates to "12”

This is due to coercion from primitive integers to
java.lang.String

121

static OSStatus SSLVerifySignedServerKeyExchange(SSLContext *ctx,
bool isRsa, SSLBuffer signedParams,
uint8_t *signature, UInt16 signatureLen)

{
OSStatus err;
//...
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail; //error: this line should not exist

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

//...
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Apple’s goto fail bug (2014)

122

Credit: https://xkcd.com/1354/123

Heartbleed allows clients to read

the contents of server memory

Therefore a malicious client could read:
• Secret keys of any TLS certificates used by server
• User creds such as email address and passwords
• Confidential business documents
• Personal data

The attack left no trace of use in server logs

124

Notification and clean-up difficult

12th March 2012 Bug introduced (OpenSSL 1.0.1)
1st April 2014 Google secretly reports vuln
3rd April 2014 Codenomicon reports vuln
7th April 2014 Fix released
7th April 2014 Public announcement
9th May 2014 57% of website still using old

TLS certificates
20th May 2014 1.5% of 800,000 most popular

websites still vulnerable

125

Intel AMT Bug

• AMT allows sysadmins remote access to a machine,
even when turned off (but mains power on)

• Provides full access to machine, independent of OS
• A sketch of the protocol for authentication

between machine and remote party is as follows:

C ® S: “Hi. I’d like to connect”
S ® C: “Please encrypt X with our secret key”
C ® S: “Here are the first x bytes of {X}KCS”

126

Concurrency bug: time of check

to time of use failure (TOCTOU)

…
File file = new File(args[0]);
if(!file.canWrite())

return;

RandomAccessFile fp = new
RandomAccessFile(file, "rw");

fp.writeChars("Some replacement text");
fp.close();
…

Adapted example from https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Ch
ec

k
U

se

127

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

Clallam Bay Jail inmates perform

code injection on payphones

1. Inmate typed in the number they wished to call
2. Inmate selected whether the recipient spoke

Spanish or English
3. Inmate was asked to say their name; “Eve”, say
4. The phone then dialled the number and read out

a recorded message in chosen language and
appended inmate name to the end:

“An inmate from Clallam Jail wishes to speak
with you. Press three to accept the collect
call charges. The inmate’s name is” … “Eve”

128

Software and Security

Engineering
Lecture 6

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

129

Okay Google, what’s a Whopper?

130

The Morris Worm: breaking into

computers at scale (1988)

• Exploited vulnerabilities in sendmail, fingerd, rsh
• Used a list of common weak passwords
• Gov. assessment: $100k to $10M in damage
• 6,000* machines infected
• Internet partitioned for days to prevent reinfection
• Robert Morris was the first person convicted under

the 1986 Computer Fraud and Misuse Act.
• 3 year suspended sentence
• 400 hr community service
• $10k fine.

131

SQL Injection attack: failure to

sanitize untrusted inputs

String sql =

"INSERT INTO Students (Name) VALUES (‘”

+ studentName

+ "');";
132

Software countermeasures:

systems and tools

• Operating system protections
• Data execution prevention
• Address space layout randomisation
• …

• Tools, e.g. Coverity
• Static analysis
• Dynamic analysis
• Testing frameworks
• …

• Automated update systems to install patches

133

Software countermeasures:

reducing bug number and severity

• Defensive programming
• Secure coding standards

• See Howard and LeBlanc on MS standards for C

• Contracts, e.g. in the Eiffel language
• API analysis

• Combining API calls may lead to vulnerabilities
• Challenging for APIs accessible over the Internet

134

We cannot write code without

latent vulnerabilities

135

OS versions of 50 LG handsets

136

Link OS versions to database of

vulnerabilities

Match OS version information to OS and Build
Number to put each handset into one group:
• Insecure
• Maybe secure
• Secure

137

On average, 85% are vulnerable

11%

85%

4%

138

The Software Crisis

• Software still lags behind hardware’s potential
• Many large projects are late, over budget,

dysfunctional, or abandoned (CAPSA, NPfIT, DWP,
Addenbrookes, …)

• Some failures cost lives (Therac 25) or billions
(Ariane 5, NPfIT)

• Some expensive scares (Y2K, Pentium)
• Some combine the above (LAS)

139

London Ambulance Service disaster

• Widely cited example of project
• Many aspects of the failure widely repeated since

• Attempt to automate ambulance dispatch in 1992
• Result left London without service for a day
• Number estimated deaths ran as high as 20
• CEO sacked; public outrage

140

Project background

• Attempt to automate in 1980s failed – system failed
load test

• Industrial relations poor; pressure to cut costs
• Public concern over service quality
• South West Thames Regional Health Authority

decided on fully automated system: responder
would “email” ambulance

• Consultancy study said this might cost £1.9m and
take 19 months, provided a packaged solution

could be found. AVLS would be extra

141

Original dispatch system worked

on paper with regional control

resource
mobilisation

call taking resource identification

resource management

Control
Assistant

Map
Book

Resource
Controller

Incident
form Resource

Allocators

Allocations
Box Radio

Operator

Dispatcher
Incident
form'

Incident
Form''

142

Many problems with original system

• It took 3 minutes to dispatch an ambulance
• It required 200 staff (out of 2700 in total).
• There were errors, especially in deduplication
• Queues and bottlenecks, especially with the radio
• Call-backs tiresome

143

Computer-aided dispatch system

call
taking

resource
mobilisation

resource
identification

resource
management

• Large

• Real-time

• Critical

• Data rich

• Embedded

• Distributed

• Mobile
components

144

Tender process was poor

• Idea of a £1.5m system stuck; idea of AVLS added;
proviso of a packaged solution forgotten; new IS
director hired

• Tendered on 7th Feb 1991; completion due Jan 1992
• 35 firms looked at tender; 19 proposed; most said

timescale unrealistic, only partial automation
possible by early 1992

• Tender awarded to consortium of Systems Options
Ltd, Apricot and Datatrak for £937,463

• £700K cheaper than next lowest bidder!

