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Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically. N

[But often: simple algorithm at the cost of a sophisticated analysis! ]

1. Introduction © T. Sauerwald Introduction



Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

“.. If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms | would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”

- Donald E. Knuth (in Randomization and Religion)
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deterministically.

“.. If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms | would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”

- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.
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Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

“.. If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms | would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”

- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if | (initially) don’t care about randomised algorithms?

Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.
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Some stuff you should know...

In this course we will assume some basic knowledge of probability:
= random variable
= computing expectations and variances
= notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

OSGEBB’
BOIEEIEIED
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Some stuff you should know...

In this course we will assume some basic knowledge of probability:
= random variable
= computing expectations and variances
= notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

OSGEBB’
BOIEEIEIED

You should also be familiar with basic computer science, mathematics
knowledge such as:

= graphs
= basic algorithms (sorting, graph algorithms etc.)
= matrices, norms and vectors
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Textbooks

The DESIGN of

APPROXIMATION

. SECOND EDITION ALGORITHMS

= (x) Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cambridge
University Press, 2nd edition, 2017

= David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms, Cambridge University Press, 2011

= Cormen, T.H., Leiserson, C.D., Rivest, R.L. and Stein, C. Introduction to
Algorithms. MIT Press (3rd ed.), 2009
(We will adopt some of the labels (e.g., Theorem 35.6) from this book in
Lectures 6-10)
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1 Introduction (Lecture)
= Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.
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1 Introduction (Lecture)
= Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2-3 Concentration (Lectures)
= Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.
4 Markov Chains and Mixing Times (Lecture)
= Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time
5 Hitting Times and Application to 2-SAT (Lecture)

= Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm
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1 Introduction (Lecture)
= Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2-3 Concentration (Lectures)

= Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)

= Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
= Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm
Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6—7 Linear Programming (Lectures)
= Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming
8 Travelling Salesman Problem (Interactive Demo)

= Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs
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We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9-10 Randomised Approximation Algorithms (Lectures)
= MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm
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We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9-10 Randomised Approximation Algorithms (Lectures)
= MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-12 cover a more advanced topic with ML flavour:
11-12 Spectral Graph Theory and Spectral Clustering (Lectures)

= Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times
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A (Very) Brief Reminder of Probability Theory
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Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (2, X, P).
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Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (2, X, P).

Components of the Probability Space (2, ¥, P)

= The Sample Space 2 contains all the possible outcomes w1, wo, . . .
of the experiment.

= The Event Space X is the power-set of Q containing events, which
are combinations of outcomes (subsets of Q including @ and Q).
= The Probability Measure P is a function from X to R satisfying
(i) 0<P[&] <1, forallEex
(i) P[Q] =1
(iii) 1 &1,8s,... € X are pairwise disjoint (£; N & = @ for all i # j) then

o] - S
i=1 i=1
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Recap: Random Variables

A random variable X on (€, ¥, P) is a function X : Q@ — R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.
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A random variable X on (€, ¥, P) is a function X : Q@ — R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

~—— Examples of random variables

= The number of heads in three coin flips X1, X2, X5 € {0,1} is:
Xi+Xo+ X3
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A random variable X on (€, ¥, P) is a function X : Q@ — R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

~—— Examples of random variables
= The number of heads in three coin flips X1, X2, X5 € {0,1} is:

Xi+Xo+ X3

= The indicator random variable 1¢ of an event £ € ¥ given by

16 (w) 1 fweé
w) =
€ 0 otherwise.
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Recap: Random Variables

A random variable X on (€, ¥, P) is a function X : Q@ — R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

~—— Examples of random variables

= The number of heads in three coin flips X1, X2, X5 € {0,1} is:
Xi+Xo+ X3

= The indicator random variable 1¢ of an event £ € ¥ given by

1 fweé
1 =
e(@) {0 otherwise.

For the indicator random variable 1 we have E[1:] =P [£].
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Recap: Random Variables

A random variable X on (€, ¥, P) is a function X : Q@ — R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

~—— Examples of random variables

= The number of heads in three coin flips X1, X2, X5 € {0,1} is:
Xi+Xo+ X3

= The indicator random variable 1¢ of an event £ € ¥ given by

16 (w) 1 fweé
w) =
€ 0 otherwise.

For the indicator random variable 1¢ we have E[1c] = P[£].
= The number of sixes of two dice throws Xi, X; € {1,2,...,6}is

Tx,=6 + 1x,=6
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Recap: Boole’s Inequality (Union Bound)

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Us] < ip[e,-].
i=1 i=1
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Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Us] < ip[a].
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Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Ue] < ip[e,-].

A Proof using Indicator Random Variables:
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Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Us] < ip[a].

A Proof using Indicator Random Variables:
1. Let 1¢,; be the random variable that takes value 1 if £ holds, 0 otherwise
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Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound
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Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Us] < ip[a].

A Proof using Indicator Random Variables:

1. Let 1¢,; be the random variable that takes value 1 if £ holds, 0 otherwise
2. E[1g] =P[&i] (Check this)

3. ltisclearthat 1y ¢, < Y7, 1¢ (Check this)
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Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

Union Bound

Let &1,...,En be a collection of events in X. Then

P {Us] < ip[a].

A Proof using Indicator Random Variables:

1. Let 1¢,; be the random variable that takes value 1 if £ holds, 0 otherwise
2. E[1g] = P[&i] (Check this)

3. ltisclearthat 1yyr ¢ < 357, 1¢, (Check this)

4. Taking expectation completes the proof.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin B C V.

— MAX-CUT Problem
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin B C V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

— MAX-CUT Problem

= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.

()
g
Oee

S={a,b,e}
e(S,S8¢) =6

1. Introduction © T. Sauerwald Basic Examples 14



A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.

Applications:
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.

Applications:
= network design, VLSI design

= clustering, statistical physics 0'0

S={a,b,e}
e(S,S°) =6
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A Randomised Algorithm for MAX-CUT (1/2)

E (A, B): set of edges with one endpointin A C V and the otherin BC V.

—— MAX-CUT Problem
= Given: Undirected graph G = (V, E)
= Goal: Find S C V such that e(S, S°) := |E (S, S°) | is maximised.

Applications:

= network design, VLSI design

= clustering, statistical physics 9'0
Comments:

= This problem will appear again in the course e
= MAX-CUT is NP-hard ° e ©

= |t is different from the clustering problem, where we
want to find a sparse cut
S={a,b,e}

= Note that the MIN-CUT problem is solvable in e(S,5°) =6
polynomial time!
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S« 0
2: For each v € V, add v to S with probability 1/2
3: Return S
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G [Thls kind of “random guessmg " will appear often in this course! J
1. Start with S« 0
2: For each v € V, add v to S with probability 1/2
3: Return S
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition

RANDMAXCUT(G) gives a 2-approximation using time O(n).
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).

Question:
, ’ , 1. What is the sample space Q here?
= B = > Which quantity do we need to analyse?
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition

RANDMAXCUT(G) gives a 2-approximation using time O(n).

Proof:
= We need to analyse the expectation of e (S, S°¢):
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition

RANDMAXCUT(G) gives a 2-approximation using time O(n).

Proof:
= We need to analyse the expectation of e (S, S°¢):

E[e(S,S%]
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).

Proof:
= We need to analyse the expectation of e (S, S°¢):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).

Proof:
= We need to analyse the expectation of e (S, S°¢):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E

= > E[1{ecsvescjufuesevesy)
{u,v}eE
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
3: Return S
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A Randomised Algorithm for MAX-CUT (2/2)
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2: For each v € V, add v to S with probability 1/2
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Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).
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= We need to analyse the expectation of e (S, S°):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E

= Z E [1{uesveseiuiuese,vesy |

{u,v}eE

= > P[{ueSves}Iu{ues’ves}]

{u,v}eE

=2 Y PlueSves]=2 > PlucS] P[ves]
{u,v}eE {u,v}€E

1. Introduction © T. Sauerwald Basic Examples 15



A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S « 0
2: For each v € V, add v to S with probability 1/2
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S« 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).

Proof:
= We need to analyse the expectation of e (S, S°):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E

= Z E [1{uesveseiuiuese,vesy |

{u,v}eE

= Y Pluesvesjuuesves)]

{u,v}eE

=2 Y PlueSves] =2 > PlucS]-P[veS] =|E|/2
{u,v}eE {u,v}eE

= Since forany S C V, we have e (S, S°¢) < |E|, the proof is complete.
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S« 0
2: For each v € V, add v to S with probability 1/2
3: Return S

Proposition
RANDMAXCUT(G) gives a 2-approximation using time O(n).

Broof LLater: learn stronger tools that imply concentration around the expectation! ]
roof:

—
= We need to analyse the expectation of e (S, S°):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E

= Z E [1{uesveseiuiuese,vesy |

{u,v}eE
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{u,v}eE {u,v}eE

= Since forany S C V, we have e (S, S°¢) < |E|, the proof is complete.
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A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with S« 0
2: For each v € V, add v to S with probability 1/2
3: Return S

; - . |
Proposition _[More details on approximation algorithms from Lecture 9 onwards! )

RANDMAXCUT(G) gives a 2-approximation using time O(n).

Broof LLater: learn stronger tools that imply concentration around the expectation! j
roof:

—
= We need to analyse the expectation of e (S, S°):

E[e(55°)] =E| > 1esvescjufuess,ves)
{u,v}e€E

> E[1pesvesciuuese,vesy |

{u,v}eE

= Y P[{ueSvesS}u{ues’veS}]

{u,v}€E

=2 Y PlueSves] =2 > PlucS]-P[veS] =|E|/2
{u,v}eE {u,v}eE

= Since forany S C V, we have e (S, S°¢) < |E|, the proof is complete.
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

Coupon Collector Problem
Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

1. Introduction © T. Sauerwald Basic Examples 16



Example: Coupon Collector

e

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. j

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. J

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4(Example Sequence forn=8: 7,6,3,3,3,2,5,4,2,4,1,4,2,1,4,3,1,4,8 v ]
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. J

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4(Example Sequence forn=8: 7,6,3,3,3,2,5,4,2,4,1,4,2,1,4,3,1,4,8 v ]

Exercise ( [Ex. 1.11])
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. J

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4‘ Example Sequence forn=28: 7,6,3,3,3,2,5,4,2,4,1,4,2/1,4,3,1,4,8 v ]

Exercise ( [Ex. 1.11])

1. Prove it takes n>_;_, 1? ~ nlog n expected boxes to collect all coupons
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. J

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4(Example Sequence forn=8: 7,6,3,3,3,2,5,4,2,4,1,4,2,1,4,3,1,4,8 v ]

Exercise ( [Ex. 1.11]) [In this course: logn =Inn ]

. Zz
1. Prove it takes n>_;_, ‘E ~ nlog n expected boxes to collect all coupons
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/1ife/567954/Discount - codes-money- saving-vouchers- coupons-mum

[This is a very important example in the design and analysis of randomised algorithms. J

Coupon Collector Problem N\

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

4(Example Sequence forn=8: 7,6,3,3,3,2,5,4,2,4,1,4,2,1,4,3,1,4,8 v ]

Exercise ( [Ex. 1.11]) [In this course: logn = Inn ]
1. Prove it takes n>_;_, ‘E ~ nloﬁexpected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
nlog n + cn boxes to collect all n coupons is < e~°.

Hint: It is useful to remember that 1 — x < e~ * for all x

1. Introduction © T. Sauerwald Basic Examples 16
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Introduction to Chernoff Bounds
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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour

= |t gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Chernoff Bounds: A Tool for Concentration (1952)

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

Hermann Chernoff (1923-)

(=8 v (1+8pu
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Chernoff Bounds: A Tool for Concentration (1952)

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

= easy to apply, but requires independence

= have found various applications in:

Hermann Chernoff (1923-)

(=8 » 1+
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Chernoff Bounds: A Tool for Concentration (1952)

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

= easy to apply, but requires independence
= have found various applications in:
= Randomised Algorithms
= Statistics Hermann Chernoff (1923-)
= Random Projections and Dimensionality Reduction
= Learning Theory (e.g., PAC-learning)

|
1

(=8 » 1+
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Recap: Markov and Chebyshev

Markov’s Inequality
If X is a non-negative random variable, then for any a > 0,

P[X>a]l<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

PIIX—E[X]|>a] <V[X]/&.

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds
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Recap: Markov and Chebyshev

Markov’s Inequality
If X is a non-negative random variable, then for any a > 0,

P[X>a]l<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

PIIX—E[X]|>a] <V[X]/&.

= Let f: R — [0, 00) and increasing, then f(X) > 0, and thus
P[X > a] <P[f(X)>f(a)] < E[f(X)]/f(a).
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Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any a > 0,

P[X>a]l<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

PIIX—E[X]|>a] <V[X]/&.

= Let f: R — [0, 00) and increasing, then f(X) > 0, and thus
P[X > a] <P[f(X)>f(a)] < E[f(X)]/f(a).

= Similarly, if g : R — [0, c0) and decreasing, then g(X) > 0, and thus
P[X <a] <P[g(X) > g(a)] <E[g(X)]/g(a).

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds
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Recap: Markov and Chebyshev

Markov’s Inequality
If X is a non-negative random variable, then for any a > 0,

P[X>a]<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

PIIX—E[X]|>a] <V[X]/&.

= Let f: R — [0, 00) and increasing, then f(X) > 0, and thus
PIX > a] < P[f(X) > f(a)] < E[£(X)] /f(a).

= Similarly, if g : R — [0, o) and decreasing, then g(X) > 0, and thus
PIX < a]l <P[g(X) > g(a)] < E[g(X)]/g(a)-

N
Chebyshev’s inequality (or Markov) can be obtained by
chosing f(X) := (X — u)? (or f(X) := X, respectively).
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

= Yes!
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

= Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds
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Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +...+ X, and u = E[X] = 37, pi. Then, for
any ¢ > 0 it holds that

5 W
PIX= (140l < |rgem| - O
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Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +...+ X, and u = E[X] = 37, pi. Then, for
any ¢ > 0 it holds that

5 13
PIX= (140l < |rgem| - O

N

\

While (%) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...

]
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Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +...+ X, and u = E[X] = 37, pi. Then, for
any ¢ > 0 it holds that

e’ .
PIX>(+0)u]< [W} : ()
This implies that for any t > p,
—u (81!
PIX>t]<e (t) :

N

\

While (%) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
» Xie {011, X=X",XandE[X]=n-1/2=n/2
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
» Xie {011, X=X",XandE[X]=n-1/2=n/2
= The Chernoff Bound gives for any § > 0,

65 n/2
PIX = (14002 < | 5mem |
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
» Xie {011, X=X",XandE[X]=n-1/2=n/2
= The Chernoff Bound gives for any § > 0,

95 n/2
PIX = (14002 < | 5mem |

= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)

= The inequality is exponential in n, (for fixed §) which is much better than
Chebyshev’s inequality.
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
» Xie {011, X=X",XandE[X]=n-1/2=n/2
= The Chernoff Bound gives for any § > 0,

95 n/2
PIX = (14002 < | 5mem |

= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)
= The inequality is exponential in n, (for fixed §) which is much better than
Chebyshev’s inequality.
ANN
[What about a concrete value of n, say n = 100? ]
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Example: Coin Flips (2/3)

P[Bin(100, 1/2) = x]

0.10

0.08 |

0.06

0.02 |

0.00 7 T T

80

90

100
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3=0.666.
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3=0.666.
* Chebyshev's inequality: V[ X] = 1% V[ X;] = 100 - (1/2)? = 25.

PIX > 1] < VXD,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds

25



Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3=0.666.
* Chebyshev's inequality: V[ X] = 1% V[ X;] = 100 - (1/2)? = 25.

PIX > 1] < VXD,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= Chernoff bound: setting § = 1/2 gives

e1/2

50

NXEWZEMH§<
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3=0.666.
* Chebyshev's inequality: V[ X] = 1% V[ X;] = 100 - (1/2)? = 25.

PIX > 1] < VXD,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= Chernoff bound: setting § = 1/2 gives
e1/2
(3/2)32

= Remark: The exact probability is 0.00000028 ...

50
P[X23/2-E[X]]§< ) = 0.004472.

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds

25



Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3=0.666.
* Chebyshev's inequality: V[ X] = 1% V[ X;] = 100 - (1/2)? = 25.

PIX > 1] < VXD,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= Chernoff bound: setting § = 1/2 gives

el/?
(3/2)%/2

= Remark: The exact probability is 0.00000028 ...

50
P[X23/2-E[X]]§< > = 0.004472.

[Chernoff bound yields a much better result (but needs independence!) j
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How to Derive Chernoff Bounds
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; +--- + X, are:
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; +--- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, \ > 0 and apply Markov's inequality ~ E [ e** ]
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; +--- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, \ > 0 and apply Markov's inequality ~ E [ e** ]

2. Compute an upper bound for E [e*x] (using independence)
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; +--- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, \ > 0 and apply Markov's inequality ~ E [ e** ]

2. Compute an upper bound for E [e*x] (using independence)
3. Optimise value of X to obtain best tail bound

2. Concentration © T. Sauerwald How to Derive Chernoff Bounds



Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)
Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = Y7, p;. Then, for
any § > 0 it holds that

5 I
PIX>(1+6)u] < {W} .

Proof:
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)
Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = Y7, p;. Then, for
any § > 0 it holds that

5 I
PIX>(1+6)u] < {W} .

Proof:
1. For A > 0,

P[X>(1+d&u] < P [e*x > e*(”‘s)“] < e MHIkE [eAX}

e X is incr Markov
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = Y7, p;. Then, for
any § > 0 it holds that

5 I
P[X2(1 +5)N]§ {W] .

Proof:
1. For A > 0,

P X>(1+&Hu] < P [e*x > e*(”‘s)"] < e M+Iug [eAX}

e X is incr Markov

- H?:1E[e)\xi}

2 E[M] =E[e* X% ] =
I
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = Y7, p;. Then, for
any § > 0 it holds that

5 I
P[X2(1 +5)N]§ {W] .

Proof:
1. For A > 0,

P X>(1+&Hu] < P [e*x > e*(”‘s)"} < e M+Iug [e*x}

e X is incr Markov

2. E[e)‘x] =E [eAZF:1Xi]

3.

- H?:1E[e)\xi}

indep

E [eAXf] =ep+(1-p)=1+p(e —1) < &

14x<e”
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Chernoff Bound: Proof
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Chernoff Bound: Proof

1. For A >0,

P[X Z (1 + 6)/14] _ P |:e)\X Z e/\(1+6)u:| < ef)\(1+5),u,E [eAX]

e X s incr Markov

= HLE[G/\)Q}

2 E[e¥] =E[eXh ] -
indep

3.
E [e”f} —ep+(1-p)=1+p(e —1) < &

14x<eX
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Chernoff Bound: Proof

1. For A > 0,
PIX>(1+06u] = P [eAX = emmu] < e MTME [eAX]
e N isincr Markov
2. E[e] =E [e@'":1 X’} 5 I E[e]

3.
E [eAXf} —eptr(1—p)=1+p(e* —1) < &

14x<eX

4. Putting all together

n
P[X > (1+0)u] < e T [er@ ) = g A(H+omgue™ -
i=1
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Chernoff Bound: Proof

1. For A > 0,
PIX>(1+06u] = P [eAX = emmu] < e MTME [eAX]
e X is incr Markov
2. E[e] =E [e@'":1 X’] 5 I E[e]

3.
E [eAXf} —eptr(1—p)=1+p(e* —1) < &

14x<eX

4. Putting all together

n
P[X > (1+0)u] < e T [er@ ) = g A(H+omgue™ -
i=1

5. Choose X = log(1 + d) > 0 to get the result.
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Chernoff Bounds (General Form, Lower Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; + ...+ Xpand pu = E[X] = 27:1 pi. Then, for
any 0 < § < 1 it holds that

—s I
PIX< (-l < | 525 -

and thus, by substitution, for any t < p,

PIX<t]<e™" (e—t“)t.