145

Phase one: design work ‘done’ in

July and contract signed in August

Minutes of a progress meeting in June recorded:
• A 6-month timescale for an 18-month project
• A lack of methodology
• No full-time LAS users providing domain knowledge
• Lead contractor (System Options) relied heavily on

cozy assurances of subcontractors

Unsurprisingly LAS told in December that only partial
automation by January deadline – front end for call
taking, gazetteer, docket printing

146

Phase two: full automation

• Server never stable in 1992; client and server lockup
• Radio messaging with blackspots and congestion;

couldn’t cope with established working practices
• Management decided to go live on 26th Oct 1992
• Independent review had called for volume testing,

implementation strategy, change control, …all ignored
• CEO: “No evidence to suggest that the full system

software, when commissioned, will not prove reliable”
• On 26 Oct 1992, room was reconfigured to use

terminals, not paper. There was no backup…

147

Circle of disaster on 26/7th October

• System progressively lost track of vehicles
• Exception messages scrolled off screen and were lost
• Incidents held as allocators searched for vehicles
• Callbacks from patients increased causing congestion
• data delays ® voice congestion ® crew frustration ®

pressing wrong buttons and taking wrong vehicles ®
many vehicles sent to an incident, or none

• System slowdown and congestion leading to collapse

148

149

150

151

152

153

Collapse likely resulted in deaths

• One ambulance arrived to find the patient dead
and taken away by undertakers

• Another answered a ‘stroke’ call after 11 hours and
5 hours after the patient had made their own way
to hospital

• …
• Chief executive resigns

154

Software and Security

Engineering
Lecture 7

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

155

Warm up: What mistakes were

made in the LAS system?

• Specification
• Project management
• Operational

156

Specification mistakes

• LAS ignored advice on cost and timescale
• Procurers insufficiently qualified and experienced
• No systems view
• Specification was inflexible but incomplete: it was

drawn up without adequate consultation with staff
• Attempt to change organisation through technical

system
• Ignored established work practices and staff skills

157

Project management mistakes

• Confusion over who was managing it all
• Poor change control, no independent QA, suppliers

misled on progress
• Inadequate software development tools
• Ditto data comms, with effects not foreseen
• Poor interface for ambulance crews
• Poor control room interface

158

Operational mistakes

• System went live with known serious faults
• slow response times
• workstation lockup
• loss of voice comms

• Software not tested under realistic loads or as an
integrated system

• Inadequate staff training
• No effective back-up system in place

159

NHS National Programme for IT

Idea: computerise and centralise all record keeping
for every visit to every NHS establishment

• Like LAS, an attempt to centralise power and
change working practices

• Earlier failed attempt in the 1990s
• The February 2002 Blair meeting
• Five LSPs plus national contracts: £12bn
• Most systems years late or never worked
• Coalition government: NPfIT ‘abolished’

160

Universal Credit: fix poverty trap

Idea: Hundreds of welfare benefits which means
there is often little incentive to get a job.

• Initial plan was to go live in October 2013
• A significant problem: big systems take seven years

not three; doesn’t align with political cycle
• Complexity was huge, e.g. depended on real-time

feed of tax data from HMRC, which in turn
depended on firms

161

NAO: poor value for money, not

paying 1 in 5 on time

162
https://www.youtube.com/watch?v=qE2fpNSrrpc

https://www.youtube.com/watch?v=qE2fpNSrrpc

Smart meters: more centralisation

Idea: expose consumers to market prices, get peak
demand shaving, make use salient

• 2009: EU Electricity Directive for 80% by 2020
• 2009: Labour £10bn centralised project to save the

planet and help fix supply crunch in 2017
• 2010: Experts said we just can’t change 47m meters

in 6 years. So excluded from spec
• Coalition government: wanted deployment by 2015

election! Planned to build central system Mar–Sep
2013 (then: Sep 2014 …)

• Spec still fluid, tech getting obsolete, despair …
163

Software engineering is about

managing complexity at many levels

• Bugs arise at micro level in challenging components
• As programs get bigger, interactions between

components grow at O(n2) or even O(2n)
• The ‘system’ isn’t just the code: complex socio-

technical interactions mean we can’t predict
reactions to new functionality

Most failures of really large systems are due to
wrong, changing, or contested requirements

164

Project failure, circa 1500 BCE

165

On contriving machinery

“It can never be too strongly impressed upon the

minds of those who are devising new machines, that

to make the most perfect drawings of every part

tends essentially both to the success of the trial, and

to economy in arriving at the result”

Charles Babbage

166

Bank of England, 1870

167

Dun, Barlow & Co, 1876

168

Sears, Roebuck and Company, 1906

• Continental-scale mail order meant specialization
• Big departments for single bookkeeping functions
• Beginnings of automation

169

First National Bank of Chicago, 1940

170

The software crisis, 1960s

• Large, powerful mainframes made complex systems
possible

• People started asking why project overruns and
failures were so much more common than in
mechanical engineering, shipbuilding, etc.

• The term software engineering coined in 1968
• The hope was that we could things under control

by using disciplines such as project planning,
documentation and testing

171

Those things which make writing

software fun also make it complex

• Joy of solving puzzles and building things from
interlocking parts

• Stimulation of a non-repeating task with
continuous learning

• Pleasure of working with a tractable medium, ‘pure
thought stuff’

• Complete flexibility – you can base the output on
the inputs in any way you can imagine

• Satisfaction of making stuff that’s useful to others

172

How is software different?

• Large computer systems become qualitatively more
complex, unlike big ships or long bridges

• The tractability of software leads customers to demand
flexibility and frequent changes

• This makes systems more complex to use over time as
features accumulate, and interactions have odd effects

• The structure can be hard to visualise or model
• The hard slog of debugging and testing piles up at the

end, when the excitement’s past, the budget’s spent
and the deadline’s looming

173

Software economics can be nasty

• Consumers buy on sticker price
• Businesses buy based on total cost of ownership
• Vendors use lock-in tactics
• Complex outsourcing

174

Cost of software: development 10%,

maintenance 90%

cost

development operations legacy time

175

Measuring cost of code is hard

First IBM measures (1960s)
• 1.5 KLOC per developer-year (operating system)
• 5 KLOC per developer-year (compiler)
• 10 KLOC per developer-year (app)

AT&T measures
• 0.6 KLOC per developer-year (compiler)
• 2.2 KLOC per developer-year (switch)

176

KLOC is a poor measure

Alternatives:
• Halstead (entropy of operators/operands)
• McCabe (graph entropy of control structures)
• Function point analysis

//Print out hello
for (int i = 0; i < 4; i++) {
System.out.println(“Hello, world”);

}

for (int i = 0; i < 4; i++) { System.out.println(“Hello, world”);}

System.out.println(“Hello, world”);
System.out.println(“Hello, world”);
System.out.println(“Hello, world”);
System.out.println(“Hello, world”);

1.

2.

3.

177

Early lessons: productivity varies,

use a high-level language

• Huge variations in productivity between individuals
• The main systematic gains come from using an

appropriate high-level language since they reduce
accidental complexity; programmer focuses on
intrinsic complexity

• Get the specification right: it more than pays for
itself by reducing the time spent on coding and
testing

178

Barry Boehm surveyed relative costs

of software development (1975)

Spec Code Test
C3I 46% 20% 34%
Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%

• All stages of software development require
good tools

179

Mythical Man-Month: “adding manpower
to a late project makes it later”

Example project with 3 developers and 9 months.
Initial estimate is 9 person-months each for spec,
code and test.

• But spec ends up taking 12 PMs. What do you do?

3 3 3 3 3 3 3 3 3

Specification Code Test

180

Mythical Man-Month: “adding manpower
to a late project makes it later”

We try to catch up:
• Train 3 more developers in the first month, then use

all 6 developers in the next month
• But: work of 3 developers in 2 months can’t be done

by 6 developers in 1 – interaction costs maybe O(n2)

3 3 3 3 3 6 3 3 3

Specification Code Test

Train

181

Time to first shipment is cube root of

developer-months (Boehm, 1984)

" = 2.5' d
where " is time to first shipment and d is developer
months

• With more time, costs rise slowly
• With less time, costs rise sharply
• Hardly any projects succeed at ¾"
• Some projects still fail

182

The Software Tar Pit

183

Take a structured, modular approach

• Only practical way forward is modularisation

• Divide a complex system into small components
• Define clear APIs between them
• Lots of methodologies based on this idea:

• SSDM
• Jackson
• Yourdon,
• UML,
• …

184

The Waterfall Model (1970)

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

185

The Waterfall Model (1970)

Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify

186

Waterfall Model has advantages

• Compels early clarification of system goals
• Supports charging for changes to the requirements
• Works well with many management and tech tools
• Where it’s viable it’s usually the best approach
• The really critical factor is whether you can define

the requirements in detail in advance. Sometimes
you can (Y2K bugfix); sometimes you can’t (HCI)

187

Waterfall fails where iteration is

required, such as:

• Requirements not yet understood by developers
• Not yet understood by the customer
• The technology is changing
• The environment (legal, competitive) is changing
• …

188

Iterative development

Develop
outline spec

Build system Use system

Deliver system

OK?
No

Problem: this algorithm
might not terminate!

189

Spiral Model

1. Determine objectives
2. Identify and
resolve risks

3. Development and test

4. Plan next
iteration

190

• Decide in advance on a fixed number of iterations
• Each iteration is done top-down
• Driven by risk management (i.e. prototype bits you

don’t yet understand)

Spiral model invariants

191

Software and Security

Engineering
Lecture 8

Alastair R. Beresford

arb33@cam.ac.uk
With many thanks to Ross Anderson

192

Warm up: Which motor reversing

circuit is the safe?

193

Evolutionary model

• By the 1990s some codebases had become so big
and complex they had to evolve

• Solution: use automatic regression testing

• Firms now have huge suites of test cases which run
against daily builds of software

• Development cycle is then to add changes, check
them into a repository, and test them

194

The Integrated Development

Environment (IDE) includes…

• Code and documentation under version control (Git)
• Code review (Gerrit)
• Automated build system (Maven)
• Continuous integration (Jenkins)
• Dev / Test / Prod deployment (Webserver)

195

Content-heavy apps benefit from

four host types

Content
Latest Stable

Test Dev

Staging ProdSo
ft

w
ar

e

S
t
a

b
le

L
a

t
e

s
t

196

Assurance of critical software:

must study how things fail

• Critical software avoids certain class of failures with
high assurance

• Safety-critical systems: failure could cause, death,
injury or property damage

• Security-critical systems: failure could allow leakage
of confidential data, fraud, …

• Real-time systems: software must accomplish
certain tasks on time

Critical computer systems have much in common
with mechanical systems (bridges, brakes, locks)

197

Tacoma Narrows, 7th Nov 1940

https://www.youtube.com/watch?v=j-zczJXSxnw 198

Hazard elimination

• Which motor reversing circuit is the safe above?
• Some architecture and tool choices can eliminate

whole classes of software hazards, e.g. using a
garbage collector to eliminate and memory leaks.

• But usually hazards involve more than just software
199

Ariane 5, 4th June 1996

• Ariane 5 accelerated faster than Ariane 4, causing
an error in float-to-integer conversion

• The backup inertial navigation set core dumped,
which was interpreted by as flight data

• Full nozzle deflection ® 20o angle of attack ®
booster separation

200

Multi-factor failure

• Many safety-critical systems are also real-time
systems used in monitoring or control

• Exception handling is often tricky
• Criticality of timing makes many simple verification

techniques inadequate
• Testing is often really hard

201

Emergent properties

• In general, safety is a system property and has to be
dealt with holistically

• The same goes for security, and real-time
performance too

• A very common error is not getting the scope right
• For example, designers don’t consider human

factors such as usability and training

202

Therac-25: radiotherapy machine

• Three people
died in six
accidents

• Example of fatal
programming
error

• Usability issues
• Poor safety

engineering

203

Therac had two operating modes

• 25 MeV electron
focused beam to
generate X-rays

• 5-25 MeV spread
electron beam for
skin treatment

Safety requirement:
don’t fire focused
beam at humans

204

Therac-25 used software to

enforce safe operation

• Previous models (Therac-6 and 20) used
mechanical interlocks to prevent high-intensity
beam use unless X-ray target in place

• The Therac-25 replaced these with software
• Fault tree analysis arbitrarily assigned probability of

10-11 to ‘computer selects wrong energy’
• Code was poorly written, unstructured and not

properly documented

205

Therac-25 caused injuries

• Marietta, GA, June 1985: woman’s shoulder burnt.
Settled out of court. FDA not told

• Ontario, July 1985: woman’s hip burnt. AECL found
microswitch error but could not reproduce fault;
changed software anyway

• Yakima, WA, Dec 1985: woman’s hip burned. ‘Could
not be a malfunction’

206

Therac-25 killed three people

• East Texas Cancer Centre, March 1986: man burned
in neck and died five months later of complications

• Same place, three weeks later: another man
burned on the face and died three weeks later

• Hospital physicist managed to reproduce flaw: if
parameters changed too quickly from X-ray to
electron beam, the safety interlock failed

• Yakima, WA, January 1987: man burned on the
chest and died due to different bug now thought to
have caused Ontario accident

207

Therac-25: East Texas deaths due

to editing beam type too quickly

208

Therac-25: root cause analysis

• Manufacturer ignored safety aspects of software
• Confusion between reliability and safety
• Lack of defensive design
• Inadequate reporting, follow-up or regulation
• Unrealistic risk assessments
• Inadequate software engineering practices
• Manufacturer left the medical equipment business

209

Software safety myths: cheaper,

easy to change, reliable

• Computers are cheaper than analogue devices
• Shuttle software cost $108 pa to maintain

• Software is easy to change
• Exactly! But it’s hard to change safely…

• Computers are more reliable
• Shuttle software had 16 potentially fatal bugs found

since 1980 – and half of them had flown

• Increasing reliability increases safety
• They’re correlated but not completely

210

Software safety myths: reuse, formal

methods, testing and automation

• Reuse increases safety
• Counter examples: Ariane 5, Patriot and Therac-25

• Formal verification can remove all errors
• Not even for 100-line programs

• Testing can make software arbitrarily reliable
• For MTBF of 109 hours you must test >109 hours

• Automation can reduce risk
• Also an opportunity for new types of failure

211

Stratus computer: redundant

hardware for non-stop processing

CPU

CPU CPU

CPU

? ?