Exercise on Supervision Sheet
Hint: multiply both sides by —1 and repeat the proof of the Chernoff Bound
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Nicer Chernoff Bounds
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +... + Xpand p = E[X] =37, pi. Then,
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +... + Xpand p = E[X] =37, pi. Then,

= Forall t > 0,
PIX>E[X]+t]<e?/

PIX<E[X]-t]<e 2/
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +... + Xpand p = E[X] =37, pi. Then,

= Forall t > 0,
PIX>E[X]+t]<e
PIX<E[X]-t]<e /"
" ForO0<d <1,

PIX > (14 0)E[X]] < exp (_@

PIX < (1~ 9ELX]] < oop (- TELX)
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xi +... + Xpand p = E[X] =37, pi. Then,
= Forall t > 0,

PIX>E[X]+t]<e
PIX<E[X]-t]<e /"
" ForO0<d <1,

PIX > (14 0)E[X]] < exp (_@

PIX < (1~ 9ELX]] < oop (- TELX)

N

\

All upper tail bounds hold even under a relaxed independence assumption:
Forall1 <i<nandxi,x,...,Xi—1 € {0,1},

P[Xi=1|Xi=x1,...,Xi.1=Xx_1] < pi.
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Application 1: Balls into Bins
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Balls into Bins

JLslglLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.
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You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model
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Balls into Bins

JLslglLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model
= In computer science, there are several interpretations:
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Balls into Bins

JLslglLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model

= In computer science, there are several interpretations:
1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

2. Concentration © T. Sauerwald Application 1: Balls into Bins



Balls into Bins

JLslglLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model

= In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.

2. Concentration © T. Sauerwald Application 1: Balls into Bins



Balls into Bins: Bounding the Maximum Load (1/4)

o el

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.
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Balls into Bins: Bounding the Maximum Load (1/4)

o el

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?
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Balls into Bins: Bounding the Maximum Load (1/4)

o el

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1]=1/n.
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Balls into Bins: Bounding the Maximum Load (1/4)

o el

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1]=1/n.

The total balls in the bin is given by X := >"7 , X.
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Balls into Bins: Bounding the Maximum Load (1/4)

o el

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1]=1/n.

The total balls in the bin is given by X := >"7 , X.
= Since m = 2nlogn, then p = E[X] =2logn
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Balls into Bins: Bounding the Maximum Load (1/4)

JURBLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1]=1/n.

= The total balls in the bin is given by X := >"7 | X..
= Since m = 2nlogn, then u = E[X] =2logn

PIX> 1] < o (ou/t) )
= By the Chernoff Bound,

6log n
P[X > 6logn] < e 2" (288 )™ < g-2loen — -2
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Balls into Bins: Bounding the Maximum Load (1/4)

JURBLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff

ball i is assigned to this bin. Note that p; = P[X; =1] = 1/n.
* The total balls in the bin is given by X := >°7 ., X;. [ here we could have used ]
= Since m = 2nlogn, then u = E[X] =2logn the “nicer” bounds as well!

PIX> 1] < e (ou/t) )
= By the Chernoff Bound,

6log n
P[X > 6logn] < e—2logn (268|Loggnn) < g 2logn — -2
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

PIUE| <D PIgI<n-n?=n"
=1 =1
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

PIUE| <D PIgI<n-n?=n"
=1 =

= Therefore whp, no bin receives at least 6 log n balls
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

P [UE,-] <> Plgl<n-n?=n".
=1 =1

= Therefore whp, no bin receives at least 6 log n balls

whp stands for with high probability:
An event £ (that implicitly depends on an input parameter n) occurs whp if
P[] = 1asn— co.
This is a very standard notation in randomised algorithms
but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

P [UE,-] <> Plgl<n-n?=n".
=1 =1

= Therefore whp, no bin receives at least 6 log n balls

= By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability:
An event £ (that implicitly depends on an input parameter n) occurs whp if
P[] = 1asn— co.
This is a very standard notation in randomised algorithms
but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

= Using the Chernoff Bound: [ P[X>t] < e “(eu/t) ]

Pixzn e (5) < (§)
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

- Using the Chernoff Bound: [ PIX > t] < e “(en/t) ]

Pixzn e (5) < (§)

= By setting t = 4 log n/ loglog n, we claim to obtain P[ X > t] < n™=.

2
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

- Using the Chernoff Bound: [ PIX > t] < e “(en/t) ]

Pixzn e (5) < (§)

= By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n~2.

= |Indeed:

eloglogn #log n/ log log n — e 4logn o eloglogn
4logn - log log n & 4logn
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X>t] < e “(eu/t) ]

Pixzn e (5) < (§)

By setting t = 4log n/ loglog n, we claimtoobtain P[X > t] < n
Indeed:

eloglogn #log n/ log log n — e 4logn o eloglogn
4logn o log log n 4logn

The term inside the exponential is

4logn
loglogn

-(log(e/4) + log log log n — log log n)

-2

)
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X>t] < e “(eu/t) ]

Pixzn e (5) < (§)

= By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n~2.

= |Indeed:

eloglogn #log n/ log log n — e 4logn o eloglogn
4logn - log log n & 4logn

= The term inside the exponential is

4logn
loglogn

4logn 1
-(log(e/4) + logloglog n — log log n) < ——loglogn|,
{g logn 2

This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X>t] < e “(eu/t) ]

Pixzn e (5) < (§)

= By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n~2.

= |Indeed:

eloglogn #log n/ log log n — e 4logn o eloglogn
4logn - log log n & 4logn

= The term inside the exponential is

4logn
loglogn

4logn 1
-(log(e/4) + logloglog n — log log n) < ——loglogn|,
{g logn 2

obtaining that P[ X > t] < n=%/2 = n~2. This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P[X > 4logn/loglogn] < n 2,

thus by the Union Bound, no bin receives more than Q (log n/ log log n) balls
with probability at least 1 — 1/n. O
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Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P[X > 4logn/loglogn] < n 2,

thus by the Union Bound, no bin receives more than Q (log n/ log log n) balls
with probability at least 1 — 1/n. O

= As mentioned on the to prove that whp at least one bin receives at least
clog n/ log log n balls, for some constant ¢ > 0.
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm
= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach

For any m > n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach
For any m > n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.
= for m = nthis gives a maximum load of log, logn+©(1) w.p.1—-1/n.
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach

For any m > n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

= for m = n this gives a maximum load of log, log n+©(1) w.p.1—1/n.
/1

L
This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms
(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)
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ACM Paris Kanellakis Theory and Practice Award 2020

ACM Paris Kanellakis Theory and Practice Award Recipients

Yossi Andrei Anna Michael Eli
Azar Broder Karlin Mitzenmacher Upfal

For ‘“the discovery and analysis of balanced allocations, known as the
power of two choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft
and Dropbox, which are all based on variants of the power of two
choices paradigm. There are many other software systems that use
balanced allocations as an important ingredient.”
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Simulation
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Randomised Algorithms
Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions
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Application 2: Randomised QuickSort
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QuickSort

10:

QUICKSORT (Input A[1], A[2],. .., A[n])
1: Pick an element from the array, the so-called pivot
2: If |[A| = 0or |A] =1 then
3: return A
4: else
Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)

5
6
7:
8:
9
0 return A
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QuickSort

QUICKSORT (Input A[1], A[2],. .., A[n])

: Pick an element from the array, the so-called pivot
: If |JA| =0or |A] =1 then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

SO ®E®NDAORON 2

-

= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
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QuickSort

QUICKSORT (Input A[1], A[2],. .., A[n])

: Pick an element from the array, the so-called pivot
: If |JA| =0or |A] =1 then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

SO ®E®NDAORON 2

-

= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
= Ay =(2,1,5,3,4) and A; = (8,9,7)
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QuickSort

QUICKSORT (Input A[1], A[2],. .., A[n])

: Pick an element from the array, the so-called pivot
: If |JA| =0or |A] =1 then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

SO ®E®NDAORON 2

-

= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
= Ay =(2,1,5,3,4) and A; = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
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QuickSort

QUICKSORT (Input A[1], A[2],. .., A[n])

: Pick an element from the array, the so-called pivot
: If |JA| =0or |A] =1 then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

SO ®E®NDAORON 2

-

= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
= Ay =(2,1,5,3,4) and A; = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
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QuickSort

QUICKSORT (Input A[1], A[2],. .., A[n])

: Pick an element from the array, the so-called pivot
: If |JA| =0or |A] =1 then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A

SO ®E®NDAORON 2

-

= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
= Ay =(2,1,5,3,4) and A; = (8,9,7)
= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
4

[We will now give a proof of this “well-known” result! ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

(8.9)
® ®

[What is the number of comparisons? ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

(8.9)
® ®

What is the number of comparisons? j

)

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?).
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

(8.9)
® ®

What is the number of comparisons? j

)

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?). In this case:

O+14+1+2+2+43+3+3+4=19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= 3", H;
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= 3", H;

3. We will prove that there exists C > 0 such that

P[H< Cnlogn]>1—-n"".
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= 3", H;

3. We will prove that there exists C > 0 such that
P[H< Cnlogn]>1—-n"".

4. Actually, we will prove sth slightly stronger:

P

({H < Clogn}] >1—-n".

i=1
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

2,8,9,1,7,5,6,3,4
2,1,5,3,4

8,9,7
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= Let P be a path from the root to the deepest level of some element
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= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with so = n

. . - 2
= First Case, node: sx .1 < 5 - Sk This even holds always, ]

= Second Case, bad node: s, < sy. i.e., deterministically!
= There areat most T = lo;"g;’g < 3log n many nodes on any path P.

= Assume |P| > Clognfor C :=24
= number of bad vertices in the first 24 log n levels is more than 21 log n.

N
[Let us now upper bound the probability that this “bad event” happens!]

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= X; = 0if the node at level j is

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= X; = 0if the node at level j is

“PX=1]X=X,....X1=x_1]<}

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= X; = 0if the node at level j is

SPIX=1|Xo=X0,..., X 1=x_1]<2 1 ¢3 203

— pivot
J4

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)
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= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:
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= X; = 0if the node at level j is . _bad | _bad | pivot
'P[)(j:1 |X0:Xo,...,)(j,1:)(j,1]§% 1 Z/S 2€/3 VA

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I |

SPIX=1|Xo=X0,..., X 1=x_1]<2 1 ¢3 203

¢
- X = Zf;‘('f’g "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I |

SPIX=1|Xo=X0,..., X 1=x_1]<2 1 ¢3 203

¢
- X = Zf;‘('f’g "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

’ , ’ Question: Edge Case: What if the path P does not reach level j?
m B =

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
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= Xj = 0if the node at level j is . bad bad

I |

SPIX=1|Xo=X0,..., X 1=x_1]<2 1 ¢3 203

¢
- X = Zf;‘('f’g "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

’ , ’ Question: Edge Case: What if the path P does not reach level j?
u

H =
A
(Answer: We can then simply define X; as 0 (deterministically). j
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I |

PIXi=1]X=x,...,X-1=x_1]<2 1 (3 20/3

= X = Zf;‘('f’g n—1 X; satisfies relaxed independence assumption (Lecture

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) -24logn = 16logn

‘
2)

pivot
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We can now apply the “nicer” Chernoff Bound!

= We have E[ X] < (2/3) - 24logn = 16logn
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We can now apply the “nicer” Chernoff Bound!

= We have E[ X] < (2/3) - 24logn = 16logn
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We can now apply the “nicer” Chernoff Bound!

= We have E[ X] < (2/3) - 24logn = 16logn

{P[X >E[X]+1] < e—zl‘z/n]

P[X >21logn] <P[X > E[X]+5logn] < e 26'en*/(24lez)
—(50/24) log n

= Then, by the “nicer” Chernoff Bounds

=e
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= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I |

PIXi=1]X=x,...,X-1=x_1]<2 1 (3 20/3

¢
- X = Ef;‘é"g "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply the “nicer” Chernoff Bound!

= We have E[ X] < (2/3) - 24logn = 16logn

{P[X >E[X]+1] < e—zl‘z/n]

P[X >21logn] <P[X > E[X]+5logn] < e 26'en*/(24lez)
_ e—(50/24)|ogn < n—2

= Then, by the “nicer” Chernoff Bounds

= Hence P has more than 24 log n nodes with probability at most n~2.
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= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable Xi:

= X; = 1if the node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I |

PIXi=1]X=x,...,X-1=x_1]<2 1 (3 20/3

¢
- X = Zf;‘('f’g "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply the “nicer” Chernoff Bound!

= We have E[ X] < (2/3) - 24logn = 16logn

{P[X >E[X]+1] < e—zl‘z/n]

P[X >21logn] <P[X > E[X]+5logn] < e 26'en*/(24lez)
_ e—(50/24)|ogn < n—2

= Then, by the “nicer” Chernoff Bounds

= Hence P has more than 24 log n nodes with probability at most n~2.

= As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n~'.
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)

immediately implies a O(nlog n) bound on the expected number

2 Exercise: [Ex 2-3.6] Our upper bound of O(nlog n) whp also
of comparisons!
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of O(nlog n) whp also
A immediately implies a O(nlog n) bound on the expected number
of comparisons!
= |t is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.
= The latter requires to compute the median of the array in linear time,
which is not easy...
= The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.
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3. Concentration © T. Sauerwald Extensions of Chernoff Bounds



Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here:

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds



Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here:

Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that a < X < b. Then for

all A € R,
AX (b— 3)2)\2
E [e } < exp (78
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= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X—-E[X]

Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that a < X < b. Then for

all A € R,
AX (b— a)2>\2
E [e } < exp (78
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Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X—-E[X]

Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that a < X < b. Then for

all A € R,
AX (b— 3)2)\2
E [e } < exp (78

We omit the proof of this lemmal
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Hoeffding Bounds

Hoeffding’s Inequality

Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.lLetX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

2
P[XZ>p+t]<exp ST bi—a))
=1 (]

and

2
P[XS#—T]SGXP<—m)-

i=1
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a<Xi<b.lLetX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

2t
P[X2>p+t]<exp ST bi—ar)
=1\ !

and

2
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i=1

Proof Outline (skipped):
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forany t >0
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Hoeffding Bounds

Hoeffding’s Inequality

Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.lLetX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

2
P[XZ>p+t]<exp ST bi—a))
=1 I a

and

2
P[XSA—T]SGXP<—m)-

i=1

Proof Outline (skipped):
sletX =X —pand X' =X{+...+ X, thenP[X > p+t] =P[X' > ]
*PIX > t] < e ML E[e¥ ] <exp[-At+F S0 (b - a)]

= Choose A\ = 7z to get the result.

4
>0 (bi—a;
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Hoeffding Bounds

Hoeffding’s Inequality

Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.lLetX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

P[X>pu+t] <exp <7L)
- B Siri(bi—a))’
and

2
P[Xgu—t]ﬁexp<—ﬁ)'
i=1\M !

Proof Outline (skipped):
sletX =X —pand X' =X{+...+ X, thenP[X > p+t] =P[X' > ]
*PIX > t] < e ML E[e¥ ] <exp[-At+F S0 (b - a)]

= Choose A = ——+___ to get the result.

@:1(17:'—5;)2

(This is not magic! you just need to optimise A! j
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Method of Bounded Differences

Framework

to study the random variable:

(X, .., Xn)

Suppose, we have independent random variables Xi, . ..

, Xn. We want

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds



Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi,..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:

1. X =Xi + ...+ X, (our setting earlier)
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is the number of empty bins
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Suppose, we have independent random variables Xi,..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:

1. X =Xi + ...+ X, (our setting earlier)

2. Inballs into bins, X; indicates where ball i is allocated, and f( X, ..., Xm)
is the number of empty bins

3. Inarandomly generated graph, X; indicates if the i-th edge is present and
f(Xi,..., Xm) represents the number of connected components of G
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi,..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:

1. X =Xi + ...+ X, (our setting earlier)

2. Inballs into bins, X; indicates where ball i is allocated, and f( X, ..., Xm)
is the number of empty bins

3. Inarandomly generated graph, X; indicates if the i-th edge is present and
f(Xi,..., Xm) represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f(Xi, ..., X,) around its mean by
the so-called Method of Bounded Differences.
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢4, ..., c,) if for all
i=1,2,...,n,
|f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,3V(i,X,‘+1,...,Xn)| <,

where x; and x; are in the domain of the i-th coordinate.
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢4, ..., ¢,) if for all
i=1,2,...,n,
|f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,3V(i,X,‘+1,...,Xn)| < ¢,

where x; and x; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (C1,...,Cn). Let X = f(Xi,..., Xn). Thenforany t > 0,

P[X>,u—|—t]<exp<—27t2>
B B Yiict/)’
and
2
PIX<pu—-t]<exp|—=r—3)-
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢4, ..., ¢,) if for all
i=1,2,...,n,
|f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,3V(i,X,‘+1,...,Xn)| < ¢,

where x; and x; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (¢1, ..., Cn). Let X = f(Xi,..., Xp). Then for any t > 0,

212
P[X>pu+t]<exp ST oe)
;

i=1
and
P[X<pu—t]<ex —271‘2
_/'L —= p Zn C,‘2 *

i=1

= Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢, ..., c,) if for all
i=1,2,...,n,
|f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,3V(i,X,‘+1,...,Xn)| < ¢,

where x; and x; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (¢1, ..., Cn). Let X = f(Xi,..., Xp). Then for any t > 0,

212
P[X>pu+t]<exp ST oe)
;

i=1
and
P[X<pu—t]<ex —271‘2
_/'L —= p Zn C,‘2 *

i=1

= Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
= The proof is omitted here (it requires the concept of martingales).
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Outline

Applications of Method of Bounded Differences
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Application 3: Balls into Bins (again...)

sl

= Consider again m balls assigned uniformly at random into n bins.
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= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;
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= Let Z be the number of empty bins (after assigning the m balls)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

Let Z be the number of empty bins (after assigning the m balls)
» Z=2(Xi,...,Xm)and Zis Lipschitzwithe = (1,...,1)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2Z(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2Z(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[|IZ-E[Z]]|>t]<2 &2/
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2Z(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[|IZ-E[Z]]|>t]<2 &2/
e

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

0.85

0.2

= We are given n items of sizes in the unit interval [0, 1]
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= We want to pack those items into the fewest number of unit-capacity bins
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0.2

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]
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= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]

» Let B = B(Xi,..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences



Application 4: Bin Packing

0.85

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]

» Let B = B(Xi,..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore ,
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Application 4: Bin Packing

0.85

0.2

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]

» Let B = B(Xi,..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore ,
P[|B—E[B]|>t]<2.-e2/"
/

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [e’x] ., whereteR.
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Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [e’x] ,  whereteR.

L

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.
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Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [e’x] ,  whereteR.

L

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.v’s with Mx(t) = My(t) for all t € (-4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

My v (t) = Mx(t) - My(1).
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Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [e’x] ,  whereteR.

L

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.v’s with Mx(t) = My(t) for all t € (-4, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

My v (t) = Mx(t) - My(1).

Proof of 2:
My.v(t) = E [e’“‘”)] —E [e’X : e’Y} OE [efx] E [e”] = Mx()My(t) O
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Applications of Markov Chains in Computer Science

el Google
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);2, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);2, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:

1. Forany x € Q, P[ Xy = x] = p(x).
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);2, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:

1. Forany x € Q, P[ Xy = x] = p(x).
2. The Markov Property holds: for all t > 0 and any Xo, ..., Xi+1 € Q,
P [Xt+1 = Xt41 Xt = Xt,.‘.,Xo = Xo} =P [Xt+1 = Xt4+1 ’ Xt = Xt:|

= P(Xt, Xt+1)-

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics



Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);2, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:

1. Forany x € Q, P[ Xy = x] = p(x).
2. The Markov Property holds: for all t > 0 and any Xo, ..., Xi+1 € Q,
P |:Xt+1 = Xt41 Xt = Xty .. .7X0 = Xo] =P |:Xt+1 = Xt4+1 ’ Xt = Xt:|

= P(Xt, Xt+1)-

From the definition one can deduce that (check!)

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics



Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);2, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:

1. Forany x € Q, P[ Xy = x] = p(x).
2. The Markov Property holds: for all t > 0 and any Xo, ..., Xi+1 € Q,

P [ Xt =1 [ X=X X0 = 30| = P [ Xt = a1 | X = x|

i= P(Xt, Xt+1)-
From the definition one can deduce that (check!)
= Forall t, xo, X1,..., X € Q,
P[)(1l :X[,Xt,1 = Xt,1,...,X0 = Xo]
= /L(Xo) . P(Xo,X1) CE— P(Xt,Q,Xt,1) . P(Xt,1,Xt).
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);=, is a Markov Chain on State Space Q with Initial Dis-
tribution p and Transition Matrix P if:

1. Forany x € Q, P[ Xy = x] = p(x).
2. The Markov Property holds: for all t > 0 and any xo, ..., Xt+1 € €,

P X = x| X =0 X0 =30 =P [ X = x4 ]szxf]

= P(Xt, Xt+1)-
From the definition one can deduce that (check!)
= Forall t, xo, X1,..., X € Q,
P[)(1l :X[,X[,1 = Xt,1,...,X0 = Xo]
= /L(Xo) . P(Xo,X1) CE— P(X1,2,X1,1) . P(X1,1,Xt).