212

Redundant hardware does not

solve software engineering issues

• Hardware can still fail; backup inertial navigation
failed first on the Ariane rocket

• Redundant hardware creates additional software
engineering issues

• Redundant software (multi-version programming)
sounds promising…

• But: errors are correlated, dominated by failure to
understand requirements (Leveson)

• Implementations often give different answers

213

Redundancy in the Boeing 737

214

Panama crash with 47 fatalities

6th June 1992

• Need to know which way up
• New EFIS (each pilot), WW2

artificial horizon (top right)
• EFIS failed due to loose wire
• Both EFIS fed off same inertial

navigation set
• Pilots watched EFIS, not AH
• And again: Korean Air cargo

747, Stansted 22nd Dec 1999
Lower photo: CC-BY-SA Markus Vitzethum 215

Kegworth crash, 47 fatalities

8th January 1989

• Fan blade broke
• Crew shutdown wrong

engine
• Emergency landing at

East Midlands
• Opened throttle on final

approach: no power
• Initially blamed wiring;

later cockpit design
216

Aviation is actually an easy case

• It’s a mature evolved system
• Stable components: aircraft design, avionics design,

pilot training, air traffic control …
• Interfaces are stable
• Crew capabilities are well known
• The whole system has good incentives for learning

– much better than with medical devices
• Excellent regulation and reporting

Still complex social-technical system that exhibits failure

217

Understand and prioritise hazards

Example from the motor industry:

1. Uncontrollable: outcomes can be extremely
severe and not influenced by human actions

2. Difficult to control: very severe outcomes,
influenced only under favourable circumstances

3. Debilitating: usually controllable, outcome at
worst severe

4. Distracting; normal response limits and outcome
to minor

5. Nuisance: affects customer satisfaction but not
normally safety

218

Managing safety and security

across the software lifecycle

• Develop a safety case or security policy
• Design a management plan
• Identify critical components
• Develop test plans, procedures, training
• Plan for and obtain certification
• Integrate all the above into your development

methodology (waterfall, spiral, evolutionary, …)

219

Most mistakes occur outside the

technical phases

Challenging parts are often:
• Requirements engineering
• Certification
• Operations
• Maintenance

This is due to the interdisciplinary nature of these
parts, involving technical staff, domain experts, users,
cognitive factors, politics, marketing, …

220

The Internet of Things:

safety now includes security

• Cars, medical devices, electricity grid all have 10+
year lifetimes as well as formal certification

• All contain software; will be Internet connected
• Apparent conflict between safety and security

• E.g. first DDoS attack (Panix ISP) was from driven from
hacked Unix machines with medical certification

• Good security requires us to move to monthly
patching, yet this conflicts with the safety case

221

Software engineering tools help

us manage complexity

Homo sapiens uses tools when some parameter of a
task exceeds our native capacity. So:

• Heavy object: raise with lever
• Tough object: cut with axe
• …
• Software complexity: ?

222

Good tools eliminate incidental
and manage intrinsic complexity

Incidental complexity: dominated programming in
the early days, including writing programs in
assembly. Better tools eliminate such problems.

Intrinsic complexity: the main problem today, since
we now write complex systems with big teams. There
are no solutions, but tools help, including structured
development, project management tools, …

223

High-level languages remove

incidental complexity

• 2 KLOC per year goes much farther than assembler
• Code easier to understand and maintain
• Appropriate abstraction: data structures, functions,

objects rather than bits, registers, branches
• Structure finds many errors at compile time
• Code may be portable; or at least, the machine-

specific details can be contained

Huge performance gains possible, now realised

224

High-level languages support

structure and componentisation

Much historical work on both languages and language
features, including:
• “Goto statement considered harmful” (Dijkstra, 1968)
• Structured programming with Pascal (Wirth, 1971)
• Object-oriented programming (see OOP course)
• …

Don’t forget: this is to manage intrinsic complexity

225

Formal methods find bugs,

but it is fallible

History:
• Turing talked about proving programs correct
• Floyd-Hoare logic; Floyd (1967), Hoare (1969)
• HOL; Gordon (1988)
• Z notation
• BAN logic
• …

226

Static analysis tools are a useful

result of formal methods

227

Chief programmers (IBM, 1970s)

Aim: avoid loss of great programmers to management
and capitalise on wide productivity variance

• Teams consisting of chief programmer, apprentice,
toolsmith, librarian, admin assistant, etc.

• Can be effective during implementation
• But each team can only do so much

228

Egoless programming: minimize

personal factors (Weinberg, 1971)

• Code should be owned by the team
• Direct opposite to the Chief Programmer approach
• Groupthink can entrench bad practice deeply

229

Literate programming (Knuth, 1984)

• Treat programs as literature, readable by humans
• Primarily a work of literature, with code added
• Literate programs are compiled in two ways:

• Weaving: a comprehensive human-readable document
about the program and its maintenance.

• Tangling: the machine executable code

• Literate programming is not documentation
embedded in code, such as Javadoc.

230

Capability Maturity Model

(Humphrey, 1989)

1. Initial (chaotic, ad hoc, individual heroics) – the
starting point for use of a new process

2. Repeatable – the process is able to be used
repeatedly, with roughly repeatable outcomes

3. Defined – the process is defined/confirmed as a
standard business process

4. Managed – the process is managed according to
the metrics described in the Defined stage

5. Optimized – process management includes
deliberate process optimization/improvement

231

Extreme programming (Beck, 1999)

• Iterative development with short cycles
• Automated build and test suites
• Frequent points to integrate new requirements
• Solve the worst problem, repeat
• Avoid programming a feature until needed
• Programming in pairs, one keyboard and screen
• Extensive code review

232

Agile software development (2001)

Four values:
• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Also twelve principles (see related work), including
frequent release, daily meetings, working software as
measure of progress, regular reflection, etc.

233

The specification still matters

Curtis (1988) found causes of failure were:

1. Thin spread of application domain knowledge
2. Fluctuating and conflicting requirements
3. Breakdown of communication, coordination

Causes were very often linked, and the typical
progression to disaster was 1 ® 2 ® 3

234

Specification is hard: thin spread

of application domain knowledge

• How many people understand everything about
running a phone service, bank or hospital?

• Many aspects are jealously guarded secrets
• Some fields try hard to be open, e.g. aviation
• With luck you might find a real ‘guru’
• You should expect mistakes in specification

235

Specification is hard: fluctuating

and conflicting requirements

• Competing products, new standards, fashion
• Changing environment (takeover, election, …)
• New customers (e.g. overseas) with new needs
• …

236

The specification can kill you

• Spec-driven development of large systems leads to
communication problems since N people means
N(N-1)/2 channels and 2N subgroups

• Big firms have hierarchy; if info flows via ‘least
common manager’, bandwidth will be inadequate

• Proliferation of committees, staff departments
causing politicking, blame shifting

• Management attempts to gain control result in
restricting many interfaces, e.g. to the customer

237

Project management: plan,

motivate, control

A manager’s job is to:
• Plan
• Motivate
• Control

• The skills involved are interpersonal, not technical;
but managers must retain respect of technical staff

• Growing software managers a perpetual problem!
(Managing programmers is like herding cats.)

• Nonetheless there are some tools that can help

238

Project management triangle

Scope

Cost Time

Quality

239

Gantt charts: tasks and milestones

Can be hard to visualise dependencies in large charts

T1

Weeks 1 2 3 4 5 6 7 8

T2

T3

T4

T5

T6

Complete

Today

75% complete

50% complete

0% complete

10% complete

0% complete

240

PERT charts: show critical paths

T1 = 3
T4 = 3

T6 = 3T2 = 4

T5 = 2

T3 = 1

Which paths are critical?
241

Motivating people in groups

• People can slack in groups (free rider, social loafing)
• Competition no good: people who don’t think they

will win stop trying
• Dan Rothwell’s three C’s of motivation:

• Collaboration – everyone has a specific task
• Content – everyone’s task clearly matters
• Choice – everyone has a say in what they do

• Many other factors

242

Testing: half the effort (and cost)

Happens at many levels:
• Design validation, UX prototyping
• Module test after coding
• System test after daily build
• Beta test / field trial
• Subsequent litigation

Cost per bug rises dramatically down this list!

243

Design for testability, use CI and

automate regression testing

Regression Tests: check that new versions of the
software give same answers as old versions
• Customers more upset by failure of a familiar

feature than at a new feature which does not work
• Without regression testing, 20% of bug fixes

reintroduce failures in already tested behaviour
• Test the inputs that your users actually generate
• In hard-core Agile philosophy, tests are the spec

244

A MTBF of x requires testing for x

• Reliability growth models help us assess MTBF,
number of bugs remaining, use in further testing, ...

• Probability, *+, that a particular defect remains after ,
tests is:

*+ = -./+0
where 12 is the virility of the defect

• Yet in large systems, likelihood that the t-th test fails
is proportional to k/t, where k is a constant.

Take away: for 104 hours MTBF, must test >104 hours
245

Changing testers finds more bugs

Bugs

Time

Tester 1 Tester 2 Tester 3 …

246

Think about diversity & inclusion

“Today, I simply wanted to

renew my passport online.

After numerous attempts

and changing my clothes

several times, this example

illustrates why I regularly

present on Artificial

Intelligence/Machine

Learning bias, equality,

diversity and inclusion”

@CatHallam1

247

Tests should exercise the

conditions when system is in use

• Many failures result from unforeseen input or
environment conditions (e.g. Patriot)

• Random testing – fuzzing – now good practice
• Incentives matter: commercial developers look for

friendly certifiers, while military, NASA, DoE
arrange hostile review

• So: to whom do you have to prove what?

248

Keeping all documents in sync is

hard

• How will you deal with management documents
(budgets, PERT charts, staff schedules)?

• Engineering documents (requirements, hazard
analyses, specifications, test plans, code)?

• Possible partial solutions:
• High tech: integrated development environment
• Bureaucratic: plans and controls department
• Social consensus: style, comments, formatting

249

Release management: from

development code to production

• Main focus is on stability
• Add copy protection, rights management
• Critical decision: patch old version or force

upgrade?

Version 1.x release branch

1.1 1.2 2.11.0 2.0 3.0

2.x branch 3.x branch

250

Change control and operations:

important and can be overlooked

• Change control and config are critical; often poor
• Objective: manage testing and deployment
• Someone must assess risk and be responsible for:

• Live running
• Manage backup
• Recovery
• Rollback
• …

• DevOps integrates development and operations

251

Vulnerability disclosure: the modern

consensus is coordinated disclosure
Possible options for discoverer:
1. Disclose without notice: a zero day

2. Publicly disclose after a fixed delay: coordinated or
responsible disclosure

3. Publicly disclose after vendor fix
4. No disclosure, but then vendor can’t fix

Vendors use bug bounty programmes to discourage 1.

252

4

Vulnerability lifecycle

1. Engineer introduces a bug
2. Someone discovers it
3. Coordinated disclosure; disclose at once; or exploit
4. Primary exploit window
5. Patch released
6. Public notification of bug

• What about orphaned devices or Mirai?

1 2 3 5 6

253

Shared infrastructure provides

benefits & implies responsibilities

• We share a lot of code through open source
operating systems, libraries and tools

• Huge benefits but also interaction issues
• Can you cope with an emergency bug fix?
• How do you feed your fixes back to others?
• Do you encourage coordinated disclosure?
• Are you aware of different license terms?

254

Beware of agency issues

• Employees often optimize their own utility, not
project utility (recall London Ambulance Service)

• Bureaucracies are machines for avoiding blame
• Risk reduction becomes compliance
• Tort law reinforces herding: negligence judged ‘by

the standards of the industry’
• So firms do the checklists, use fashionable tools,

hire the big consultants…

255

Focus on outcomes over process

• Metrics easier for regular losses (risk)
• But rare catastrophes are hard (uncertainty)
• How reassuring are fatality statistics? E.g. Train

Protection Systems, Tesla
• Accidents are random, but security exploits are not
• Product liability for death or injury is strict

256

Focus on process over outcomes

• Necessary to adapt as environment changes
• Security development lifecycle is established
• Safety rating maintenance
• Blame avoidance is what bureaucracies do
• Public sector is really keen on compliance
• But leaves a gap of residual risk and uncertainty

257

Getting incentives right is both

important and hard to do

• The world offers hostile review, which we tackle in
stages

• Some use hostile reviewers deliberately
• Standard contract of sale for software in Bangalore:

seller must fix bugs for 90 days
• Businesses avoid risk (regulatory games)

258

UK’s Digital Service Standard: an

example pulling it all together

• Understand user needs
• Do ongoing research
• Have a multidisciplinary team
• Use agile methods
• Iterate & improve frequently
• Evaluate tools and systems
• Understand security & privacy

issues
• Make all new source code open
• Use open standards and

common platforms
• Test the end-to-end service

• Make a plan for being offline
• Make sure users succeed first

time
• Make the user experience

consistent with GOV.UK
• Encourage everyone to use the

digital service
• Collect performance data
• Identify performance indicators
• Report performance data on the

Performance Platform
• Test with the minister

259

The future is challenging: how to

we provide safety and security?