=Forall0<t < b,x€Q,
P[X,=x]=Y P[X,=x|X =y]-P[X, =y].

yYeQ
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What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

Rice Pasta Potato

0 1/2  1/2 | Rice
P = 1/4 0 3/4 | Pasta

3/5 2/5 0

Potato

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics 5




Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics



Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)

P = : :
P(n,1) ... P(nn)
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)
P=| &
P(n,1) ... P(n,n)

= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)

P = : :
P(n,1) ... P(nn)

= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).
= Multiplying p' by P corresponds to advancing the chain one step:

PY)=>_p""(x) P(x,y) andthus  p'=p""-P.

XEN
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)

P = : :
P(n,1) ... P(nn)

= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).
= Multiplying p' by P corresponds to advancing the chain one step:

PY)=>_p""(x) P(x,y) andthus  p'=p""-P.

XEQ
= The Markov Property and line above imply that for any t > 0

pl=p-P7" andthus  P'(x,y)=P[Xi=y | Xo=x].
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)

P = : :
P(n,1) ... P(n,n)

= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).

= Multiplying p' by P corresponds to advancing the chain one step:

PY)=>_p""(x) P(x,y) andthus  p'=p""-P.

XEQ
= The Markov Property and line above imply that for any t > 0

pl=p-P7" andthus  P'(x,y)=P[Xi=y | Xo=x].
Thus p'(x) = (#P")(x) and so p' = uP' = (uP'(1), uP'(2), ..., uP'(n)).
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by

P(1,1) ... P(1,n)

P = : :
P(n,1) ... P(n,n)

= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).

= Multiplying p' by P corresponds to advancing the chain one step:

PY)=>_p""(x) P(x,y) andthus  p'=p""-P.

XEQ
= The Markov Property and line above imply that for any t > 0

pl=p-P7" andthus  P'(x,y)=P[Xi=y | Xo=x].
Thus p'(x) = (#P")(x) and so p' = uP' = (uP'(1), uP'(2), ..., uP'(n)).

= Everything boils down to deterministic vector/matrix computations
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (i, P) on @ = {1, ... n} is given by
P(1,1) ... P(1,n)
P = : :
P(n,1) ... P(n,n)
= ol = (p'(1),p'(2), ..., p'(n)): state vector at time t (row vector).
= Multiplying p' by P corresponds to advancing the chain one step:

PY)=>_p""(x) P(x,y) andthus  p'=p""-P.

XEQ
= The Markov Property and line above imply that for any t > 0
p'=p-P7" andthus  P(x,y)=P[Xe=y | X =x].
Thus p'(x) = (#P")(x) and so p' = uP' = (uP'(1), uP'(2), ..., uP'(n)).

= Everything boils down to deterministic vector/matrix computations
= can replace p by any (load) vector and view P as a balancing matrix!
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a

Example - College Carbs Stopping times:
v/ “We had rice yesterday”
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a

Example - College Carbs Stopping times:
“We had rice yesterday” ~ 7:=min{t>1: X;_1 = “rice”}
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a
Example - College Carbs Stopping times:

“We had rice yesterday” ~ 7:=min{t>1: X;_1 = “rice”}
x “We are having pasta next Thursday”
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a

Example - College Carbs Stopping times:
“We had rice yesterday” ~ 7:=min{t>1: X;_1 = “rice”}
x “We are having pasta next Thursday”

For two states x, y € Q we call h(x, y) the hitting time of y from x:

h(x,y) =Ex[ny] =E[7y | Xo =x] where 7y =min{t>1:X; = y}.
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a

Example - College Carbs Stopping times:
“We had rice yesterday” ~ 7:=min{t>1: X;_1 = “rice”}
x “We are having pasta next Thursday”

For two states x, y € Q we call h(x, y) the hitting time of y from x:

h(x,y) =Ex[ny] =E[7y | Xo =x] where 7y =min{t>1:X; = y}.
S

[Some distinguish between Ty+ =min{t >1: Xy =y} and 7y = min{t > 0: X; = y} ]
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),,, if for
every s > 0 the event {r = s} depends only on X, ..., Xs. a

Example - College Carbs Stopping times:
v/ “We had rice yesterday” ~ 7:=min{t>1: X;_1 = "rice”}
x “We are having pasta next Thursday”

For two states x, y € Q we call h(x, y) the hitting time of y from x:

h(x,y) =Ex[ny] =E[7y | Xo =x] where 7y =min{t>1:X;=y}.

——— A Useful Identity

Hitting times are the solution to a set of linear equations:

hoy) "= Y P(x,z)-hzy)  Wx#yeq
zeQ\{y}
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Outline

Irreducibility, Periodicity and Convergence

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence



Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x, y € Q there is an
integer k > 0 such that P¥(x, y) > 0.
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x, y € Q there is an
integer k > 0 such that P¥(x, y) > 0.

1/4 1/4

3/4
3/4 1 3/4

2/5
2/5

3/5 1/4 3/5 @'D 1
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x, y € Q there is an
integer k > 0 such that P¥(x, y) > 0.

1/4 1/4

3/4
1 3/4 1 3/4
2/5
2/5

3/5 1/4 3/5 @'3 1

A Exercise: Which of the two chains (if any) are irreducible?
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x, y € Q there is an
integer k > 0 such that P¥(x, y) > 0.

1/4 1/4
3/4
1 3/4 1 3/4
2/5
2/5
3/5 1/4 3/5 @31
v irreducible x not irreducible (thus reducible)

A Exercise: Which of the two chains (if any) are irreducible?
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x, y € Q there is an
integer k > 0 such that P¥(x, y) > 0.

1/4 1/4
3/4
3/4 1 3/4
2/5
2/5
3/5 1/4 3/5 @31
v irreducible x not irreducible (thus reducible)

Finite Hitting Time Theorem

For any states x and y of a finite irreducible Markov Chain h(x, y) < cc.
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the stationary distribution of
a Markov Chain if P = 7 (w is a left eigenvector with eigenvalue 1)
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the stationary distribution of
a Markov Chain if P = 7 (r is a left eigenvector with eigenvalue 1)

College carbs example:

4 4 5 0 1/2 172 4 4 5
wss) |\ Ve % U = ieaes
3/5 2/5 0 .

P
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the stationary distribution of
a Markov Chain if P = 7 (r is a left eigenvector with eigenvalue 1)

College carbs example:

4 4 5 0 1/2 172 4 4 5
wss) |\ Ve % U = ieaes
3/5 2/5 0 -

P

= A Markov Chain reaches stationary distribution if p' = = for some t.
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the stationary distribution of
a Markov Chain if P = 7 (r is a left eigenvector with eigenvalue 1)

College carbs example:

4 4 5 0 1/2 172 4 4 5
wss) |\ Ve % U = ieaes
3/5 2/5 0 -

P

= A Markov Chain reaches stationary distribution if p' = = for some t.
= If reached, then it persists: If p' = & then p!** = 7 for all k > 0.
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the stationary distribution of
a Markov Chain if P = 7 (r is a left eigenvector with eigenvalue 1)

College carbs example:

4 4 5 0 1/2 172 4 4 5
wss) |\ Ve % U = ieaes
3/5 2/5 0 -

P

= A Markov Chain reaches stationary distribution if p' = = for some t.
= If reached, then it persists: If p' = & then p!** = 7 for all k > 0.

Existence and Uniqueness of a Positive Stationary Distribution

Let P be finite, irreducible M.C., then there exists a unique probability
distribution 7 on Q such that 7 = 7P and n(x) = 1/h(x, x) > 0, Vx € Q.
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Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{t > 1: P'(x,x) > 0} = 1.
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Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{t > 1: P'(x,x) > 0} = 1.
= Otherwise we say it is periodic.
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Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{t > 1: P'(x,x) > 0} = 1.

= Otherwise we say it is periodic.

1/2
1/2
1/2 1/2 1/2 1/2 1/2
1/2
1/2

1/2
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Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{t > 1: P'(x,x) > 0} = 1.

= Otherwise we say it is periodic.

1/2 1/2

1/2 1/2 1/2

1/2

(O —

1/2

’ ’ , Question: Which of the two chains (if any) are aperiodic?
m B =
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Periodicity

= A Markov Chain is aperiodic if for all x € Q, ged{t > 1: P'(x,x) > 0} = 1.

= Otherwise we say it is periodic.

1/2 1/2
— Y
1/2
1/2 1/2 1/2 1/2 1/2 1/2
1/2
1/4 1/2
v Aperiodic x Periodic

’ , , Question: Which of the two chains (if any) are aperiodic?
m B =
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Convergence Theorem

Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution 7. Then for any x,y € Q,

Jim Pl(x,y) = n(y).
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Convergence Theorem

Ergodic = Irreducible + Aperiodic J

Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution 7. Then for any x,y € Q,

Jim Pl(x,y) = n(y).
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Convergence Theorem

Ergodic = Irreducible + Aperiodic J

Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution 7. Then for any x,y € Q,

fim P(x,y) = 7(y).

= mentioned before: For finite irreducible M.C/s 7 exists, is unique and

(y) = ﬁ > 0.
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Convergence Theorem

Ergodic = Irreducible + Aperiodic J

Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution 7. Then for any x,y € Q,

fim P(x,y) = 7(y).

= mentioned before: For finite irreducible M.C/s 7 exists, is unique and

1
w(y)=———>0
7
= We will prove a simpler version of the Convergence Theorem after
introducing Spectral Graph Theory.
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

0.000 0.000

0.000

0.000 0.000

0.000 Step: 0

0.000
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

o / 0.000 \'

0.000 0.000

_- O

0.000 0.250

0.000 Step: 1

0.000
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

o / 0.000 \:

0.000 0.062

_- O

0.000 0.250

0.000 Step: 2 0375

0.000
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

—_—

'/ 0.016 \E

0.000 0.094

_- N

0.000 0.234

/ |

0.000 Step: 3 0312

\ Y

0.000 0.234

"

0.016
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

_/ 0.031 \l:l

0.004 0.109

- ~0B

0.000 0.219

/ |

0.000 Step: 4 0273

\ w

0.000 0.219

— =

0.031
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

 —
_ ]
0.010 / \ 0.117
0.000 Step: 5 0.246
0.001 0.205

N =

0.010 \:/ 0.117

0.044
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

| —
- 0.054 I:l
0.016 / \ 0.121
0.000 Step: 6 0226
0.003 0193

e =

0.016 \:I/ 0.121

0.054
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

—
_ -
0.022 / \ 0.122
0.002 Step: 7 0.209
0.006 0183

N =

0.022 \:/ 0.122

0.061
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

—1
_ -
0.028 / \ 0.122
0.004 Step: 8 0.196
0.009 0175

N =

0.028 \:/ 0.122

0.067
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

1
R
0.033 0.121
0.006 Step: 9 0.185
0.012 0.167

0.071
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

[
e R
0.087 0.120
0.009 Step: 10 0176
0.016 0.160

N =

0.037 0.120

0.074
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

[
= 0076 I:I
0.041 / \ 0.119
0013 Step: 11 0.168
0.020 0.154

e =

0.041 0.119

0.076
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(I
] 0078 l:l
0.044 / \ 0.117
0016 Step: 12 0.161
0.023 0.149

N =

0.044 \D/ 0.117

0.078
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(-

] / 0079 \l:l

0.048 0.115

_ AN

0.027 0.144

/ 'm

0.020 Step: 13 0.155

\ o

0.027 0.144

= =

0.048 \D/ 0.115

0.079

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(I
0.080 I:l
ﬁ/ \ 0.113
— / \D
0.030 0.139
0.023 Step: 14 0.149
0.030 0139

0.080
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(-

I:l/ 0.081 \l:l

0.053 0.112

_ =

0.033 0.135

/ '

0.027 Step: 15 0.144

\ o

0.033 0.135

= =

0.053 \D /

0.081
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(-

I:l/ 0.082 \l:l

0.055 0.110

_ A=

0.037 0.132

J '

0.030 Step: 16 0.140

\ o

0.037 0.132

= =

0.055 \D/ 0.110

0.082
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(-

I:l/ 0.082 \l:l

0.057 0.108

_ A=

0.040 0.128

J \m

0.033 Step: 17 0.136

\ o

0.040 0.128

= =

0.057 \D/ 0.108

0.082
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

(-

:/ 0.082 \l:l

0.059 0.107

- =

0.042 0.125

J 'm

0.036 Step: 18 0.132

\ o

0.042 0.125

e =

0.059 \D/ 0.107

0.082
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= \l:l

0.061 0.105

0.039 Step: 19 0.129

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= \l:l

0.062 0.104

0.042 Step: 20 0.126

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= \EI

0.064 0.103

0.045 Step: 21 0.123

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= — \EI

0.065 0.101

0.047 Step: 22 0.120

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= — \EI

0.066 0.100

0.050 Step: 23 0117

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

]
0.083

= — \EI

0.067 0.099

0.052 Step: 24 0.115

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \I:|

0.069 0.098

0.054 Step: 25 0.113

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.070 0.097

0.056 Step: 26 0.111

\III/

0.083

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.070 0.096

0.058 Step: 27 0.109

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.071 0.095

0.059 Step: 28 0.107

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.072 0.094

0.061 Step: 29 0.106

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.073 0.094

0.063 Step: 30 0.104

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.074 0.093

0.064 Step: 31 0.103

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.074 0.092

0.065 Step: 32 0.101

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.075 0.092

0.066 Step: 33 0.100

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.075 0.091

0.068 Step: 34 0.099

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.076 0.091

0.069 Step: 35 0.098

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.076 0.090

0.070 Step: 36 0.097

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.077 0.090

0.071 Step: 37 0.096

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.077 0.089

0.071 Step: 38 0.095

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.078 0.089

0.072 Step: 39 0.094

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.078 0.089

0073 Step: 40 0.094

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.078 0.088

0.074 Step: 41 0.093

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.079 0.088

0.074 Step: 42 0.092

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.079 0.088

0.075 Step: 43 0.092

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.079 0.087

0.075 Step: 44 0.091

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.080 0.087

0.076 Step: 45 0.091

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.080 0.087

0.076 Step: 46 0.090

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.080 0.087

0077 Step: 47 0.090

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.080 0.086

0077 Step: 48 0.089

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.081 0.086

0.078 Step: 49 0.089

\III/

0.083
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Convergence to Stationarity (Example)

= Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
= At step t the value at vertex x € {1,2,...,12} is P'(1, x).

=

|:|/ 0.083 \E

0.081 0.086

0.078 Step: 50 0.089

\III/

0.083
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Outline

Total Variation Distance and Mixing Times
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 13 | 112 | 112 | 112 | 112 | 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x]|1/6 | 1/6 1/8 1/8 1/8 | 9/24

°
L- K-
L)
L)
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x]|1/6 | 1/6 1/8 1/8 1/8 | 9/24
Question 1: Which dice is the least fair?
D>
m H =
-]
© 0
(-]
o O
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 1/12 | 1/12 1/3
P[B=x 1/4 1/8 1/8 1/8 1/8 1/4
P[C=x] | 1/6 1/6 1/8 1/8 1/8 9/24
Question 1: Which dice is the least fair?
222
Question 2: Which dice is the most fair?
22?2
(-]
° o
(-]
o O
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How Similar are Two Probability Measures?

——— Loaded Dice

= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 1/3
P[B=x 1/4 1/8 1/8 1/8 1/8 1/4
P[C=x] | 1/6 1/6 1/8 1/8 1/8 9/24
Question 1: Which dice is the least fair?
222
Question 2: Which dice is the most fair?
22?2
P[- = x]
0.5 °
0.33
016 T~ %°
o O
— | x
1 2 3 4
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

1 2 3 4 5 6

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x] |16 | 1/6 1/8 1/8 1/8 | 9/24
Question 1: Which dice is the least fair?
22?
Question 2: Which dice is the most fair?
22?2
-]
)
(-]
o O
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

1 2 3 4 5 6

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x] |16 | 1/6 1/8 1/8 1/8 | 9/24
Question 1: Which dice is the least fair?
22?
Question 2: Which dice is the most fair?
22?2
-]
)
(-]
o O
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

1 2 3 4 5 6

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 1/12 | 1/12 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x] |16 | 1/6 1/8 1/8 1/8 | 9/24
Question 1: Which dice is the least fair?
2?2
Question 2: Which dice is the most fair?
22?2
-]
)
(-]
o O
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 | 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x]|1/6 | 1/6 1/8 1/8 1/8 | 9/24

, ’ Question 1: Which dice is the least fair? Most choose A.

?
Question 2: Which dice is the most fair?
22?2

1 2 3 4 5 6
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 | 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x]|1/6 | 1/6 1/8 1/8 1/8 | 9/24

Question 1: Which dice is the least fair? Most choose A.
?, ? Why?

Question 2: Which dice is the most fair?
22?2

1 2 3 4 5 6
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How Similar are Two Probability Measures?

——— Loaded Dice
= You are presented three loaded (unfair) dice A, B, C:

X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 | 1/3
P[B=x 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x]|1/6 | 1/6 1/8 1/8 1/8 | 9/24

Question 1: Which dice is the least fair? Most choose A.
?, ? Why?

,’ 5 Question 2: Which dice is the most fair? Dice B and C seem
e m = “fairer” than A but which is fairest?

1 2 3 4 5 6
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How Similar are Two Probability Measures?

— Loaded Dice \
= You are presented three loaded (unfair) dice A, B, C:
X 1 2 3 4 5 6
P[A=x 1/3 | 112 | 112 | 112 | 1/12 1/3
P[B=x] | 1/4 | 1/8 1/8 1/8 1/8 1/4
P[C=x] |16 | 1/6 1/8 1/8 1/8 | 9/24

Question 1: Which dice is the least fair? Most choose A.
222
,’ 5 Question 2: Which dice is the most fair? Dice B and C seem
e m = “fairer” than A but which is fairest?
L ~-

We need a formal “fairness measure” to compare probability distributions! ]

P[-=x]

1 2 3 4 5 6
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space Q is given by

e =l = 5 3 li) = (e

weQ
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space Q is given by

e =l = 5 3 li) = (e

weQ

Loaded Dice: let D = Unif{1,2,3,4,5,6} be the law of a fair dice:

1 1 1 1 1 1
'W—NM=§(4é‘ﬂ+4k‘T§>=§
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space Q is given by

e =l = 5 3 li) = (e

weQ

Loaded Dice: let D = Unif{1,2,3,4,5,6} be the law of a fair dice:

1 1 1 1 1 1
'W‘NW—§(26‘5+4k‘T§)—§

1 1 1 1 1 1
'W‘BM—§(26‘1+4%‘§D—6

1 1 1 1 9 1
‘W*CM—§(36*§+k*§ﬂ)—é
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space Q is given by

e =l = 5 3 li) = (e

weQ

Loaded Dice: let D = Unif{1,2,3,4,5,6} be the law of a fair dice:

1 1 1 1 1 1
'W‘NW—§(26‘5+4k‘T§)—§

1 1 1 1 1 1
'W‘BM—§(26‘1+4%‘§D—6

1 1 1 1 9 1
‘W*CM—§(36*§+k*§ﬂ)—é

Thus
ID—Bll, =ID~-Cl, and [D=Bl,|D~-Cl, <|D-Al,.

So Ais the least “fair”, however B and C are equally “fair” (in TV distance).
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
= Let 1 be a prob. vector on Q (might be just one vertex) and t > 0. Then

P =P[X;=-| X~ ul,

is a probability measure on €.
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
= Let 1 be a prob. vector on Q (might be just one vertex) and t > 0. Then

P =P[X;=-| X~ ul,

is a probability measure on €.
= [Exercise 4/5.5] For any u,

t t
P, - P,—m

< max
tv xXeQ

tv
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
= Let 1 be a prob. vector on Q (might be just one vertex) and t > 0. Then

P =P[X;=-| X~ ul,

is a probability measure on €.
= [Exercise 4/5.5] For any p,

Convergence Theorem (Implication for TV Distance)

t t
P, —m| <max|Px—m

tv xeQ

tv

For any finite, irreducible, aperiodic Markov Chain

PL—x| =o0.

lim max’
tv

t—oo0 xEQ
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution .
= Let 1 be a prob. vector on Q (might be just one vertex) and t > 0. Then

P =P[X;=-| X~ ul,

is a probability measure on €.
= [Exercise 4/5.5] For any p,

Convergence Theorem (Implication for TV Distance)

t t
P, —m| <max|Px—m

tv xeQ

tv

For any finite, irreducible, aperiodic Markov Chain

PL—x| =o0.

lim max’
tv

t—oo0 xEQ

N
[We will see a similar result later after introducing speciral techniques (Lecture 12)! ]
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times



Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time \
The mixing time 7x(¢) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

TX(E):min{tZO; ‘P)t(_7r
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time \
The mixing time 7x(¢) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

TX(E):min{tZO; ‘P)t(_7r

and,
T(e) = max 7x(€).
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time \
The mixing time 7x(¢) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

TX(E):min{tZO; ‘P)t(_7r

and,
T(e) = max 7x(€).

= This is how long we need to wait until we are “c-close” to stationarity
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time \
The mixing time 7x(¢) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

TX(E):min{tZO; ‘P)t(_7r

and,
T(e) = max 7x(€).

= This is how long we need to wait until we are “c-close” to stationarity
= We often take e = 1/4, indeed let tmiy := 7(1/4)
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

~——— Mixing Time \
The mixing time 7x(¢) of a finite Markov Chain P with stationary distribu-
tion 7 is defined as
<
tv 6} ’

TX(E):min{tZO; ‘Pf(_ﬂ

and,
T(e) = max 7x(€).

= This is how long we need to wait until we are “c-close” to stationarity
= We often take e = 1/4, indeed let tmiy := 7(1/4)
A

[See final slides for some comments on why we choose 1/4. ]
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Application 1: Card Shuffling
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Experiment Gone Wrong...

Distribution of first 300 drawings of Polish Multilotek

120

100

Number of times appearing among first 300 drawings

10 20 30 40 50 60 70 80
Pick

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

Source: Slides by Ronitt Rubinfeld
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What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?
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What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

Persi Diaconis (Professor of Statistics and former Magician)

Source: www. soundcloud. com
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What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

One of the leading experts

in the field who has related

card shuffling to many other
mathematical problems.

Persi Diaconis (Professor of Statistics and former Magician)

Source: www. soundcloud. com
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What is Card Shuffling?

Source: wikipedia

[Here we will focus on one shuffling scheme which is easy to analyse. ]

7
v

How long does it take to shuffle a deck of 52 cards?

One of the leading experts

in the field who has related

card shuffling to many other
mathematical problems.

Persi Diaconis (Professor of Statistics and former Magician)

Source: www. soundcloud. com
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What is Card Shuffling?

Source: wikipedia

[Here we will focus on one shuffling scheme which is easy to analyse. ]

7
v

How long does it take to shuffle a deck of 52 cards?

A\
[How quickly do we converge to the uniform distribution over all n! permutations? ]

/‘ 4 » One of the leading experts
a in the field who has related

card shuffling to many other
| mathematical problems.

\ <

Persi Diaconis (Professor of Statistics and former Magician)

Source: www. soundcloud. com
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The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)
1: Fort=1,2,...
2: Pick i € {1,2,..., n} uniformly at random
3: Take the top card and insert it behind the i-th card
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The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)

1: Fort=1,2,...
2: Pick i € {1,2,..., n} uniformly at random
3: Take the top card and insert it behind the i-th card

N
[This is a slightly informal definition, so let us look at a small example... ]
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The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)

1: Fort=1,2,...
2: Pick i € {1,2,...,n} uniformly at random
3: Take the top card and insert it behind the i-th card

N
[This is a slightly informal definition, so let us look at a small example... ]

3 II
III <We will focus on this “small” set of cards (n = 8) ]
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[Even if we know which set of cards come after 8, every permutation is equally likely! J
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Even if we know which set of cards come after 8, every permutation is equally IlkelyI
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P

Even if we know which set of cards come after 8, every permutation is equally IlkelyI

PP
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P

Even if we know which set of cards come after 8, every permutation is equally IlkelyI

~ the deck of cards is perfecily mixed after the last card
“8” reaches the top and is inserted to a random position!
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
= One final step to randomise card “n”
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
= One final step to randomise card “n” (with probability 1)
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
= One final step to randomise card “n” (with probability 1)

This is a “reversed” coupon collector process
with n cards, which takes nlog n in expectation.
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Analysing the Mixing Time (Intuition)

~ deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

= How long does it take for the last card “n” to become top card?
= At the last position, card “n” moves up with probability 1n at each step
= At the second last position, card “n” moves up with probability %

= At the second position, card “n” moves up with probability %
= One final step to randomise card “n” (with probability 1)

This is a “reversed” coupon collector process
with n cards, which takes nlog n in expectation.

[Using the so-called coupling method, one could prove tmix < nlog n. ]
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Riffle Shuffle
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Riffle Shuffle

——— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling

24



Riffle Shuffle

——— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards
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Riffle Shuffle

——— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

. APEYEYTEEETEE
. BEEEEY DEEETEE
A 2 3 4

Ur¥gg¥e gy
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Riffle Shuffle

——— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

. APEYEYTEEETEE
. BEEEEY DEEETEE
A 2 3 4

Ur¥gg¥e gy
. BREETEEYETEEE

t | 1 2 3 4 5 6 7 8 9 10

[[PT— [l | 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Figure: Total Variation Distance for ¢ riffle shuffles of 52 cards.
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Riffle Shuffle

——— Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

The Annals of Applied Probability
1005 Vo 2. Ko . 364315

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By DavE BAYER' AND PERsI DiacoNis?
Columbia University and Harvard University

We analyze the most commonly used method for shuffling cards. The
main result is a simple expression for the chance of any arrangement after
any number of shuffles. This is used to give sharp bounds on the approach
to randomness: 3 log, n + 0 shuffles are necessary and sufficient to mix up

n cards.
Key ingredients are the analysis of a card trick and the determination of
g of a natural in the symmetric
group algebra.
t | 1 2 3 4 5 6 7 8 9 10

[[PT—nl[ls | 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Figure: Total Variation Distance for t riffle shuffles of 52 cards.
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Outline

Application 2: Markov Chain Monte Carlo (non-examin.)
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

S ={1,4} is an independent set v/

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

S ={2,6,8} is an independent set v/

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

S ={1,7,8} is not an independent set x

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).

How can we take a sample from the space of all independent sets?

4. Markov Chains and Mixing Times © T. Sauerwald  Application 2: Markov Chain Monte Carlo (non-examin.)

26



Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).

How can we take a samplﬁfr\om the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset
S C V such that there are no two vertices u, v € S with {u, v} € E(G).

How can we take a samplEfr\om the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem! ]
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

@ 9 R
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

@ 9 R
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

—

v

@ 9 R
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

@ 9 R
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

@ 9 R
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

@ 9 R

Xy ={1,4,8}
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

(5) (® ©

@ 9 R

Xy ={1,4,8}
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER

1: Let Xo be an arbitrary independent set in G

2: Fort=0,1,2,...:

3: Pick a vertex v € V(G) uniformly at random

If v € X; then X;11 < X; \ {v}

elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

@ 9 R

X = {1,4,8} X ={1,4}
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X; 1 < X;

@ 9 R

Remark
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

@ 9 R

Remark

= This is a local definition (no explicit definition of P!)
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER

1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:

3:

@ 9 R

Pick a vertex v € V(G) uniformly at random

If v e X then Xipq X\ {v}

elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

Remark
= This is a local definition (no explicit definition of P!)
= This chain is irreducible (every independent set is reachable)
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

@ 9 R

Remark

= This is a local definition (no explicit definition of P!)
= This chain is irreducible (every independent set is reachable)
= This chain is aperiodic (Check!)
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER

1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:

3:

@ 9 R

Pick a vertex v € V(G) uniformly at random

If v e X then Xipq X\ {v}

elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

Remark
= This is a local definition (no explicit definition of P!)

= This chain is irreducible (every independent set is reachable)

= This chain is aperiodic (Check!)

= The stationary distribution is uniform, since Py, = Py, (Check!)
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xp be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

@ 9 R

Remark

= This is a local definition (no explicit definition of P!)

= This chain is irreducible (every independent set is reachable)

= This chain is aperiodic (Check!)

= The stationary distribution is uniform, since Py, = Py, (Check!)

N
A\

[Key Question: What is the mixing time of this Markov Chain? ]
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER
1: Let Xo be an arbitrary independent set in G
2: Fort=0,1,2,...:
3: Pick a vertex v € V(G) uniformly at random
If v € X; then X;11 < X; \ {v}
elif v ¢ X; and X; U {v} is an independent set then X;1 < X; U {v}
else X;.1 « X;

@ 9 R

Remark

= This is a local definition (no explicit definition of P!)

= This chain is irreducible (every independent set is reachable)

= This chain is aperiodic (Check!)

= The stationary distribution is uniform, since Py, = Py, (Check!)

N
A\

[Key Question: What is the mixing time of this Markov Chain?

X )
)

1\

[not covered here, see the textbook by Mitzenmacher and Upfal
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Appendix: Remarks on Mixing Time (non-examin.)
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Further Remarks on the Mixing Time (non-examin.)

= One can prove maxy ||P; — =||,, is non-increasing in  (this means if the chain is
“e-mixed” at step t, then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]
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Further Remarks on the Mixing Time (non-examin.)

= One can prove maxy ||P; — =||,, is non-increasing in  (this means if the chain is
“e-mixed” at step t, then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]

= We chose ty;x := 7(1/4), but other choices of ¢ are perfectly fine too (e.g,
tmix := 7(1/e€) is often used); in fact, any constant € € (0, 1/2) is possible.
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Further Remarks on the Mixing Time (non-examin.)

= One can prove maxy ||P; — =||,, is non-increasing in  (this means if the chain is
“e-mixed” at step t, then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]
= We chose ty;x := 7(1/4), but other choices of ¢ are perfectly fine too (e.g,
tmix := 7(1/e€) is often used); in fact, any constant € € (0, 1/2) is possible.
Remark: This freedom on how to pick e relies on the sub-multiplicative property of a (version) of the
variation distance. First, let

o t
d(t) == mXa\x‘ P, —m N
be the variation distance after t steps when starting from the worst state. Further, define

da(t) = max HPL - Pfj

tv
These quantities are related by the following double inequality
d(t) < d(1) < 2d(1).
Further, d(t) is sub-multiplicative, that is for any s, t > 1,
d(s+1) < d(s)-d().
Hence for any fixed 0 < € < 6 < 1/2 it follows from the above that

0 < | sy | 7O

In particular, for any ¢ < 1/4
7(e) < lrloge 671-| 7(1/4).
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Further Remarks on the Mixing Time (non-examin.)

= One can prove maxy ||P; — =||,, is non-increasing in  (this means if the chain is
“e-mixed” at step t, then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]
= We chose ty;x := 7(1/4), but other choices of ¢ are perfectly fine too (e.g,
tmix := 7(1/e€) is often used); in fact, any constant € € (0, 1/2) is possible.
Remark: This freedom on how to pick e relies on the sub-multiplicative property of a (version) of the
variation distance. First, let

o t
d(t) == mxax‘ P, —m N
be the variation distance after t steps when starting from the worst state. Further, define

d(t) := max HPL - PL
v

v,

This 2 is the reason why we ultimately
- need e < 1/2in this derivation. On
d(t) < d(t) < 2d(t). the other hand, see [Exercise (4/5).8]
why e < 1/2is also necessary.

These quantities are related by the following double inequality

Further, d(t) is sub-multiplicative, that is for any s, t > 1,

d(s+1) < d(s)-d().
Hence for any fixed 0 < € < 6 < 1/2 it follows from the above that

0 < | sy | 7O

In particular, for any ¢ < 1/4
7(e) < lrloge 671-| 7(1/4).
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Further Remarks on the Mixing Time (non-examin.)

= One can prove maxy ||P; — =||,, is non-increasing in  (this means if the chain is
“e-mixed” at step t, then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]
= We chose ty;x := 7(1/4), but other choices of ¢ are perfectly fine too (e.g,
tmix := 7(1/e€) is often used); in fact, any constant € € (0, 1/2) is possible.
Remark: This freedom on how to pick e relies on the sub-multiplicative property of a (version) of the
variation distance. First, let

o t
d(t) == mxax‘ P, —m N
be the variation distance after t steps when starting from the worst state. Further, define

d(t) := max HPL - F’L
v

v,

This 2 is the reason why we ultimately
- need e < 1/2in this derivation. On
d(t) < d(t) < 2d(t). the other hand, see [Exercise (4/5).8]
why e < 1/2is also necessary.

These quantities are related by the following double inequality

Further, d(t) is sub-multiplicative, that is for any s, t > 1,

d(s+t) < d(s) - d(b).
Hence for any fixed 0 < € < 6 < 1/2 it follows from the above that

0 < | sy | 7O

In particular, for any ¢ < 1/4
7(e) < lrloge 671-| 7(1/4).

~

(Hence smaller constants e < 1/4 only increase the mixing time by some constant factor. )
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Application 3: Ehrenfest Chain and Hypercubes
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes
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—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles

@)
= At each step a particle is selected uniformly at o O
random and switches to the other box ©)
o O
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles

= At each step a particle is selected uniformly at
random and switches to the other box
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles

= At each step a particle is selected uniformly at
random and switches to the other box

= IfQ={0,1,...,d} denotes the number of O

particles in the red box, then:

Py x—1= and Py x+1 =

QX
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules Prg = %
between two boxes T
= We have d particles @) o
= At each step a particle is selected uniformly at O
random and switches to the other box o 0
» If @ = {0,1,...,d} denotes the number of o O
particles in the red box, then: 7
Prg =3
X d—x ’ 10
Px,x71 - a and Px,x+1 - d
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules Prg = %
between two boxes T
= We have d particles o 0 o
= At each step a particle is selected uniformly at @)
random and switches to the other box OO 0) O
= IfQ={0,1,...,d} denotes the number of O O
particles in the red box, then: 7
Prg= 3
X d—x ’ 10
Px,x—1 = d and Px,x+1 = d

Let us now enlarge the state space by looking at each particle individually!
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules Prg = %
between two boxes T
= We have d particles labelled 1,2, ..., d ® ®
= At each step a particle is selected uniformly at ®
random and switches to the other box @® @
= IfQ={0,1,...,d} denotes the number of ® ®
particles in the red box, then: ____~
Prg =3
X d—x ' 10
Px,x—1 = d and Px,x+1 = d

Let us now enlarge the state space by looking at each particle individually!
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles labelled 1,2, ..., d

= At each step a particle is selected uniformly at
random and switches to the other box
= IfQ={0,1,...,d} denotes the number of
particles in the red box, then:
X d—x

Px,x—1 = d and Px,x+1 = d

Pre =1
N
® ®
®? @
~_
Prg= 3

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube
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The Ehrenfest Markov Chain

—— Ehrenfest Model
= A simple model for the exchange of molecules Prg = %
between two boxes T
= We have d particles labelled 1,2, ..., d ® ®
= At each step a particle is selected uniformly at ®
random and switches to the other box @® @
= IfQ={0,1,...,d} denotes the number of ® ®
particles in the red box, then: ____~
Prg =3
X d—x ' 10
Pyx—1 = d and Pyxi1 = d

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0, 1}¢
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles labelled 1,2, ..., d

= At each step a particle is selected uniformly at
random and switches to the other box
= IfQ={0,1,...,d} denotes the number of
particles in the red box, then:
X d—x

Px,x—1 = d and Px,x+1 = d

Pre =1
N
® ®
®? @
~_
Prg= 3

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

* For each particle an indicator variable = Q = {0,1}¢
= At each step: pick a random coordinate in [d] and flip it
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0, 1}¢
= At each step: pick a random coordinate in [d] and flip it
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

* For each particle an indicator variable = Q = {0,1}¢
= At each step: pick a random coordinate in [d] and flip it

N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

\

[Solution: Add seli-loops to break periodic behaviour! ]
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

* For each particle an indicator variable = Q = {0,1}¢
= At each step: pick a random coordinate in [d] and flip it

N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

\

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version)
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

\

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version)
= Ateachstept=0,1,2...
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

\

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version)

= Ateachstept=0,1,2...
= Pick a random coordinate in [d]
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

\

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version)

= Ateachstept=0,1,2...

= Pick a random coordinate in [d]
= With prob. 1/2 flip coordinate.
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version)

= Ateachstept=0,1,2... = Ateachstept=0,1,2...

= Pick a random coordinate in [d] * Pick a random coordinate in [d]
= With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

» For each particle an indicator variable = Q = {0,1}¢

= At each step: pick a random coordinate in [d] and flip it
N

\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version) Lazy Random Walk (2nd Version)

= Ateachstept=0,1,2... = Ateachstept=0,1,2...
= Pick a random coordinate in [d] * Pick a random coordinate in [d]
= With prob. 1/2 flip coordinate. = Set coordinate to {0, 1} uniformly.

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 4



Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube ——————————— °
» For each particle an indicator variable = Q = {0,1}¢ * s 2
= At each step: pick a random coordinate in [d] and flip it )V
N

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version) Lazy Random Walk (2nd Version)

= Ateachstept=0,1,2... = Ateachstept=0,1,2...
= Pick a random coordinate in [d] * Pick a random coordinate in [d]
= With prob. 1/2 flip coordinate. = Set coordinate to {0, 1} uniformly.

These two chains are equivalent!
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Example of a Random Walk on a 4-Dimensional Hypercube

- @ t Coord. X
0 0 0 0 O

0010
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Example of a Random Walk on a 4-Dimensional Hypercube

- @ t Coord. X
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Example of a Random Walk on a 4-Dimensional Hypercube

0110

@ t Coord.
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Once all coordinates have been picked at least
once, the state is uniformly at random in {0,1}¢.
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[Coupon Collector ~ mixing time should be O(d log d) ] 10

t | Coord.
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Example of a Random Walk on a 4-Dimensional Hypercube

0000

Once all coordinates have been picked at least
once, the state is uniformly at random in {0,1}¢.
/)

[Coupon Collector ~ mixing time should be O(d log d) ] 10

t | Coord.
0 2
1 3
2 3
3 4
4 2
5 4
6 2
7 4
8 3
1
done!

(We won't formalise this argument here (see [Ex. 4/5.11]))
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Total Variation Distance of Random Walk on Hypercube (d = 22)
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Total Variation Distance of Random Walk on Hypercube (d = 22)

0.8

06|

1Px = 7l

0.2

d Iog d~ 68.90
0 20 40 60 80 100

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes



Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.4r

O L
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.6

0.4r

0.2+

O L
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 102
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.6

0.4r

0.2+

O L
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 102
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:

= Distance remains close to its maximum value 1 until step %nlog n—0(n)
= Then distance moves close to 0 before step %nlog n+©(n)
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

1 .
P(u, v) = { d&@ if {u,v} € E, ’
0 if {u,v} & E.

and w(u) = dZTéT)

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times



Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

1 .
P(u, v) = { d&@ if {u,v} € E, ’
0 if {u,v} & E.

and w(u) = dZTéT)
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with
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Random Walks on Graphs

on a graph G is a Markov chain on V(G) with

)

if {u
if {u

A Simple Random Walk (SRW

2|E|

deg(u)

m(v)

d

n

Dy
4.?

I

I

vieE
vi¢E.

’
’

)

1
deg(u

0

|

P(u,v)

Random Walks on Graphs, Hitting Times and Cover Times
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

[ B
P(u,v) = { deelt) !f {u.v} € E, ., and  w(u)= deg(u)
0 if {u,v} &E. 2|E|

[Recau: h(u, v) = Ey[min{t > 1: X; = v}] is the hitting time of v from u.]
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

sagm UV} E€E,

ﬁu,v = % ifu= v,
0 otherwise
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

sagm UV} E€E,

B )i U P - SRW matrix
uv =192 nu=v, I - Identity matrix.
0 otherwise
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

sagm UV} E€E,

P - SRW matrix

5 B o
Puv =143 ifu= vs I - Identity matrix.
0 otherwise

Fact: For any graph G the LRW on G is aperiodic.
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

1 .
B Taew T{UVIEE,
Pu,v: % if u= v,

P - SRW matrix

) I - ldentity matrix.
0 otherwise

Fact: For any graph G the LRW on G is aperiodic.