• Car manufactures must do pre-market testing
• Cars now contain lots of safety critical software
• Security requires us to patch bugs when they are

found, yet this might invalidate safety case
• How will today’s car get patches in 2039? 2049?
• What new tools and ideas do we need?

260

Software engineering is about

managing complexity

• Security and safety engineering are going in the
same direction

• We can cut incidental complexity using tools, but
the intrinsic complexity remains

• Top-down approaches can sometimes help, but
really large systems evolve

• Safety and security are often emergent properties
• Remember: all software has latent vulnerabilities

261

Software and security engineering

stretches well beyond the technical

• Complex systems are social-technical
• Institutions and people matter
• Confluence of safety and security may make

maintenance the limiting factor

262

Software as a Service
Engineering

Richard Sharp
Director of Studies for Computer Science, Robinson College

1

What is Saas?

2

SaaS (Software as a Service) refers to
software that is

hosted centrally and licensed to customers on
a subscription basis.

Users access SaaS software via thin clients,
(often web browsers).

3

Traditional software distribution

PoC Purchasing
Decision Deploy Manage/

upgrade

PoC Purchasing
Decision Deploy Manage/

upgrade

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

4

Traditional software distribution

PoC Purchasing
Decision Deploy Manage/

upgrade

PoC Purchasing
Decision Deploy Manage/

upgrade

Customer_1

Customer_n

Software,
and updates.
(versioned
binaries)

Build
software

Release
versioned
binaries ...

Software company

Expensive duplication

Lack of specialization (cf. The Wealth
of Nations, Adam Smith!) 5

SaaS

Deploy Manage/
Upgrade

Build
software

PoC Purchasing
Decision

Provision
accounts

PoC Purchasing
Decision

Provision
accounts

Access to centrally
managed, on-line
services

Much less duplication

Better specialization

Plus central management of state so much simpler

Software company

Customer_1

Customer_n

6

In reality it’s a spectrum

Web, with all
code and state

server-side

Web, with
Javascript

(some code on
client, but

re-downloaded
each session)

VNC (make the
internet into a
long monitor/

keyboard
cable!)

Everything’s a
service

Shipping binaries

Mobile
application with

backend
services (e.g.
typical mobile

game)

Windows
Installer / .exe;

runs
standalone

Mobile app with
server-side

crash reporting

7

Impact of SaaS on the
Software Engineering

Process

8

Impact on the ‘software company’

Deploy Manage/
Upgrade

Build
software

Software company

Build
software

Release
versioned
binaries

Software company

Before After

9

Impact on the ‘software company’
● Now have to worry about building software and running it
● Have to continue evolving/upgrading the software with zero downtime

But the good news:

● ‘Software release’ no longer an all-or-nothing discrete event
○ Provides new ways to manage quality and reduce risk

● Continuous visibility into user behavior
○ Provides user/commercial insights back into iterative software development process

● State and runtime environment fully controlled by service provider
○ Improves quality and makes upgrades a lot easier

10

Managing Continuous
Deployment Without

Downtime

11

Continuous Integration (CI):
short integration cycles lead to greater throughput

Shared
code repo

Developers commit to shared
dev ‘mainline’ branch
frequently (e.g. at least once a
day)

Build on
every

commit

Run
automated
unit tests

Immediate alerting/feedback
on fail condition

Built
artifacts

12

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

13

Built
artifacts

Automated
deploy to ‘test

server’
environment

Run automated
acceptance

tests

Continuous Integration

...

Immediate alerting/feedback
on fail condition

Automated
deploy to

production (‘live
servers’)

How to do this while reducing risk?
How to do this while ‘always on’?

Production monitoring / alerting
provides immediate feedback; but
now failures are visible to customers...

Continuous Deployment (CD):
bring ‘deploy’ into the ‘short cycle’

14

Rolling deploy

Load Balancer

x.y x.y x.y x.y

25% of traffic each

Note: these resources are
usually running in a cloud
platform. So virtual
machines, load balancers,
storage, network etc. can
all be provisioned and
configured through the
cloud platform’s APIs.

15

Rolling deploy: 1) Deploy ‘canary’ (limit exposure/risk)

Load Balancer

x.(y+1)

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

x.y x.y x.y x.y

16

Rolling deploy: 2) Automated monitoring of error rates - OK?

Load Balancer

24.75% of traffic each to x.y
instances

1% of traffic to x.(y+1)

Centralised logging

Automated
alerts

x.(y+1)x.y x.y x.y x.y

17

Rolling deploy: 3) Move traffic from old instance to new

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.y

18

Rolling deploy: 4) Upgrade 0% instance

Load Balancer

25%

Centralised logging

Automated
alerts

0%25%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

19

Rolling deploy: 5) Move traffic from old instance to new etc.

Load Balancer

25%

Centralised logging

Automated
alerts

25%0%25%25%

x.(y+1)x.y x.y x.y x.(y+1)

20

Rolling deploy: Repeat {move traffic old->new; upgrade old}

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%0%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

21

Rolling deploy: …

Load Balancer

25%

Centralised logging

Automated
alerts

25%25%25%

x.(y+1)x.y x.(y+1)x.(y+1)x.(y+1)

Destroy last x.y instance

(If anything
unexpected
happens then
can pause at any
point; aim to ‘roll
forward’ rather
than ‘rolling
back’...)

22

Rolling deploy with service dependencies

Load Balancer

x.y x.y x.y x.y

a.b Dependent service

Challenge:

How do we upgrade the
dependent service while keeping
everything running?

And how do we handle this if we
need to make a ‘breaking change’
to the dependent service’s API?