0=—="0)

1
2
1 1 1 1
2 2 2 2
1
@ : @
1
2

SRW on C4, Periodic
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

s if {u,v} € E,

5 _ 2 deg(u) o P - SRW matrix
uv =192 nu=v, I - Identity matrix.
0 otherwise

Fact: For any graph G the LRW on G is aperiodic.

1
4_2\@
1
2
1 1 1 1
2 2 2 2
1
Q@——=

1

2

SRW on C4, Periodic LRW on C4, Aperiodic
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

° °
© o
“““ ° °
o} o}
© °
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

o—0 o—0—0
°
o
“““ °
o} o}
© °
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
(o} 192 @ 192 1o}
10}
10}
“““ ®
(o} Qo
(o] 10}
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
(o} 192 @ 192 1o}
10}
10}
44444 o ‘ W
(o} Qo
(o] 10}
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
(o} 192 @ 192 1o}
10}
10}
“““ ° %
(o} Qo
(o] 10}

“A drunk man will find his way home, but a drunk bird may get lost forever.”

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 12



1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

—
o o
o o
o ° =
o o
/ =
~ p
o o

2 o

“A drunk man will find his way home, but a drunk bird may get lost forever.”

[

[But for any regular (finite) graph, the expected return time to uis 1/7(u) = n ]
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SRW Random Walk on Two-Dimensional Grids: Animation
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Random Walk on a Path (1/2)

The n-path P; is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=i+1}.

O—0——C00—0E—®
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,;) = [0, n], E(Pn) = {{i,j}:j=i+1}.

O—0——C00—0E—®

Proposition

For the SRW on P, we have h(k,n) = n* — k®, forany 0 < k < n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,;) = [0, n], E(Pn) = {{i,j}:j=i+1}.

O—O——@

Proposition

For the SRW on P, we have h(k,n) = n* — k®, forany 0 < k < n.
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Random Walk on a Path (1/2)

The n-path P; is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=i+1}.

O—0——C00—0E—®

Proposition

For the SRW on P, we have h(k,n) = n* — k®, forany 0 < k < n.

A Exercise: [Exercise 4/5.15] What happens for the LRW on P,?
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k®, forany 0 < k < n.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k®, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

ze\{y}
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

ze\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

ze\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

£(0) =1+ (1)
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
£0)=1+f(1) and f(k)=1+ f(k;” + f(k;” for1<k<n-—1.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
£0)=1+f(1) and f(k)=1+ f(k;” + f(k;” for1<k<n-—1.

System of n independent equations in n unknowns, so has a unique solution.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
£0)=1+f(1) and f(k)=1+ f(k;” + f(k;” for1<k<n-—1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
£0)=1+f(1) and f(k)=1+ f(k;” + f(k;” for1<k<n-—1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed

f0)y=1+f1)=1+n* -1 =1’
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) " ET 1 N P(xz) h(zy)  Yx£yeV.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
£0)=1+f(1) and f(k)=1+ f(k;” + f(k;” for1<k<n-—1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
f0)=1+f1) =1+ 1% =1’
and forany 1 < k < n—1 we have,

_ o 2 2 2
=147 i 0
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Outline

SAT and a Randomised Algorithm for 2-SAT
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (X4 V X7)
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (X4 V X7)
Solution: xy = True, Xx. = False, X3 —False and x; = True.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (X4 V X7)
Solution: xy = True, Xx. = False, X3 —False and x; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (X4 V X7)
Solution: xy = True, Xx. = False, X3 —False and x; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:
— Model checking and hardware/software verification
— Design of experiments
— Classical planning
— ...
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RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment
2: Repeat up to 2r° times
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2r° times
3: Pick an arbitrary unsatisfied clause
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2r° times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
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o.

SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1
2
3
4:
5
6

. Repeat up to 21 times

. return “Unsatisfiable”

: Start with an arbitrary truth assignment

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «|.
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(1 VX)A GG VXA (X1 VX)) A(XaVX3)A(Xa V X7) o = (T,T,F,T).
F T T T F F F T F T

© &—~C0E——©

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT



2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 VX2) A (X VXa) A (X1 V xz) A (Xe V X3) A (Xa V X1) o= (T,T,F,T).
F T T T F F F T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(1 VX)A GG VXA (X1 VX)) A(XaVX3)A(Xa V X7) o = (T,T,F,T).
F T T T F F F T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(1 VX)A GG VXA (X1 VX)) A(XaVX3)A(Xa V X7) o = (T,T,F,T).
F F T T F T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 VX2) A (X VXa) A (X1 V X) A (Xe V X3) A (Xa V X1) o= (T,T,F,T).
F F T T F T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(1 VX)A GG VXA (X1 VX)) A(XaVX3)A(Xa V X7) o = (T,T,F,T).
F F T T F T F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 \/Xig)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYg)A(X4V71)
T F F T T T F F

o = (T,T,F,T).

0| F F F | F
1 F T F F
2| T T F | F
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 \/Xig)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYg)A(X4V71)
T F F T T T F F

o = (T,T,F,T).

0| F F F | F
1 F T F F
2| T T F | F
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 \/Xig)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYg)A(X4V71)
T F F T T T F F

o = (T,T,F,T).

0| F F F | F
1 F T F F
2| T T F | F
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(X1 VX)) A (X1 VX3) A (X1 VX2) A(XaVX3) A (Xa V X7) a = (T,T,F,T).
T F F T T T T T T F

[t [ x]lx][x][x

F F

e 1GI

w(n|=|o
H |||

T F
T F
T F

O—0O0——C0E——~CE—®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 : Solution Found

(X1 VX)) A (X1 VX3) A (X1 VX2) A(XaVX3) A (Xa V X7) a = (T,T,F,T).
T F F T T T T T T F

[t [ x]lx][x][x

F F

X

e 1GI

w(n|=|o
H |||

T F
T F
T F

O—0O0——C0E——~CE—®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(1 VX)A GG VXA (X1 VX)) A(XaV X3) A (Xa V X7) o = (T,F,F,T).
F T T T F F F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX2) A (X VXa) A (X1 V Xz) A (Xa V X3) A (Xa V X1) o = (T,F,F,T).
F T T T F F F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX)A GV X)) A (X1 Vxe)A(XaVx3) A (Xa VX7) o = (T,F,F,T).
F T T T F F F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(1 VX)A GG VXA (X1 VX)) A(XaV X3) A (Xa V X7) o = (T,F,F,T).
F T T T F F F T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(1 VX)A GG VXA (X1 VX)) A(XaV X3) A (Xa V X7) o = (T,F,F,T).
F T T T F F T T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX2) A (X1 VXa) A (X1 V xz) A (Xe V X3) A (Xa V X1) o = (T,F,F,T).
F T T T F F T T

O—0——0E—~(C—®

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT



2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(1 VX)A GG VXA (X1 VX)) A(XaV X3) A (Xa V X7) o = (T,F,F,T).
F T T T F F T T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX72)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)
F F T T T F T T

o = (T,F,F,T).

0| F F F | F
1 F F F T
2 | F T FI|T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 \/Xig)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)
F F T T T F T T

o = (T,F,F,T).

0| F F F | F
1 F F F T
2 | F T FI|T
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX72)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)
F F T T T F T T

o = (T,F,F,T).

0| F F F | F
1 F F F T
2 | F T FI|T

O—0——0E—~(C—®

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT




2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(a1 VX)A(XTVXE) A (X1 VX2) A (Xe VvV X3) A (Xa VXT) a = (T,F,F,T).

T F F T T T T F T F
[t [ x]lx][x][x
0 F F F F
1 F F F T
2 F T F T

@—0—@—@—@ Ohbhhh
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 : (Another) Solution Found

(a1 VX)A(XTVXE) A (X1 VX2) A (Xe VvV X3) A (Xa VXT) a = (T,F,F,T).

T F F T T T T F T F
[t [ x]lx][x][x
0 F F F F
1 F F F T
2 F T F T

@—0—@—@—@ Ohbhhh
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
() P[Xir =1]X=0]=1
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
() P[Xir =1[ X =0] =1
(i) P[Xips =k+1| Xi=k]>1/2
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
() P[ X1 =1]X=0]=1

(i) P[Xipn =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
() P[ X1 =1]X=0]=1

(i) P[Xipn =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
() P[ X1 =1]X=0]=1

(i) P[Xips =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).

Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,

(i) P[Xipr =1[Xi=0]=1

(i) P[Xips =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0).
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(i) P[Xipr =1[Xi=0]=1

(i) P[Xips =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can

bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eq[min{t : X; = n}] < Eg[min{t : Y; = n}] = h(0, n) = n°.
O

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 20



2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT
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(i) P[Xips =k+1| Xi=k]>1/2
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Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eo[min{t : X; = n}] < Eq[min{t : Y; = n}] = h(0, n) = n?.

O
[Running for 2n? steps and using Markov’s inequality yields: ]

1P
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Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution a, thenforany i >0and1 <k <n-1,
(i) P[Xip1 =1 Xi=0]=1

(i) P[Xips =k+1| Xi=k]>1/2

(ili) P[Xir =k —1] Xi = k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eo[min{t : X; = n}] < Eq[min{t : Y; = n}] = h(0, n) = n?.

O
[Running for 2n? steps and using Markov’s inequality yields: ]
Proposition L

Provided a solution exists, RANDOMISED-2-SAT will return a valid solu-
tion in O(n?) steps with probability at least 1/2.
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution o, thenforany i >0and1 <k <n-1,

(i) P[ X1 =1[ X =0] =1

(i) P[Xin =k +1| Xi=k]>1/2
(i) P[Xin =k —1| Xi=k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).
The process X; is complicated to describe in full; however by (i) — (i) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eo[min{t : X; = n}] < Eq[min{t : Y; = n}] = h(0, n) = n?.
O

Exercise: (difficult, beyond this course) What happens to the
above analysis if we apply the same algorithm to 3-SAT?
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.

Then forany C > 1, (% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, [% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e P for all real p. Let t = [% log n| and observe

P[truns all fail] < (1 — p)’
<e™
<n¢,

thus the probability one of the runs succeeds is at least 1 — n~C.
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.

Then forany C > 1, (% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e P for all real p. Let t = [% log n| and observe

P[truns all fail] < (1 — p)’
<e™
<n¢,

thus the probability one of the runs succeeds is at least 1 — n~C.

RANDOMISED-2-SAT
There is a O(n” log n)-step algorithm for 2-SAT which succeeds w.h.p.
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= linear programming is a powerful tool in optimisation

= inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

= we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)
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A Simple Example of a Linear Program
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What are Linear Programs?

Linear Programming (informal definition)

= maximise or minimise an objective, given limited resources
(competing constraint)

= constraints are specified as (in)equalities
= objective function and constraints are linear
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A Simple Example of a Linear Optimisation Problem

= Laptop
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= rare-earth elements: 1 unit
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A Simple Example of a Linear Optimisation Problem

= Laptop W& =
= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
= rare-earth elements: 1 unit

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit
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A Simple Example of a Linear Optimisation Problem

= Laptop W& =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit
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= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
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A Simple Example of a Linear Optimisation Problem

. Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# ==

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units

= You have a daily supply of:
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A Simple Example of a Linear Optimisation Problem

. Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# ==

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit

= copper: 1 unit

= rare-earth elements: 2 units

= You have a daily supply of:
= glass: 20 units
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A Simple Example of a Linear Optimisation Problem

. Laptop w ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

]
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R E R EEEE R R

= glass: 20 units
= copper: 10 units
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= glass: 1 unit
= copper: 1 unit
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A Simple Example of a Linear Optimisation Problem

. Laptop ﬁ w

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

]
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
* rare-earth elements: 2 units
= You have a daily supply of: R R EEEE R R R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

* (and enough of everything else...)

How to maximise your daily earnings?
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The Linear Program

maximise Xy + Xo
subject to
4x;  + X2
2xy  + Xo
X1+ 2%
X1, X2

Linear Program for the Production Problem

IV IAIAIA

20
10
14
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The Linear Program

Linear Program for the Production Problem

maximise X9+ Xo
subject to
4xq + X2 < 20
2X1 + Xo < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—
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The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4xq + X2 < 20
2X1 + X2 < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program
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The Linear Program

Linear Program for the Production Problem

maximise X9+ Xo
subject to
4xq + X2 < 20
2X1 + Xo < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, @ linear
function f is defined by

f(X1,X2,...,Xn) = ai1X1 + a@&XxXo + -+ + anXxn.
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The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4xq + X2 < 20
2X1 + Xo < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, @ linear
function f is defined by

f(X1,X2,...,Xn) = ai1X1 + a@&XxXo + -+ + anXxn.
= Linear Equality: f(x1,X2,...,X,) = b
= Linear Inequality: f(x1, Xz, ..., Xa)Zb

6. Linear Programming © T. Sauerwald A Simple Example of a Linear Program



The Linear Program

Linear Program for the Production Problem

maximise X9+ Xo
subject to
4xq + X2 < 20
2X1 + Xo < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, @ linear
function f is defined by

f(X1,X2,...,Xn) = ai1X1 + a@&XxXo + -+ + anXxn.

= Linear Equality: f(x1,X2,...,Xn) = b - -
g v f(xi, % ") {Llnear Constraints ]

= Linear Inequality: f(X1,X2,...,Xn)§b
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The Linear Program

Linear Program for the Production Problem

maximise X9+ Xo
subject to
4xq + X2 < 20
2X1 + Xo < 10
X1 +  2Xx < 14
X1, X2 > 0

—[The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, @ linear
function f is defined by

f(X1,X2,...,Xn) = aiXy + aXxXo + - -+ anXn.

= Linear Equality: f(x1,X2,...,Xn) =
g y: 10, % ") {Llnear Constraints ]

= Linear Inequality: f(x1, X2, ..., Xn)

= Linear-Progamming Problem: elther minimise or maximise a linear
function subject to a set of linear constraints
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Finding the Optimal Production Schedule

maximise Xy + Xo
subject to
4, + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0
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Finding the Optimal Production Schedule

maximise Xy + Xo
subject to
4, + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0
N

Any setting of x; and x, satisfying
all constraints is a feasible solution
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Finding the Optimal Production Schedule

X2
maximise Xy + X Lo
subject to .
o+ o <20
24+ e < 10
X4 + 2Xo < 14 N
X, X > 0 R
4 S I
Any setting of x; and xo satisfying R
all constraints is a feasible solution I
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Finding the Optimal Production Schedule

[

X2
| | | |
I I I I
- i S
| | | |
- R (S
maximise X1 + Xo | N | |
. e B e o = A s S
subject to | A\ |
4x; + X < 20 F T
2X4 + Xo < 10 ———:——‘——:——Jffff:fff
Xy + 2% < 14 [ |
e El Bl i - T
X1, X2 > 0 | | | | |
R | L
4
Any setting of x; and x, satisfying o |
all constraints is a feasible solution I VR
I I I I I X4
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Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4, + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.
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Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4, + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

, Question: Which aspect did we ignore in the formulation of the
? st ? linear program?
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Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

While the same approach also works for higher-dimensions, we

need to take a more systematic and algebraic procedure.
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Formulating Problems as Linear Programs
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S0, w(vk—1, vi) is minimised.

A Exercise: Translate the SPSP problem into a linear program!
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromstotin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.

Shortest Paths as LP

subject to
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.

Shortest Paths as LP

subject to
du + w(u,v) foreachedge (u,v) € E,
0.

a,
ds

A
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.

Shortest Paths as LP

maximise o

subject to
d < du + w(uv) foreachedge(u,v)eE,
d = 0.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.

Shortest Paths as LP

maximise o
subject to
dy

this is a maxim- ds

isation problem!

duv + w(u,v) foreachedge (u,v)e€ E,
0.

[l IA
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

1 X

[p = (v = s,v,...,w = t)such that}

w(p) = S, w(Vk—1, vi) is minimised.

<
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise ai all these inequalities are satisfied.
subject to =
dv duv + w(u,v) foreachedge (u,v)e€ E,

[l IA

0.

this is a maxim- ds

isation problem!
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

1 X

[p = (v = s,v,...,w = t)such thatJ

w(p) = S, w(Vk—1, vi) is minimised.

<
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise ai all these inequalities are satisfied.
subject to =
dv duv + w(u,v) foreachedge (u,v)e€ E,

[l IA

0.

ds

this is a maxim-
isation problem!

~
Solution d satisfies dy = miny. (u,v)ee{du + W(u, v)}]
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*
(recall c(u,v) = 0if (u,v) ¢ E), pair of vertices s,t € V
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*
(recall c(u,v) = 0if (u,v) ¢ E), pair of vertices s,t € V
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*
(recall c(u,v) = 0if (u,v) ¢ E), pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*
(recall c(u,v) = 0if (u,v) ¢ E), pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
® ® ®©
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R*
(recall c(u,v) = 0if (u,v) ¢ E), pair of vertices s,t € V

= Goal: Find a maximum flow f: V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| =19
® ® ®©

Maximum Flow as LP

maximise Devlv = Xevhs
subject to
fow < c(u,v) foreachu,veV,
Svevfw = X ,cyfw foreachue V\{st},
w > 0 foreachu,veV.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem L
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost Z(U’V)GE a(u, v)fu incurrred by the flow.

6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs 12



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost Z(U’V)GE a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to z. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to ¢. For each edge, the flow and capacity are written as flow/capacity.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem £
= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3_, ¢ a(u, v)fu incurrred by the flow.

(Optimal Solution with total cost:
LZ(W)EE a(u, V)fw = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to z. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to ¢. For each edge, the flow and capacity are written as flow/capacity.
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Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise 2 wyee AU, V)t
subject to

fuv

ZVEV f — Zvev fuv

Zvev fov — Zvev fus

fuv

IN

c(u,v)
0

d,

0

foru,vev,
forue V\{s,t},

foru,v e V.
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Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise 2 wyee AU, V)t
subject to
fw < c(u,v) foruvelV,
Sveviu =2 eyfw = 0 forue V\ {s,t},
Zvevfsv - Zvevas = d,
fw > 0 foru,ve V.

Real power of Linear Programming comes
from the ability to solve new problems!
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Standard and Slack Forms

Standard Form

n
maximise > ¢x
j=1

subject to

n
dapx<b  fori=1,2,...
=1

x; >0 forj=1,2,...

,m

,n
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Standard and Slack Forms

Standard Form

n
maximise > ¢x {Objective Function ]
j=1
subject to
n
apx<b  fori=1,2....m
j=1

x; >0 forj=1,2,...,n
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Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]
j=1

subject to

)

n
dapx<b  fori=1,2,....m
n+ m constraints j7 =

x; >0 forj=1,2,...,n
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Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]
j=1

subject to

)

n
dapx<b  fori=1,2,....m
n+ m constraints j7 =

x; >0 forj=1,2,...,n
N

LNon-Negativity Constraints J
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Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]
j=1

subject to

)

n
dapx<b  fori=1,2,....m
n + m constraints j7 =1

x; >0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximise c'x {Inner product of two vectors ]
subject to

Ax<b {Matrix—vector product ]
x>0
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4

. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.