23

Load Balancer

x.y x.y x.y x.y

a.(b+1) Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)

Rolling deploy with service dependencies

24

Load Balancer

x.(y+1)

a.(b+1) Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)

Rolling deploy with service dependencies

x.y x.y x.y x.y

25

Load Balancer

Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
3. Finish deploy of x.(y+1)

Rolling deploy with service dependencies

x.(y+1)x.(y+1)x.(y+1)x.(y+1)

a.(b+1)

26

Load Balancer

(a+1).0 Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

(a+1).0 supports x.(y+1)
[(a+1).0 doesn’t have to support x.y]

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
3. Finish deploy of x.(y+1)
4. Deploy (a+1).0

Rolling deploy with service dependencies

x.(y+1)x.(y+1)x.(y+1)x.(y+1)

27

Load Balancer

Dependent service

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

(a+1).0 supports x.(y+1)
[(a+1).0 doesn’t have to support x.y]

We say:

a.(b+1)’s API is backwards
compatible with a.b’s API

(a+1).0’s API can introduce a
breaking change

1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
3. Finish deploy of x.(y+1)
4. Deploy (a+1).0

Rolling deploy with service dependencies

(a+1).0

x.(y+1)x.(y+1)x.(y+1)x.(y+1)

28

On Automation: Infrastructure-as-Code
● Problem:

○ Manual deployments are time-consuming and error-prone. Subtle environmental differences
cause bugs.

● Solution:
○ Write code to automate deployments, using Cloud APIs etc.
○ Put deployment code under version control, just like all other code
○ Have development teams write:

■ Application code
■ Code to test the application
■ Code to deploy the application and its associated cloud infrastructure
■ Code to monitor the application and generate alerts

● Frameworks like Terraform and CloudFormation help with this

29

Other SaaS tools for
managing quality

30

Rolling deploy + alerting is a very
effective way of managing quality
vs. big bang release.

(Insight: as long as we manage user
impact, real users become an
invaluable part of the QA process.
NB: QA != Quality)

31

What other SaaS-specific tools are
available for assuring quality?

32

SaaS service
Automated
alerts

Alerting based on
real usage

Synthetic monitoring

33

SaaS service

Synthetic
monitoring

service

Automated
alerts

Automated
playback of
common user
actions

Service
responses

Alert if response differs from expected result or performance

Alerting based on
real usage

Complements regular alerting:

● Deeper testing of
end-to-end behavior

● Can test parts of the site
that are not actively being
used

● Can test important corner
case paths that are not
sufficiently exercised by
real users to show up in
aggregate monitoring

Synthetic monitoring

34

Traffic mirroring

Mirroring
Production

SaaS service
=?

New SaaS
service under

test

New service working? 35

Behavioural analytics
and experiments

36

Analytics collectors

Users; often each identified by unique ID

Behavioural ‘events’ (e.g. At time t, user u, clicked button b)

Big time
sequence
of events
for all users

Reporting

Queries run by
analysts

Processing/
Enrichment

SaaS company’s infrastructure

A simple behavioural analytics pipeline

37

What can we learn from the event logs?

● User/growth metrics:
○ Monthly Active Unique Users (MAU); Daily Active Unique Users (DAU)

● Engagement:
○ Time spent using the service

● Feature usage/growth/engagement metrics:
○ X% of users tried feature F at least once in the last month
○ Y% of users used feature F2 for at least 5 minutes last week
○ Feature F3 usage growing at Z% year-on-year

● Insights based on user segmentation:
○ Users who signed up in January 2018 exhibit an average 2% monthly churn
○ Female users aged between 20-25 are X% more likely to use feature F at least once

38

What else can we learn from the event logs?
● Correlations

○ Usage of feature F2 is correlated with usage of feature F1
○ Daily time spent on the platform is correlated with the number of days since sign-up

● But NOT cause and effect… At least not without an experiment framework.

39

How can we move from correlations to cause/effect?

● Run controlled experiments:
○ Determine hypothesis to test
○ Determine level of exposure, E, (% of users that will go into experiment group)
○ Bucket users into either experiment group (E%) or control group (100-E)%
○ Release a change to the experiment group only
○ Measure relevant metric(s) in both control group and experiment group and determine whether

the observed difference is statistically significant

● By measuring difference between control and experiment groups we can have
some confidence that the only meaningful difference is our ‘change under
test’

● Often pick low E and ramp up (e.g. 1%, 10%, 25%, 50%)
○ Similar to phased deploy alerting, but measures ‘do users like it’ rather than ‘are there errors’

● Experiment throughput can quickly become limited by traffic volume

40

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E then serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

41

A/B test architecture

SaaS service

IF (hash(UID.EID) mod 100) < E then serve experiment variant
ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)
E = size of experiment group for experiment EID

Users

● Users persistently in a control or
experiment group; don’t ‘flap’

● Users in existing experiment group remain
in experiment group as E increased

● Works for multiple concurrent experiments
(but be careful of independence
assumptions)

42

A/B test architecture

SaaS service

Users

Analytics collectors

Behavioural ‘events’:
At time t, user u, in experiment groups for EID1, EID5, clicked button b

For each experiment, e,
generate reports for metrics
of interest segmented by (i)
‘in EID_e’; and (ii) ‘not in
EID_e’. Compare these
results for each metric and
test statistical significance.

Big time-
sequence
of events
for all users

43

Hybrid apps/SaaS

44

Modern apps are often a hybrid of native, web, SaaS

● A mobile app you can download from a store ...
○ Native binaries can deliver lower latency, more controlled on-device experience

● … which accesses web services ...
○ For real-time interaction with other users, accessing live information, making payments,

requesting services etc.

● … which may contain webviews
○ For flexible rendering of content, the structure of which doesn’t have to be specified within the

mobile app itself

45

46

Mobile app Mobile app

Mobile store

Mobile app

Can even do phased releases here to manage quality!

Config
service

Web/
content

SaaS
APIs

Analytics
/ logs

Experiment framework / bucketing state

Reporting

Experiment results

Summary

47

Summary
● Putting the manage/deploy/upgrade cycle to the software company is a

profound change with far-reaching consequences:
○ Economically:

■ Reduces customer TCO and barriers to purchasing
■ Leads to better specialisation, and less duplication; creates new business models

○ Operationally:
■ Enables new ways of doing QA, which changes the economics of testing
■ Phased releases (which can take place over days if required, with flexibility to pause and

fix at any time); live monitoring/alerting
■ Plus other techniques like traffic mirroring; synthetic monitoring
■ A continual game of chess: multiple projects, active phased releases, experiments ...

○ Enables building of higher quality software through increased visibility of user behavior. (N.B.
with great power comes great responsibility!)