Goal: Convert linear program into an equivalent program

which is in standard form
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program

which is in standard form

/1

[Equivalence: a correspondence (not necessarily a bijection) between solutions. ]
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

6. Linear Programming © T. Sauerwald Standard and Slack Forms



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise -2x1 + 3x

subject to
X1+ X = 7
X1 — 2X2 < 4
X1 > 0
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise -2x1 + 3x

subject to
X1+ X = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
\Z

6. Linear Programming © T. Sauerwald Standard and Slack Forms 17



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

minimise —2x1 + 3x
subject to
Xt + X =7
X1 — 2X2 < 4
Xq > 0
|
|
i Negate objective function
v
maximise 2x1  — 3x
subject to
X+ X =7
X1 — 2X2 < 4
X1 > 0

6. Linear Programming © T. Sauerwald
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2x; — 33X

subject to
X1 =+ Xo = 7
X1 — 2X2 < 4
X1 > 0 ‘
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2x; — 33X
subject to
X1 =+ Xo = 7
X1 — 2X2 < 4
X > 0]

|
! Replace x; by two non-negative
\}( variables x3 and x3’
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise
subject to

maximise
subject to

2X1 — 3X2
X1 =+ Xo = 7
X1 —  2X < 4
x > 0

|

! Replace x» by two
| variables x3 and x}’
v 2 2

2 - B+ 3¢

X1+ X — X5
Xy — 2% +  2xy

non-negative

7 7
X1, X2, Xo

IVIA I

[=1F N
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2y — 3x3 + 3x)
subject to
X\ + X - X = 7]
xi — 2x3 + 2x5 < 4
X1, X5, X5 > 0
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2x; — 3x53 + 3x4
subject to
xi + x - xg = 7]
xi — 2x3 + 2x5 < 4
X1, Xy, X5 > 0

!
I Replace each equality
\}’ by two inequalities.
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise 2y — 3x3 + 3x)
subject to
(x + x — x =7
X1 — 2x + 2x5 < 4
X1, Xév Xél 2 0
i Replace each equality
\}’ by two inequalities.
maximise 2xy — 3x3 + 3x3
subject to
i+ o - X <7
. T -
X1 — 2x3 + 2x3 < 4
X1, X5, X5 > 0

6. Linear Programming © T. Sauerwald
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

6. Linear Programming © T. Sauerwald Standard and Slack Forms

20



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2xy — 3x3 + 3xy

subject to
xx + x5 —  x) < 7
x + x4 - x> 7]
X1 — 2x5 + 2x5 < 4
X1, X5, X' > 0
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2xy — 3x3 + 3xy

subject to
xx + x5 —  x) < 7
x + x4 - x> 7]
X1 — 2x5 + 2x5 < 4
X1, X5, X' > 0

|
i Negate respective inequalities.
\%
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2xy — 3x3 + 3xy

subject to
xx + x5 —  x) < 7
x + x4 - x> 7]
X1 — 2x5 + 2x5 < 4
X1, X5, X' > 0

|
i Negate respective inequalities.
|

A
maximise 2xy — 3x3 + 3x
subject to
Xt + X = X < 7
- %+ = 7]
X — 2x% + 2x35 < 4
X1, X5, X5 > 0
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Converting into Standard Form (5/5)

maximise 2xy — 33X + 3x3
subject to
X1+ Xo = X3
X1 - X2 + X3
X1 —  2Xo +  2Xx3
X1, X2, X3

IV AN IAIA
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

A\
maximise 2xy — 33X + 3x3
subject to
Xy + X - x3 < 7
-Xy - X2 + x3 < =7
X1 — 2Xo + 2X3 < 4
X1, X2, X3 > 0
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

A\
maximise 2xy — 3x2 + 3x3
subject to
Xy + X - x3 < 7
—X; - X2  + x3 < =7
X1 — 2Xo =+ 2X3 < 4
X1, X2, X3 > 0

l It is always possible to convert a linear program into standard form. '
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
= Introduce a slack variable s by
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—> a
=
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b—> a
=

s>0.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ajx
[ s measures the slack between } I ; i

the two sides of the inequality. >0
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let 27:1 ajx; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ajx
[ s measures the slack between } I ; i

the two sides of the inequality. >0

= Denote slack variable of the i-th inequality by x,;
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X1+ Xo — X3 <
=X - X + X3 <
X1 — 2% + 2x3 <
X1 ) X27 X3 Z
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X 4+ X - X3 < 7
-Xi - X2 + x3 < =7
X1 — 2Xo + 2X3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
Y
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X 4+ X - X3 < 7
-Xi - X2 + x3 < =7
X1 — 2Xo + 2X3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
Y

subject to
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Converting Standard Form into Slack Form (2/3)

maximise 2x; — 33X
subject to
X1+ X2
—Xj — Xo
X1 — 2X2
X1, X2, X3

|

|

i
Y

subject to
Xa B 7
X5 = -7

3X3

X3
X3
2X3

IV AN IAIA

Introduce slack variables
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X 4+ X - X3 < 7
-Xi - X2 + x3 < =7
X1 — 2Xo + 2X3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
Y

subject to
X4 = 7 - X1 — X2 +
X5 = -7 4+ X + X -
X6 = 4 — X1 +  2x —

X3
X3
2X3
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X 4+ X - X3 < 7
-Xi - X2 + x3 < =7
X1 — 2Xo + 2X3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
Y

subject to
X4 = 7 - X1 — X2 + X3
Xs = -7 + X1+ X2 — X3
X6 = 4 — Xq + 2Xx% — 2x3
X1, X2, X3, X4, X5, Xo > 0
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x2 + 3x3
subject to
X1+ X2 - X3
X1 - X2 + X3
X1 — 2X2 + 2X3
X1, X2, X3

maximise 2X1
subject to
X4
X5
Xe

!

!

l
7

32 + 3x3
7 — X1
-7 + Xq
4 — X1

X1, X2, X3, X4, X5, Xp

vV + +

IV AN IAIA

Introduce slack variables

X2
X2
2X2

X3
X3
2X3

6. Linear Programming © T. Sauerwald
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Converting Standard Form into Slack Form (3/3)

maximise 2x; — 3x2 + 3x3
subject to
X4 = 7 - X1 - X2 =+ X3
X = -7 + Xy + X2 - X3
Xs = 4 — X1 +  2Xx - 2X3
X1, X0, X3, X4, X5, Xp > 0
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Converting Standard Form into Slack Form (3/3)

maximise 2x; — 3x2 + 3x3
subject to
X4 = 7 - X1 - X2 =+ X3
X = -7 + Xy + X2 - X3
Xs = 4 — X1 +  2Xx - 2X3
> 0

X1, X2, Xg, X4, X5, Xp

I Use variable z to denote objective function
\l( and omit the nonnegativity constraints.
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Converting Standard Form into Slack Form (3/3)

maximise 2x; — 3x2 + 3x3
subject to
X4 = 7 X1 - X2 =+ X3
X = -7 + Xy + X2 - X3
Xs = 4 X1 +  2Xx - 2X3
X1,X2,X?,X4,X5,X6 > 0

I Use variable z to denote objective function
\l( and omit the nonnegativity constraints.

z = 21— 3% + 3xs |
Xa = 7 - Xq - Xo -+ X3
xXxs = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2% — 2x3
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Converting Standard Form into Slack Form (3/3)

maximise 2x; — 3x2 + 3x3
subject to
X4 = 7 - X1 - X2 =+ X3
X = -7 + Xy + X2 - X3
Xs = 4 — X1 +  2Xx - 2X3
X1,X2,X?,X4,X5,X6 Z 0
I Use variable z to denote objective function
\l( and omit the nonnegativity constraints.
z = 21— 3% + 3xs |
Xy = 7 - Xy - X + X3
X5 = -7 + X1 + X - X3
Xs = 4 — Xy +  2Xx —  2X3

/1

(This is called slack form.j

6. Linear Programming © T. Sauerwald
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Basic and Non-Basic Variables

z =

X4 = 7 —
X5 = -7 +
Xs = 4 —

2X1 — 3X2
X1 — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

6. Linear Programming © T. Sauerwald
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Basic and Non-Basic Variables

Z =

X4 = 7 —

Xxs = -7 +

Xs = 4 —
A

[Basic Variables: B — {4,5,6} ]

2X1 — 3X2
X1 — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

6. Linear Programming © T. Sauerwald
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3
X4 = 7 — X1 — X2 + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 +  2X — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

6. Linear Programming © T. Sauerwald Standard and Slack Forms
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3
Xy = 7 — X1 — X2 + X3
Xxs = -7 + X1+ X2 - X3
Xe = 4 — X4 + 2X% — 2Xx3

[Basic Variables: B — {4, 5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)
Slack form is given by a tuple (N, B, A, b, ¢, v) so that
Z=v+> Gx
jen
Xi=b—> ax forieBh,
JEN

and all variables are non-negative.
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Basic and Non-Basic Variables

z = 2xy — 3x + 3x3
Xy = 7 — X1 — X2 + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 +  2X — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
Z=v+> Gx
jeN
Xi=b—> ax forieBh,

jeN

and all variables are non-negative. N
4(Variables/Coefficients on the right hand side are indexed by B and N. ]
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Slack Form (Example)

Z =

X1 =

Xo =

X4 =

28

8xs _ 2x
3 3
X3 X5
2 T 2
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Slack Form (Example)

Z =

X1 =

Xo =

X4 =

Slack Form Notation

28

18

6. Linear Programming © T. Sauerwald
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Slack Form (Example)

z = 28
Xy = 8
X2 = 4
x4 = 18

Slack Form Notation

*B={1,2,4}, N={3,5,6}

6. Linear Programming © T. Sauerwald

Standard and Slack Forms

26



Slack Form (Example)

xx = 8 4+ ’g’ + X _ ’éﬁ
N = 18 - 3 + %
Slack Form Notation
= B={1,2,4}, N={3,5,6}
] aie

a3 ais
A=|as ax

asz  ass

aze
aus

)

—1/6 —1/6 1/3
:(8/3 2/3 —1/3>

12 —1/2 0

6. Linear Programming © T. Sauerwald
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Slack Form (Example)

z = 28
Xy = 8
Xo = 4
x4 = 18

Slack Form Notation

X3 X5 _ X6
% T 3

8x 2Xs Xe
-3 - 3 T 3
_ X3 X5

> T 7

*B={1,2,4}, N={3,5,6}

a3 aiss
A=|as ax

asz  ass

by
b=|(b| =
by

aie

(

-1/6 —-1/6 1/3
326) = (8/3 2/3 1/3>

up

12 —1/2 0

8
41,
18

6. Linear Programming © T. Sauerwald
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Slack Form (Example)

x1:8+%+§_%
x4:18—%+%

Slack Form Notation
- B=1{1,2,4}, N={3,5,6}

a3 ais  ae —1/6 —1/6 1/3
A= |as as ax| = 8/3 2/3 *1/3
i3 s Qs 1/2 —-1/2 0

by 8 c3 -1/6
b=1|b| = 4 , c=|6C| = —1/6
(8)-(2) () -(23)
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Slack Form (Example)

x1:8+%+§_%
x4:18—%+%

Slack Form Notation
- B=1{1,2,4}, N={3,5,6}

a3 ais  ae —1/6 —1/6 1/3
A= |as as ax| = 8/3 2/3 *1/3
i3 s Qs 1/2 —-1/2 0

by 8 c3 -1/6
b=1|b| = 4 , c=|6C| = —1/6
(8)-(2) () -(23)

=y =28

6. Linear Programming © T. Sauerwald Standard and Slack Forms 26
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Simplex Algorithm by Example
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

7. Linear Programming © T. Sauerwald Simplex Algorithm by Example



Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= iterative procedure somewhat similar to Gaussian elimination

Basic Idea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable
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Extended Example: Conversion into Slack Form

maximise 3x;  + X2 + 2x3

subject to
x + X + 3x < 30
2X4 +  2X + 5x3 < 24
4xq + X2 + 2X3 < 36
X1, X2, X3 > 0
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Extended Example: Conversion into Slack Form

maximise 3x;  + X2 + 2x3

subject to
x + X + 3x < 30
2X4 +  2X + 5x3 < 24
4xq + X2 + 2X3 < 36
X1, X2, X3 > 0

|
| . .
1 Conversion into slack form
|

Y
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Extended Example: Conversion into Slack Form

2X3

3X3
5X3
2X3

IV IAIAIA

30
24
36

0

| . .
1 Conversion into slack form

maximise 3x1  + Xo +
subject to
X4 + X2+
2xy  + 2x2 +
4x1  + Xo +
X1, X2, X3
|
v
z =
Xa = 30 —
X5 = 24 —
X6 = 36 —

3X1

X4
2X1
4X1

+

X2
X2
2X2
X2

2X3
3x3
5X3
2X3

7. Linear Programming © T. Sauerwald
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Extended Example: Iteration 1

z =
x4 = 30 -—
Xs = 24 —
X = 36 —

3+ X

X1 — Xo
2X1 — 2Xo
4x 1 — X2

2X3
3X3
5X3

2X3

7. Linear Programming © T. Sauerwald
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Extended Example: Iteration 1

z =
x4 = 30 -—
Xs = 24 —
X = 36 —

3+ X

X1 — Xo
2X1 — 2Xo
4x 1 — X2

[Basic solution: (X7, %, ..., %) — (0,0,0,30, 24, 36) ]

2X3
3X3
5X3

2X3
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Extended Example: Iteration

1

z =
Xs = 30
x5 = 24
X6 = 36

X+ X

X1 — Xo
2X1 — 2Xo
4x 1 — X2

[Basic solution: (X7, %, ..., %) — (0,0,0,30, 24, 36) ]

/|
[This basic solution is feasible]

2X3
3X3
5X3

2X3
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Extended Example: Iteration 1

z =
Xs = 30
x5 = 24
X6 = 36

X+ X

X1 — Xo
2X1 — 2Xo
4x 1 — X2

[Basic solution: (X7, %, ..., %) — (0,0,0,30, 24, 36) ]

/1

[This basic solution is feasible] [Objective value is 0.)

2X3
3X3
5X3

2X3
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.j

/4
z = 3y  + Xo + 2X3
X4 = 30 — X1 — X2 — 3x3
X5 = 24 — 2X4 — 2Xo — 5X3
X6 = 36 — 4X1 — X2 — 2X3
i
[Basic solution: (X7, %, ..., %) — (0,0,0,30, 24, 36) ]

/[
[This basic solution is feasible] [Objective value is 0.)
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.j

v
z = 3y  + Xo + 2X3
x4 = 30 -— Xy - Xo — 3x3
Xxs = 24 — 2x4 — 2X — b5xj3
X = 36 — 4x3 - X2 — 2X3

N
[The third constraint is the tightest and limits how much we can increase x j
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.j

v
z = 3y  + Xo + 2X3
x4 = 30 -— Xy - X — 3x3
Xxs = 24 — 2x4 — 2X — b5xj3
X = 36 — 4x3 - X2 — 2X3

N

[The third constraint is the tightest and limits how much we can increase x j

N

Switch roles of x; and xg:
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.j

/4
z = 3y  + Xo + 2X3
X4 = 30 — X1 — X2 — 3x3
X5 = 24 — 2X4 — 2Xo — 5X3
X6 = 36 — 4X1 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x j
N

Switch roles of x; and xs:
= Solving for x; yields:

_g_Xe X3 _Xo
"=9-F -5 -7
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.j

/4
z = 3y  + Xo + 2X3
X4 = 30 — X1 — X2 — 3X3
X5 = 24 — 2X4 — 2Xo — 5X3
X6 = 36 — 4X1 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x j

N

Switch roles of x; and xs:
= Solving for x; yields:

_g_Xe X3 _Xo
"=9-F -5 -7

= Substitute this into x; in the other three equations
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Extended Example: Iteration 2

z = 27 +
Xy = 9 -
x4 = 21 -
Xs = 6 -

Xo X3
G T 2
X2 _ X3
4 2
3 . 5x
4 2

N

7. Linear Programming © T. Sauerwald
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Extended Example: Iteration 2

z = 27 + % + % - 3%
x5:6—3§2—4xa+%
N

[Basic solution: (X7, %, ..., %) = (9,0,0,21,6,0) with objective value 27]
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.j

N
z = 27 + % + % - 3%
xx = 9 — X _ X _ %
X 21 - 3% % 4+ %
X5 = 6 - 3§2 — 4x3 + %

[Basic solution: (X7, %, ..., %) = (9,0,0,21,6,0) with objective value 27]
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.j

N
z = 27 + % + % _ 3‘)‘.(6
xx = 9 — X _ X _ %
X 21 — % _ % T
Xxs = 6 - % — 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase x3.j
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.j

N
_ X2 X3 _ 3
z = 27 + 4 T 5 4

X1 = 9 — & — & — %

_ 3% _ 5% Xe

Xs 21 4 > T 7

X5 = 6 — % — 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase x3.j
\
( R N\
Switch roles of x; and xs:

(. J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.j

N
_ X2 X3 _  3X
z = 27 + 4 + 5 4
- _ X _ X3 _ Xo
o= 9 2 4
— _ 3 _ 5% Xo
X = 2 4 > t 7
_ _ 3X2 _ X6
X5 = 6 > 4x3 + >
N
[The third constraint is the tightest and limits how much we can increase x3.j
\
( N\
Switch roles of x; and xs:
= Solving for x; yields:
o3 3 X X
T2 8 4 8
(. J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.j

N

_ X2 X3 _  3X
z = 27 + 4 + 5 4

- _ X _ X3 _ Xo
o= 9 > 4

_ _ 33X _  5x3 Xe
X = 2 4 > T 7
X5 = 6 — 3é(2 — 4x3 + %

N
[The third constraint is the tightest and limits how much we can increase x3.j

\

-
Switch roles of x; and xs:

~

= Solving for x; yields:

Xf§_%_ﬁ_&
ST 278 4 8

= Substitute this into x3 in the other three equations
&
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Extended Example: Iteration 3

X1 =

X3 =

X4 =

X2 X
16 8
X X5
6 T 8

32 _ X5
8 4

3Xo 5x5
6 + 8

o =
X ool m\g;

-
o
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Extended Example: Iteration 3

w = 8 4+ ¥ o4 6 X

[Basic solution: (X1, %z, ..., %s) = (2,0, 2, 0,0) with objective value 1} = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.j

N
111 X _ oxs _ 11X
zZ = 4 T 16 8 16
- 33 _ X Xs _  5X
o= g 6 * B 16
- 3 3 _ X Xe
X3 = 2 8 4 ° 8
— 69 3x2 5x5 X
X = 74 *t 5 T 78 16
N
[Basic solution: (X1, %z, ..., %s) = (2,0, 2, 0,0) with objective value 1} = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.j

N
w = 8 4+ ¥ o4 6 X

N
[The second constraint is the tightest and limits how much we can increase xz.j
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.j

N
w = 8 4+ ¥ o4 6 X

N
[The second constraint is the tightest and limits how much we can increase xz.j
[\

( N\
Switch roles of x> and x3:

- /
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.j

N

N
[The second constraint is the tightest and limits how much we can increase xz.j
[\

rSwitch roles of x, and x3: )
= Solving for x» yields:
_ 8x3 2X5 Xs
e=4-73 -3 T3
(. J
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Extended Example: Iteration 3

[Increasing the value of x» would increase the objective value.j

N

N
[The second constraint is the tightest and limits how much we can increase xz.j
[\

( N\
Switch roles of x> and x3:

= Solving for x» yields:

_ 8x3 2X5 Xs
Xo =4 3 3+3.