■ Behavioural analytics
■ Experiments

48

An introduction to software
testing
Andrew Rice

Some problems can be detected statically

1 fun nth 0 (x::_) = x

2 | nth n (x::xs) = nth (n-1) x;

2

Many problems cannot

1 fun nth 0 (x::_) = x

2 | nth n (x::xs) = nth (n-1) xs;

3

4 var l = nth 10 [1,2,3];

3

Testing checks how software performs at run-time

System
under
test

Input
values

Output
behaviour

4

OraclePass
or

Fail?

Objectives

1. Identify different types of test
2. Be able to write a 'good' unit test
3. Know about some techniques for measuring test quality
4. Understand how testing fits into the software development process

5

Different types of test

6

Unit tests
check isolated pieces of functionality

Integration tests
check that the parts of a system work together

E2E (end-to-end) tests
simulate real-user scenarios

We will consider three kinds of testing

7

Unit tests
70%

Integration tests
20%

E2E tests
10% Complex &

Expensive

Simple &
Cheap

8

These form the 'testing pyramid'

(1) What kind of test is this?

Testing whether clicking the logout button on a website clears the cookie set in the
user's browser.

9

Unit

Integration

E2E

(2) What kind of test is this?

Testing that the computeShortestPath function returns a sensible result when
there are negative edge-weights in the graph.

10

Unit

Integration

E2E

(3) What kind of test is this?

Testing whether the room booking system is able to query a user's calendar
correctly

11

Unit

Integration

E2E

Unit testing demo

static long calculateAgeInDays(String dateOfBirth) {
Instant dob = dateFormat.parse(dateOfBirth).toInstant();
Instant currentTime = new Date().toInstant();
Duration age = Duration.between(dob, currentTime);
long ageInDays = age.toDays();
if (ageInDays < 0) {

return 0;
}

return ageInDays;
 }
}

12

Unit testing takeaway points

Design for test: dependency injection

Test naming

One property per test

Arrange, Act, Assert

Writing assertions

JUnit lifecycle

Using @Before vs constructors

13

Mocking can be used to simulate a dependency

1 import static org.mockito.Mockito.mock;
2 import static org.mockito.Mockito.when;
3 import static org.mockito.Mockito.verify;
4
5 LinkedList mockedList = mock(LinkedList.class);
6
7 // can specify behaviour that you want
8 when(mockedList.get(0)).thenReturn("first");
9
10 mockedList.add("added");
12 // assert that things got called
11 verify(mockedList).add("added");

14

Integration and E2E tests are more complicated

Testing whether clicking the logout button on a website clears the cookie set in the
user's browser

1. Start up a test instance of the server
2. Start a webdriver
3. Login to the site and collect the session cookie
4. Simulate a click on the logout button
5. Check the response from the server contains the directive to clear the cookie

15

A 'flaky' test will pass and fail on the same code

non-hermetic reliance on external systems

more complex tests tend to be more flaky

% of tests that are flaky

All tests 1.65%

Java webdriver 10.45%

Android emulator 25.46%

https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
16

Automated test generation can find unnoticed bugs

Many approaches

One example is random testing

● Generate inputs at random
● Use search to refine these inputs to make them more effective
● Check for 'bad things' like a buffer overflow
● See https://github.com/google/oss-fuzz - found thousands of security

vulnerabilities in open source code

17

How good are my tests?

18

Code coverage detects how much code you execute

(Demo)

19

100% coverage does not mean bug-free!

public static void xPlusYMinusZ(double x, double y, double z) {
double t = x + y;
return t - z;

}

@Test
public void xPlusYMinusZ_correctlyCombines_smallNumbers() {

double r = xPlusYMinusZ(2.0, 2.0, 2.0)
// check floating point values with error tolerance...
assertThat(r).isWithin(0.1).of(2.0);

}

This has 100% coverage but the code still has a bug...

20

Test coverage can use various properties

1 if (a == 0) {

2 ...;

3 }

4 else {

5 if (b) {

6 ...;

7 }

8 if (c) {

9 ...;

10 }

11 }

21

Statement coverage: all lines were
executed

Branch coverage: all decisions were
explored at every branch

Path coverage: all paths through the
program were taken

Data flow coverage: is every possible
definition tested

Mutation testing can tell us how robust our tests are

Generate small changes to the program under test

● change + to a -
● change constant term
● negate a condition

Verify that this causes a test to fail

22

Integrating testing into your software
engineering process

23

Defects in software are inevitable

Expect 1-25 errors per 1000 lines for delivered software

See Steve McConnell, "Code Complete" 2nd edition, p521, p517

80% of errors are in 20% of the project's classes

24

Defects in software are inevitable

Expect 1-25 errors per 1000 lines for delivered software

● when we find a problem we need to know we've fixed it
● once we fix a bug it needs to stay fixed

See Steve McConnell, "Code Complete" 2nd edition, p521, p517

80% of errors are in 20% of the project's classes

● if we can't test everything then prioritise the error prone parts

25

Continuous integration automatically runs tests

Don't want broken code committed to the repository

Run test suite on every change: can reject changes which break tests or just
report

26

Regression testing preserves existing functionality

1. Write tests that exercise existing functionality
2. Develop new code
3. Run tests to check for regressions

27

Regression testing helps with bug fixing

1. Write test that reproduces bug
2. Check that it fails
3. Fix bug
4. Check that test passes

28

We can't run all the tests on every change

Google has 4.2 million tests and 150 million test executions every day

Need to deliver results to developers quickly

Need to manage the execution cost of running tests

See "The State of Continuous Integration Testing @Google"

29

Test suite minimisation
Choose a subset of tests which achieve coverage on the project

Test set selection
Choose a subset of tests which are appropriate for the change submitted

Test set prioritisation
Choose an ordering such that tests more likely to find a defect are run earlier

30

Example: test suite minimisation

Select a minimal subset of tests which maximise coverage over the project

NP-complete problem so use heuristics

If some test is the only test to satisfy a test requirement then it is an essential test.

1) Choose all the essential tests
2) Choose remaining tests greedily in order of coverage added

31

Test Driven Development uses tests as specification

1. Write tests which demonstrate the desired behaviour
2. Implement new functionality
3. Check tests now pass
4. Repeat

Pros: guarantees that you write tests and that your code is testable, tests can be
written that directly describe the customer's requirements.

Cons: early commitment to how the project will work, changes in approach are
hard, some areas are more important to test than others.

32

Objectives

1. Identify different types of test
2. Be able to write a 'good' unit test
3. Know about some techniques for measuring test quality
4. Understand how testing fits into the software development process

33

...program testing may convincingly demonstrate the presence of bugs, but can
never demonstrate their absence…

--- E. W. Dijkstra

34