= Substitute this into xz in the other three equations
&
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Extended Example: Iteration 4

z = 28 -
X1 = 8 +
Xo = 4 —
x4 = 18 -
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Extended Example: Iteration 4

N = 18 - % + %
N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28 j
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Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is oplimal!j

N
z:28—%_%_%
x = 8 + B o+ £ - %
X4 187%+%

N

[Basic solution: (X1, Xz, ...,Xs) = (8,4,0,18,0,0) with objective value 28 j
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Extended Example: Visualization of SIMPLEX

X3

(0,0,4.8) @

X2

(0,12,0)

®(8,4,0)
(8.25,0,1.5) @

X4

(9,0,0)
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Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)
12

(0,0,4.8) @
9.6

®(8,4,0)
(8.25,0,1.5) @ 28
27.75

X1

(9,0,0)
27
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Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)
12

(0,0,4.8) @
9.6

®(8,4,0)
(8.25,0,1.5) @ 28
27.75

X1

(9,0,0)
27
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Extended Example: Visualization of SIMPLEX

X3

(0,0,4.8) @
9.6

X2

(0,12,0)
12

®(8,4,0)
(8.25,0,1.5) ® 28
27.75
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Extended Example: Visualization of SIMPLEX

X3

(0,0,4.8) @
9.6

X2
(0,12,0)
12
e (8,4,0)
(8.25,0,1.5) @ 28
27.75
X1
(0.0.0)

Exercise: [Ex. 6/7.6] How many basic solutions (including
non-feasible ones) are there?
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Extended Example: Alternative Runs (1/2)

X4 =
X5 =

X6 =

30
24
36

3x
X1
2X1

4x4

- 2% -

2X3
3x3
5x3

2X3
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Extended Example: Alternative Runs (1/2)

X4 =
X5 =

X6 =

30
24
36

3x
X1
2X1

4x4

+

X2
X2
2X2

X2

+

2X3
3x3
5x3

2X3

|
} Switch roles of x» and xs

A\
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Extended Example: Alternative Runs (1/2)

X4 =
X5 =

X6 =

X2 =
X4 =

Xe =

30
24
36

12
18
24

3x + X2 4+ 2x3
X4 — X2 — 3x3
2Xq - 2xp - 5x3
4x4 — Xo — 2X3
|
} Switch roles of x» and xs
\4

X3 X5
3X1 + o o
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Extended Example: Alternative Runs (1/2)

Xy =
X5 =

X6 =

X =
Xy =

Xe =

30
24
36

12
18
24

3x
X1
2Xq

4x4

+

X2
X2
2X2

X2

|
} Switch roles of

\4
2X1

X1
X2

3x1

+

X3
2

+  2x3
- 3x3
- 5x3
— 2X3
Xo and Xs
_ X5
2
_ X5
2
X5
T2
X5
T2

|
1 Switch roles of x; and xg

A\
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Extended Example: Alternative Runs (1/2)

Xy =
X5 =

X6 =

X =
Xy =

Xe =

X =

Xo =

Xy =

30
24
36

12
18
24

28

3x + X2 4+ 2x3
X4 — Xo — 3x3
2Xq - 2xp — 5x3
4x4 — Xo — 2X3
|
} Switch roles of x> and xs
\4
X3 X5
X - 3 -7
5X3 X5
X 2 7
X2 = 3 + %
X3 X5
?X1 + > + >
1 Switch roles of x; and xg
\4
X _ X% 2%
6 6 3
X3 X5 _ X6
6 6 3
8 2% X6
3 3 Tt 3
X3 X5
2 T3
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Extended Example:

Alternative Runs (2/2)

z = 3x4
X4 = 30 — X1
X5 24 — 2Xq
X = 36 — 4x

X2
X2
2X2

X2

2X3
3x3
5x3

2X3
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Extended Example: Alternative Runs (2/2)

z = 3x4 + X2 + 2x3
X4 = 30 — X4 — Xo — 3x3
X5 = 24 — 2Xq — 2X2 — 5x3
Xs = 36 — 4x — Xo — 2X3

|
1 Switch roles of x3 and xs
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Extended Example: Alternative Runs (2/2)

X4 =

X5

X4 =

X3 =

X6 =

30
24

3x4

X1
2Xq
4x4

+

X2
X2
2X2

X2

+

2X3
3x3
5x3

2X3

|
1 Switch roles of x3 and xs

1

"*3"\3 X m‘_ﬁ:

e
(2]
ofg

X2
5

X2
5
2Xo
5
X2
5

n w N
AF ops o o
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Extended Example: Alternative Runs (2/2)

z —
X4 = 30
X5 = 24
X6 = 36
;- 4B
X4 = %
X3 = 25‘1

Switch roles of x; and xg _ - -~~

£

3x4

X1
2Xq
4x4

+

X2
X2
2X2

X2

+

2X3
3x3
5x3

2X3

|
1 Switch roles of x3 and xs

1

"*3"\3 X m‘_ﬁ:

e
(2]
ofg

X2
5

X2
5
2Xo
5
X2
5

n w N
AF ops o o
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X

X3

X4

Extended Example: Alternative Runs (2/2)

z _
X4 =
X5
X6 =
zZ =
X4 =
X3 =
X6 =
Switch roles of x; and x5 _
-
- 111 X _ X5
= 7 * 16 8
_ 33 _ X2 X5
= 4 6 T 3B
_ 3 _ 3 _ X5
= 2 8 4
_ 69 3% 5xs
= 7 *t I * &

30
24

3x4

X1
2Xq
4x4

+

X2
X2
2X2

X2

2X3
3x3
5x3

2X3

|
1 Switch roles of x3 and xs

1

"*3"\3 X m‘_ﬁ:

e
(2]
ofg

X2
5

X2
5
2Xo
5
X2
5

n w N
AF ops o o
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X

X3

X4

Extended Example: Alternative Runs (2/2)

z _
X4 =
X5
X6 =
zZ =
X4 =
X3 =
X6 =
Switch roles of x; and x5 _
-
- 111 X _ X5
= 7 * 16 8
_ 33 _ X2 X5
= 4 6 T 3B
_ 3 _ 3 _ X5
= 2 8 4
_ 69 3% 5xs
= 7 *t I * &

30
24

3x4

X1
2Xq
4x4

+

X2
X2
2X2

X2

2X3
3x3
5x3

2X3

|
1 Switch roles of x3 and xs

X2

5

X2

5
2Xo

X2

+

2Xs
5

3x
5
X5
5

2x3
5

~~~._ Switchroles of x, and x3
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X

X3

X4

Extended Example: Alternative Runs (2/2)

z _
X4 = 30
X5 = 24
X6 = 36
V4 = %
X4 = %
6w = &
Switch roles of x; and xs _ - -~
-
_ 1 X X
= e + % — §5 _
_ 33 X: Xe
= 8- Lo+ e
_ 3 3x: Xe
= 3 - % - 7 f
— 69 3x, 5xs
= 7 t % t % -

3x4

X1
2Xq
4x4

+

X2 +
X2 -

2X2

X2 —

2X3
3x3
5x3

2X3

|
1 Switch roles of x3 and xs

1

"*3"\3 X m‘_ﬁ:

4
(o2}
I ”"3

X1

X2

X4

X2
5

X2
5
2Xo

X2

+

X3
6
X3
6
8x3
3
X3
2

2Xs
5

3x5
5
X5
5

2x3
5

~ _ Switch roles of x, and x3

X5
6
X5
6
25
3
X5
2
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Outline

Details of the Simplex Algorithm
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

// Compute the coefficients of the equation for new basic variable x,.

let A be a new m x n matrix
e = bl/ale
for each] e N —{e}
aej = ajj; /ale
Qo = 1/ay,
// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
I; =b; —u,ege
for each j € N — {e}
aii - al/ azeaej
ail = 7aieael
// Compute the objective function.
D =v+ cege
for each j € N — {e}
¢ = G- Celloj
E‘\I = 7Ceael
// Compute new sets of basic and nonbasic variables.
N =N-—{euil}
B=B—{}U{e}
return (ﬁ. B.A, 5 c,0)
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix

ge = bl/ale " X -
for each j € N — {e} Rewrite “tight” equation

dej = aij/are for enterring variable Xe.
azl = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}

}; = b; —H“,j;e

for each j € N — {e}

ai/' - al/ azcae/

ail = 7aieael
// Compute the objective function.
D =v+ cege
for each] eN— {e}

¢ = K Celloj
E‘\I = 7Ceae1
// Compute new sets of basic and nonbasic variables.
N =N-—{euil}
B=B—{}U{e}
return (ﬁ. B.A, 5 c,0)
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix

ge = hl/ale K X -
for each j € N — {e} | Rewrite “tight” equation

dej = aij/are for enterring variable Xe.
ael = 1/”[{:

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
bi = bi —aj.b, { Substituting xe into

for cach j € N —{e} other equations.
Aijj = djj — Ajelej

ail = 7aieael
// Compute the objective function.
V= v+coh,

for each j € N — {e}
Cj = Cj — Cellej
El = 7Ceae1
// Compute new sets of basic and nonbasic variables.
N =N-—{euil}
B=B—{}U{e}
return (ﬁ. B.A, 5 c,0)
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v.l,e)

// Compute the coefficients of the equation for new basic variable x,.

let A be a new m X n matrix
e = hl/ale
for each] e N —{e}
aej = al//ale
el = 1/”[{:

// Compute the coefficients of the remaining constraints.

for eachi € B — {l}

}; = b; —H“,j;e

for each j € N — {e}
ai/' - al/ alcae/

Ay = —aieel

// Compute the objective function.
D= v+ c.b,
for eachj eN— le‘
Cj = ¢j —Celyj
EI = 7Ceae1
// Compute new sets of basic and nonbasic variables.
N =N-—{euil}
B=B—{}U{e}
return (ﬁ. B.A, 5 c,0)

Rewrite “tight” equation
for enterring variable xe.

Substituting x. into
other equations.

Substituting xe into
objective function.
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v.l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix
3 e = hl/ale

4 for each] e N —{e}

5 aej = al//ale

6 ael = 1/alc

7 // Compute the coefficients of the remaining constraints.
8 foreachi € B—{l}

9 }; =b; —H“,j;e

10 for each j € N — {e}
11 a;; = a,, Qjelej
12 Qi = —0jele

13 // Compute the objective function.

14 v=v+ cel;e

15 for eachj eN— le‘

16 Cj = ¢j —Celyj

17 E[ = 7(‘eae1

18 // Compute new sets of basic and nonbasic variables.
19 N =N—{e}u{l}

20 B=B—{}U{e}

21 return (N, B, /T,E,CA,G)

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v.l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

let A be a new m X n matrix

Ae = hl/ale

2
3

4 foreachj e N—{
5 aej = al}/ale g

6

7

8

ael = 1/alc

// Compute the coefficients of the remaining constraints.

for eachi € B — {l}
9 }; =b; —H“,j;e
10 for each j € N — {e}
11 a;; = a,, Qjelej
12 Qi = —0jele
13 // Compute the objective function.
14 v=v+ cel;e
15 for eachj eN— le‘
16 Cj = ¢j —Celyj
17 E[ = 7(‘eae1
18 // Compute new sets of basic and nonbasic variables.
19 N =N—{e}u{l}
20 B=B—{}U{e}
21 return (N, B, A, b.e, D)

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIvOT(N, B, A, b, c, v, I, e) in which a, # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let x denote the
basic solution after the call. Then
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIvOT(N, B, A, b, c, v, I, e) in which a, # 0. Let the

values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. Xx;=0foreachj e N.

2. Xe = b,/a,e.

3. X; = b; — ajebe for each i € @\ {e}.
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIvOT(N, B, A, b, c, v, I, e) in which a, # 0. Let the

values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. Xx;=0foreachj e N.

2. Xe = b,/a,e.

3. X; = b; — ajebe for each i € @\ {e}.

Proof:
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b,c,v,/,e) in which a. # 0. Let the

values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X; =0foreachj e N.
2. Xe = b,/a,e.
3. X; = b; — ajebe for each i € E?\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xj = B[ — ZE,-/X,-,
jeN
we have x; = B,- for each i € B. Hence Xe = Be = b/ ae.
3. After substituting into the other constraints, we have

Xi = b,’ = b,’ — a,ebe.
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b,c,v,/,e) in which a. # 0. Let the

values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X; =0foreachj e N.
2. Xe = b,/a,e.
3. X; = b; — ajebe for each i € E?\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xj = B[ — ZE,-/X,-,
jeN
we have x; = B,- for each i € B. Hence Xe = Be = b/ ae.
3. After substituting into the other constraints, we have

Xi = B,' = b,’ — a,eBe. O
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

* How do we choose the entering and leaving variables?
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

= How do we determine whether a linear program is unbounded?

* How do we choose the entering and leaving variables?

[Example before was a particularly nice one! ]

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm



The formal procedure SIMPLEX

SIMPLEX(A, b, ¢)

1

W N

[l B e RV N

11
12
13
14
15
16
17

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
let A be a new vector of length m
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;. >0
A; = bi/a;,
else A; = oo
choose an index / € B that minimizes A;
if Al =00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi e B
.’_C,' = b[
else x; =0
return (X1, X5, ...,X,)
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The formal procedure SIMPLEX

SIMPLEX(A, b, ¢)

1

W N

[l B e RV N

11
12
13
14
15
16
17

let A be a new vector of length m

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

J

while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;. >0
A; = bi/a;,
else A; = oo
choose an index / € B that minimizes A;
if Al =00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi e B
)—C[ = b[
else x; =0
return (X1, X5, ...,X,)
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The formal procedure SIMPLEX

SIMPLEX(A, b, ¢)

1

W N

[l B e RV N

11
12
13
14
15
16

Returns a slack form with a
(N, B, A,b,¢,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

choose an index e € N for which ¢, > 0

for each index i € B

ifa;. >0
A; = bi/a;,
else A; = oo

choose an index / € B that minimizes A;

if Al =00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

fori = 1ton

ifi e B
)—C[ = b[
else x; =0
return (X1, X5, ...,X,)

J
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

1
2
3

03NN

11
12
13
14
15
16

choose an index e € N for which ¢, > 0

for each index i € B

ifa;. >0
A; = bi/a;,
else A; = oo

choose an index / € B that minimizes A;

if Al =00
return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

fori = 1ton

ifi e B
)—C[ = b[
else x; =0
return (X1, X5, ...,X,)

J

(Main Loop:
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a

I (N.B,A,b.c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

2 let Abeanew vectoroflengthm__ _ _ __ __ ___ ==

3, while some index j € N has ¢; > 0 ' ((Main Loop: )
41 choose an index e € N for which ¢, > 0 | o . . .

5 : for cach index i € B \ o terlmmlates if a[l coefficients in
61 Ea. >0 1 objective function are

| ie ! non-positive

7 A; = bifaie :< ) ) ) )

g1 else A; = oo X ® Line 4 picks enterring variable
9 : choose an index / € B that minimizes A; : Xa With positive coefficient

10 ! if A; == 00 | = Lines 6 — 9 pick the tightest
11, return “unbounded” ! constraint, associated with x;
12 else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1 = Line 11 returns “unbounded” if
13 fori =1ton """ TTTTTTTTT there are no constraints

14 ifi € B = Line 12 calls PIvoT, switching
15 X; = b; roles of x; and X,

16 else 5, = 0 = ~
17  return (X1, X3,...,X,)
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a

1 (N,B,A b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

2 let Abeanew vectoroflengthm_ _ _ __ ___ _ __ 3 ==

3, while some index j € N has ¢; >0 ' ((Main Loop: )
41 choose an index e € N for which ¢, > 0 1 . . . .

5 : for cach index i € B \ o terlmmlates if a[l coefficients in
61 fa. >0 1 objective function are

| ie ! non-positive

7 A; = bifaie :< ) ) ) )

g else A; = oo X - Llnel4 plcks enterring yarlable
9 : choose an index / € B that minimizes A; : v Wil peslibis st

10 ! if A; == 0o | = Lines 6 — 9 pick the tightest

11 : return “unbounded” : constraint, associated with x;
12 else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1 = Line 11 returns “unbounded” if
13 fori =1ton ~~~~~~ """ """ TTTTTT there are no constraints

14 ifi e B = Line 12 calls P1vOT, switching
15 X; = b; roles of x; and X,

16 else x; =0 - -

17 return (%), %2,..., X,) ﬁ Return corresponding solution. ]
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
I (N.B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

J

2 let A beanew vectorof lengthm_ _ _ _ _ __ _ _ _ _ ==
3, while some index j € N has c; >0 '
4 : choose an index e € N for which ¢, > 0 1
5, for each index i € B :
6 : ifa;, >0 1
7 A; = bi/a;. X
8 : else A; = oo 1
9. choose an index / € B that minimizes A; :
10 : if Aj==00 1
11 return “unbounded” X
121 else(N,B.A.b.c.v) = PIVOT(N,B.A.b.c.v.l.e) 1
13 fori = 1ton
14 ifi e B
15 )—C[ = b[
16 elsex; =0
17  return (X1, X3,...,X,)

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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The formal procedure SIMPLEX

]

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B.A.b.c.v) = INITIALIZE-SIMPLEX (4. b, ¢) & ' feasible basic solution (if it exists)
2 let A beanew vectorof lengthm_ _ _ _ _ __ _ _ _ _ ==
3 :while some index j € N hasc; >0 :

41 choose an index e € N for which ¢, > 0 1
5, for each index i € B :
6 : ifa;, >0 1
7 A; = bi/a;, X
8 : else A; = oo 1
9. choose an index / € B that minimizes A; :
10 : if Aj==00 1
11, return “unbounded” !

Proof is based on the following three-part loop invariant:

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B.A.b.c.v) = INITIALIZE-SIMPLEX (4. b, ¢) & ' feasible basic solution (if it exists)
2 let A beanew vectorof lengthm_ _ _ _ _ __ _ _ _ _ ==
3 :while some index j € N hasc; >0 :

41 choose an index e € N for which ¢, > 0 1
5, for each index i € B :
6 : ifa;, >0 1
7 A; = bi/a;, X
8 : else A; = oo 1
9. choose an index / € B that minimizes A; :
10 : if Aj==00 1
11, return “unbounded” !

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. for each i € B, we have b; > 0,

3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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Outline

Finding an Initial Solution
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Finding an Initial Solution

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5xo
X1, X2

IV INAIA
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Finding an Initial Solution

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5xo
X1, X2

. IVIAIA

Conversion into slack form
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Finding an Initial Solution

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5xo
X1, X2
z =
X3 =
X4 =

< 2
< 4
> 0
|
i Conversion into slack form
v
2X1 — Xo
2 — 2X1 —+ Xo
—4 — X1 =+ 5xo

N

[Basic solution (x4, X2, X3, Xa) = (0,0, 2, —4) is not feasible!]
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Geometric lllustration

2X1 Xo

maximise

subject to

16

Finding an Initial Solution
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Geometric lllustration

2X1 Xo

maximise

subject to

16

Finding an Initial Solution
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Geometric lllustration

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
Xy — b5x < —4 | Questions:
X1, X2 > 0| = How to determine whether
Xo there is any feasible solution?
; ‘ o = |f there is one, how to determine
‘ Ly an initial basic solution?
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Formulating an Auxiliary Linear Program

ot n
maximise > it X
subject to
n
Zj:1 ajjXj

IV IA

b fori=1,2,...
0 forj=1,2,...

5 3
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Formulating an Auxiliary Linear Program

maximise Y7, GX;
subject to
Yiiapg < b fori=1,2,...,m,
x > 0 forj=1,2,...,n

i{ Formulating an Auxiliary Linear Program
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i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Shiax—x < b fori=1.2,....m,
x > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.
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maximise Y7, GX;
subject to
Yiiapg < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Shiax—x < b fori=1.2,....m,
x > 0 forj=0,1,...,n

Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof. Exercise!
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= Let us illustrate the role of xp as “distance from feasibility”
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= Let us illustrate the role of xp as “distance from feasibility”
= We'll also see that increasing xg enlarges the feasible region
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Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0
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Geometric lllustration

maximise —Xo
subject to
2X1 — Xo —
X1 — 5X2 —
Xo, X1, X2

Xo
Xo

IV INAIA

7. Linear Programming © T. Sauerwald

Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < 2
Xq — 5x — Xo < —4
Xo, X1, X2 > 0

7. Linear Programming © T. Sauerwald Finding an Initial Solution 19



Geometric lllustration

maximise —Xo
subject to
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Geometric lllustration

maximise —Xo
subject to
2X1 —
X1 —
Xo, X1, X2
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= Let us now modify the original linear program so that it is not
feasible
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= Let us now modify the original linear program so that it is not
feasible

= Hence the auxiliary linear program has only a solution for a
sufficiently large xg > 0!
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Geometric lllustration

maximise —Xo
subject to
— Xo < -2
— Xo < 4
> 0
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A, b, ¢)

1

15
16

let k be the index of the minimum b;
ifby >0 // is the initial basic solution feasible?
return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
Il =n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L,y is found
if the optimal solution to L, sets X, to 0
if X is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”

7. Linear Programming © T. Sauerwald Finding an Initial Solution
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INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X; = b; for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; -
2 ith, >0 // is the initial basic solution feasible?
3 return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let (N, B, A.,b,c,v) be the resulting slack form for L,

6 | =n+k

7 /] L. has n + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L.

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L,y is found

11 if the optimal solution to L, sets Xy to O

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1

15
16

Test solution with N = {1,2,...,n}, B={n+1,n+
2,...,n+m}, Xx; = b for i € B, Xj = 0 otherwise.

let k be the index of the minimum b; -
ifby >0 // is the initial basic solution feasible?
return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, Ny 5 A
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L,y is found
if the optimal solution to L, sets X, to 0
if X is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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Test solution with N = {1,2,...,n}, B={n+1,n+
2,...,n+m}, Xx; = b for i € B, Xj = 0 otherwise.

let k be the index of the minimum b; -
ifby >0 // is the initial basic solution feasible?
return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, Ny 5 A
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.
// L, has n + 1 nonbasic variables and m basic variables.
(N.B.A.b.c.v) = PIVOT(N. B. A.b.c.v.1.0) ‘( Pivot step with X, leaving and xo entering. J
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L,y is found
if the optimal solution to L, sets X, to 0
if X is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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INITIALIZE-SIMPLEX (A4, b, ¢)

1

15
16

Test solution with N = {1,2,...,n}, B={n+1,n+
2,...,n+m}, Xx; = b for i € B, Xj = 0 otherwise.

let k be the index of the minimum b; -
ifby >0 // is the initial basic solution feasible?
return ({1.2,....n} {n+1,n+2,..., n+m}, A b, c,0)
form L, by adding —x, to the left-hand side of each constraint
and setting the objective function to —x, Ny 5 A
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.
// L, has n + 1 nonbasic variables and m basic variables.
(N.B.A.b.c.v) = PIVOT(N. B. A.b.c.v.1.0) ‘( Pivot step with X, leaving and xo entering. J
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L,y is found
if the optimal solution to L,,, sets ¥ to 0 This pivot step does not change
if X is basic ) ) ) the value of any variable.
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L, remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — X2
X1 — 5X2
X1, X2

IV IAIA
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — X2
X1 — 5X2
X1, X2

maximise
subject to
2X1 — Xo
X1 — 5X2
X1, X2, Xo

IV IAIA

Xo

Xo
Xo

IV IAIA
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — X2
X1 — 5X2
X1, X2

maximise
subject to
2X1 — Xo
X1 — 5X2
X1, X2, Xo

!

!

l
\4

IV IAIA

Xo

Xo
Xo

IV IAIA

Converting into slack form
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — X2 < 2
X1 — 5X2 < —4
X1, X2 > 0

maximise - X
subject to
2X1 — X2 — X0 < 2
X1 — 5X2 — Xo < —4
X1, X2, Xo > 0
|
| Converting into slack form
\Z
V4 = — Xo
X3 = 2 - 2x1 + X2 4+ X
xx = -4 — X1 4+ 5 4+ X

7. Linear Programming © T. Sauerwald Finding an Initial Solution
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Example of INITIALIZE-SIMPLEX (1/3)

maximise
subject to

maximise
subject to

[

Basic solution
(0,0,0,2,—4) not feasible!

N

z =
X3 =
X4 =

2X1 — X2
2x1  — X2 < 2
X1 - 5x < -4
X1, X2 Z 0

2X1 — Xo — X0 < 2
XX - 5% - x < -4
X1, X2, Xo 2 0

|
| Converting into slack form

v
_ Xo
2 - 2x1 + X2 4+ X
-4 - x1 + 5 + X

7. Linear Programming © T. Sauerwald

Finding an Initial Solution
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Example of INITIALIZE-SIMPLEX (2/3)

z =
Xz = 2 —  2Xx + X2
X4 = —4 — X1 + 5xo

+
—+

Xo
Xo
Xo

7. Linear Programming © T. Sauerwald Finding an Initial Solution
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 -  2Xx + X2 + X
Xx = -4 - x + 5 + X

|
i Pivot with xo entering and x4 leaving
v

7. Linear Programming © T. Sauerwald Finding an Initial Solution 24



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 -  2Xx + X2 + X
Xx = -4 - x + 5 + X

|
i Pivot with xo entering and x4 leaving
|

A\
z = -4 — xx 4+ 5 - x
Xo = 4 =+ X1 — 5Xo =+ X4
X3 = 6 — Xxq — 4% + Xa
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 -  2Xx + X2 + X
Xs = -4 - X + 5% + X

|
i Pivot with xo entering and x4 leaving
|

A\
4 = -4 - x4 + 5xo - x4
Xo = 4 4+ X — 5% + Xa
] X3 = 6 — X1 — 4 + X

[Basic solution (4,0,0,6,0) is feasible!]
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 -  2Xx + X2 + X
Xx = -4 - x + 5 + X

|
i Pivot with xo entering and x4 leaving
|

Y
z = -4 — xx 4+ 5 - x
Xo = 4 4+ X — 5% + Xa
] X3 = 6 — X1 — 4 + X

[Basic solution (4,0,0,6,0) is feasible!

|
] i Pivot with xo entering and x, leaving

\4
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Example of INITIALIZE-SIMPLEX (2/3)

z = - X
X3 = 2 — 2X1 + X2 + Xo
X4 = —4 — Xq —+ 5xo + Xo
|
I Pivot with xo entering and x4 leaving
v
z = -4 — X1 4+ B - x4
Xo = 4 4+ X — 5% + Xa
] X3 = 6 — X1 — 4x0 + x4

[Basic solution (4,0,0,6,0) is feasible!

X2

X3 =

oaois

|
] i Pivot with xo entering and x, leaving

\4
X X1 Xa
A2 + o2 + 3
+ %X 2o+ 2
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 -  2Xx + X2 + X
Xs = -4 - X + 5% + X

|
i Pivot with xo entering and x4 leaving
|

A\
4 = -4 - x4 + 5xo - x4
Xo = 4 4+ X - 5x + Xa
] X3 = 6 — X1 — 4 + X

[Basic solution (4,0,0,6,0) is feasible!] b . ) .
! Pivot with x» entering and xp leaving

\4
z = - X0
_ 4 X X Xs
X2 = 5 45*95*5

[Optimal solution has xp = 0, hence the initial problem was feasible!]
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Example of INITIALIZE-SIMPLEX (3/3)

z
Xo =

X3 =

URoin

Xo

Xo X1

5 t 5
4Xo . 9X1
5

ol o
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Example of INITIALIZE-SIMPLEX (3/3)

z = —
Xo = %
X3 = 1754

Xo

Xo X1 X4

5 t 5 t 7
4XO 9x: 1 + Xa
5 5 5

Set xo = 0 and express objective function
by non-basic variables
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Example of INITIALIZE-SIMPLEX (3/3)

_ Xo
4 Xo X X4
0 1 4
5 t 5 - 5 T 5
i Set xo = 0 and express objective function
X?—f)] ! by non-basic variables
Y
_4 9X1 _ X4
N T
1 4
5 * B + 7
14 9 4 X
5 5 5

7. Linear Programming © T. Sauerwald
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Example of INITIALIZE-SIMPLEX (3/3)

z = - X0
_ 4 x X1 Xs
S R R A
P e A0 . IX1 A4
X% = 5 1T 5 5 T 3

Set xo = 0 and express objective function
by non-basic variables

~N
Zz _ _4 + 9X1 _ X4
3 % %
— 1 4
X2 = 5 + 9‘5 + 5
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Example of INITIALIZE-SIMPLEX (3/3)

z = - X0
_ 4 x X1 Xs
S R R A
P e A0 . IX1 A4
X% = 5 1T 5 5 T 3

Set xo = 0 and express objective function
by non-basic variables

~N
Zz _ _4 + 9X1 _ X4
3 % %
— 1 4
X2 = 5 + 9‘5 + 5

[Basic solution (0, 3, %, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

7. Linear Programming © T. Sauerwald Finding an Initial Solution 25



Fundamental Theorem of Linear Programming

~——— Theorem 29.13 (Fundamental Theorem of Linear Programming) ——————s
For any linear program L, given in standard form, either:
1. Lis infeasible = SIMPLEX returns “infeasible”.
2. Lis unbounded = SIMPLEX returns “unbounded”.

3. L has an optimal solution with a finite objective value
= SIMPLEX returns an optimal solution with a finite objective value.

\. J

N

[Small Technicality: need to equip SIMPLEX with an “anti-cycling strategy” (see extra indes)]

7. Linear Programming © T. Sauerwald Finding an Initial Solution 26



Fundamental Theorem of Linear Programming

~——— Theorem 29.13 (Fundamental Theorem of Linear Programming) ——————s
For any linear program L, given in standard form, either:
1. Lis infeasible = SIMPLEX returns “infeasible”.
2. Lis unbounded = SIMPLEX returns “unbounded”.

3. L has an optimal solution with a finite objective value
= SIMPLEX returns an optimal solution with a finite objective value.

\. J

N

[Small Technicality: need to equip SIMPLEX with an “anti-cycling strategy” (see extra indes)]

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

[ Standard Form j
( Slack Form j
No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

~

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum
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Linear Programming and Simplex: Summary and Outlook

Linear Programming
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Linear Programming

= extremely versatile tool for modelling problems of all kinds
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

= In practice: usually terminates in
polynomial time, i.e., O(m+ n)

X3

X2

X1
~—
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3

= In practice: usually terminates in X2
polynomial time, i.e., O(m+ n)

= In theory: even with anti-cycling may

need exponential time 4 X
.
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= In practice: usually terminates in
polynomial time, i.e., O(m+ n)

= In theory: even with anti-cycling may
need exponential time
(N

[

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= In practice: usually terminates in
polynomial time, i.e., O(m+ n)

= In theory: even with anti-cycling may
need exponential time
(N

[

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= In practice: usually terminates in X2
polynomial time, i.e., O(m+ n)

= In theory: even with anti-cycling may
need exponential time o*
(N

Xi

[

-~
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= Interior-Point Methods: traverses the X2
interior of the feasible set of solutions

(not just vertices!)

Xi
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= In practice: usually terminates in X2
polynomial time, i.e., O(m+ n)

= In theory: even with anti-cycling may
need exponential time o*
(N

Xi

[

-~
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= Interior-Point Methods: traverses the X2
interior of the feasible set of solutions

(not just vertices!)
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Outlook: Alternatives to Worst Case Analysis (non-examinable)

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the
downside of worst-case analysis rears its ugly head. This section reviews four
famous examples in which worst-case analysis gives misleading or useless advice
about how to solve a problem. These examples motivate the alternatives to worst-
case analysis that are surveyed in Section 1.4 and described in detail in later chapters
of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the most famous failure of worst-case analysis concerns linear programming,
the problem of optimizing a linear function subject to linear constraints (Figure 1.1).
Dantzig proposed in the 1940s an algorithm for solving linear programs called
the simplex method. The simplex method solves linear programs using greedy local

Source: “Beyond the Worst-Case Analysis of Algorithms” by Tim Roughgarden, 2020
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Outline

Appendix: Cycling and Termination (non-examinable)
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

i Pivot with x; entering and x4 leaving
\4

7. Linear Programming © T. Sauerwald Appendix: Cycling and Termination (non-examinable) 31



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

i Pivot with x; entering and x4 leaving
\4

z = 8 + X3 — X4
X1 = 8 — X2 — X4
Xs = X2 — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

i Pivot with x; entering and x4 leaving
\4

z = 8 + X3 — X4
X1 = 8 — X2 — X4
Xs = X2 — X3

i Pivot with x3 entering and xs leaving
A\
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

i Pivot with x; entering and x4 leaving
\4

z = 8 + X3 — X4

Xy = 8 — X — X4

X5 = X2 — X3
i Pivot with x3 entering and xs leaving
Y

z = 8 4+ X2 - X2 — Xs

XY = 8 — X - X

X3 = Xo — X5
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X2 + X3
X4 = 8 — X1 — X2
X5 = X2 — X3

i Pivot with x; entering and x4 leaving
\4

z = 8 + X3 — X4
X1 = 8 — X2 — X4
X5 = Xo — X3

|
Cycling: If additionally slack form at two ! Pivot with x3 entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! [v

z = 8 4+ X - X4 — X5
X1 = 8 — X2 — X4
X3 = X2 - X5
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Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.
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Termination and Running Time

' Cycling: SIMPLEX may fail to terminate. I
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Termination and Running Time

It is theoretically possible, but very rare in practice.j

~NJ
Cycling: SIMPLEX may fail to terminate. J
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Termination and Running Time

It is theoretically possible, but very rare in practice.)

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
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Termination and Running Time

It is theoretically possible, but very rare in practice.)

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
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Termination and Running Time

It is theoretically possible, but very rare in practice.)

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
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Termination and Running Time

It is theoretically possible, but very rare in practice.j

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €;, where ¢; > ;.1 are all smaII.J
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Termination and Running Time

It is theoretically possible, but very rare in practice.j

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €;, where ¢; > ;.1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most ("!") iterations.
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Termination and Running Time

It is theoretically possible, but very rare in practice.j

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
S

LRepIace each b; by bi = bi + €;, where ¢; > ;.1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most (1) iterations.
Z

Every set B of basic variables uniquely determines a slack
form, and there are at most ("/™) unique slack forms.
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Introduction
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
O Q)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O\
OO
Solution space consists of at most n! possible tours! 3

24+4+141=8
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
O Q)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O\
OO
Solution space consists of at most n! possible tours! 3
vy

[Actually the right number is (n — 1)!/2J 2+4+1+1=8
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Special Instances

= Metric TSP: costs satisfy triangle inequality:
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
(N

Solution space consists of at most n! possible tours!
/)

24+4+141=8

[Actually the right number is (n — 1)!/2J

Special Instances : —
{ Even this version is

= Metric TSP: costs satisfy triangle inequality: NP hard (Ex. 35.2-2)

vYu,v,we V: c(u,w) < c(u,v) + c(v, w).

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance
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Examples of TSP Instances
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33 city contest (1964)
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532 cities (1987 [Padberg, Rinaldi])
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13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;,), where d;, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;;
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,””* little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.
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The 42 (49) Cities

WO 00 NI DU AW N

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.

. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18

. Carson City, Nev.
19.
. Phoenix, Ariz.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Los Angeles, Calif.

Santa Fe, N. M.
Denver, Colo.
Cheyenne, Wyo.
Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.
Oklahoma City, Okla.
Dallas, Tex.
Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.
New Orleans, La.

. Birmingham, Ala.
. Atlanta, Ga.

. Jacksonville, Fla.
. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

. New York, N. Y.

. Hartford, Conn.
.‘Providence, R. 1.
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Combinatorial Explosion

% WolframAlpha

(4212

£ NATURAL LANGUAGE | [ MATH INPUT

Input

1
S@2-!
2

Result

16726263306581903 554 085031026 720375 832576 000000000

Sclentific notation

1
Number name

16 quindecillion ...
Number length

50 decimal digits

Alterative representations

1 r42)
S@-nt=——
2 2

1 r(42,0)
S@2-n= ——
2 2

1 ,
S@2-nr=—2

2 2

EXAMPLES  # UPLOAD 3G RANDOM

Full name

More
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Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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Road Distances

TABLE I
Roap Distances BETWEEN CITIES IN ApJusTED UNITS
The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.

20| 163 165 120 123 124 106 106 105 110 104 86 97 71 93 82 62 42 45 22
211137139 94 96 94 80 78 77 84 77 56 64 65 9o 87 58 36 68 50 3o
117122 77 80 83 68 62 60 61 50 34 42 49 82 77 6o 30 62 70 49 21
23| 114118 73 78 84 69 63 57 59 48 28 36 43 77 72 45 27 8 69 55 27
24| 85 89 44 48 353 41 34 28 29 22 23 35 69105102 74 56 88 99 BI 54 32 29
25| 77 80 36 40 46 34 27 19 21 13 29 30 77114111 84 b4 96107 87 bo 40 37 8
26| 87 89 44 46 46 30 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39 12 U
91 93 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44 32 36 o If
28| 105 106 62 b3 64 47 46 49 54 48 36 9 B51gris 88 66 98 79 s9 3T 36 42 28 33 21 20
iy b9 71 66 5153 56 61 57 g9 71 gbigorxd g 75 g8 B 52 38 47 53 39 42 29 30 12
91 92 50 51 46 3o 34 38 43 29 b0 71103131136109 9o1i5 99 81 53 61 b2 36 34 24 28 20 20
3| 8y B5 g2 43 38 22 20 32 36 g1 6 gsucbi o2 g 126108 88 6o 64 66 3o 36 27 31 28 28 8
32| 89 91 $5 §5 5O 34 39 44 49 63 76 87120155150123 100123109 86 62 71 78 52 49 39 44 35 24 15 12
38| o5 97 64 83 6 42 49 6 6o 7 86 g7 120160155 a8 04 128113 g0 67 76 82 62 59 39 53 40 29 25 23 Ir
34| 74 BT 44 43 35 23 30 39 44 62 78 Bgian 159 !gs 127 108 136 124 101 75 79 81 $4 50 42 46 43 39 23 14 14 20
35| 67 69 42 41 31 25 32 41 46 63 83 90130164 160133114 136134111 85 84 86 39 32 47 ST 53 49 32 24 24 3O
36| 74 76 61 60 42 44 51 60 66 83102110147 185 179 155133159 146122 98105107 79 71 66 70 70 60 48 40 36 33 25 18
37| §7 59 46 41 25 30 36 47 52 70 93 98136172 172 148 126 158 147124 121 97 99 71 b5 S9 63 67 62 46 38 37 43 23 13 1
35 46 41 34 20 34 38 48 33 73 96 99137176 178151131 163159 135108 102103 73 67 by 69 75 72 34 46 49 54 34 24 29 12
39| 35 37 35 26 18 34 36 46 51 70 03 97134171 176 151 129161 163139 118 102101 71 65 65 70 B3 78 58 0 b b2 ir 32 38 21 g
40| 29 33 30 21 18 35 33 40 45 65 87 91117166171 144125157 156139 113 95 97 62 60 62 67 79 82 62 33 s% 66 45 ;;B 45 27 15 6
41 141 37 47 §7 8 63 83 105 109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101108 88 80 86 92 71 64 71 54 41 32 25
o IniiY 38 A 8 BTt 1140186 102 166 143 180 185 167 130 124 119 90 87 95 94107114 77 85 92 08 B0 74 77 o 48 38 53 6
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
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Road Distances

[Hence this is an instance of the Metric TSP, but not Euclidean TSP. ]

a| 3437 47 9

42| 5 12 55 41 53 b4 6

55
3

b
i

8

TABLE I
Roap Distances BETWEEN CITIES IN ApJusTED UNITS
The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.

14 29 30 77114111 84 by 96107 87 60 40 37 8
27 36 47 78116112
30 34 45 77115110
48 46 59 8511911 9
57 59 71 96130126 98 75 98 85 b2 38 47 53 39 42 29 o 12
19 6o 71103131136 109 90115 99 81 §3 61 62 36 34 24 28 20 20
S1 63 75106142 140 112 93126108 88 6o 64 66 39 36 27 31 28 28
63 76 87120155150123 100123109 86 62 71 78 52 49 39 44 35 24
75 86 97126160155 128 104 128 113 go 67 76 82 52 59 49 53 40 29
62 78 gglzl lgg :g; 127108 136 124 101 75 79 81 $4 50 42 46 43 39
64 83 90130164 160133 114146134 111 85 84 86 59 52 47 ST 53 49 32 24 24 30

60

62

72

78

2

0.0 0
£
>
N
%
2
o
%
o
ES
8
5

83 102 110 147 185 179 155 133 159 146 122 98105107 79 71 66 70 70
71 93 8136172 172 148 126 158 147 124 121 97 99 71 65 59 63 67
73 96 99137176 178 x51 131 163 159 135 108 102 103 73 67 b4 b9 75
70 93 97134171 176 131 129 161 163 139 118 102 101 71 65 65 70 84 3 1
65 87 91117166 171 134 125157 156139 113 95 97 67 60 62 67 79 2 53 59 66 45 38 45 27
83 105 109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101108 88 80 86 92 71 64 71

84117 113 150 186 192 166 147 180 188 167 140 124 119 90 87 90 94107114 77 86 92 98 80 74 77 60

54 46 49 54 34 24 29 12

9

1506

41 32 25
8383 6

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

38 39 40 41
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances



Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize It - () P{(N)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1 <j<i<42
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S S (i, f)x (i)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
ng(i,/[z§1 foreach1 <j<i<42

[ Constraints x(/,j) € {0, 1} are not allowed in a LP!J
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S S (i, f)x (i)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1 <j<i<42
N

[ Constraints x(/,j) € {0, 1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S S (i, f)x (i)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1 <j<i<42
N

[ Constraints x(/,j) € {0, 1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

= As long as solution of LP has fractional x(i, /) € (0,1):
= Add x(i, ) = 0 to the LP, solve it and recurse
= Add x(/, ) = 1 to the LP, solve it and recurse
= Return best of these two solutions
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S S (i, f)x (i)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1 <j<i<42
N

[ Constraints x(/,j) € {0, 1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

= As long as solution of LP has fractional x(i, /) € (0,1):
= Add x(i, ) = 0 to the LP, solve it and recurse
= Add x(/, ) = 1 to the LP, solve it and recurse
= Return best of these two solutions

= |If solution of LP integral, return objective value
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Modelling TSP as a Linear Program Relaxation

|dea: Indicator variable x(i,j), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli )X (i)
subject to
2o XU ) + 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1 <j<i<42
N
[ Constraints x(/,j) € {0, 1} are not allowed in a LP!}

Branch & Bound to solve an Integer Program: S [ Trelvaals
« As long as solution of LP has fractional x(i, j) € (0,1): sound-Step: 1f the best known
= Add x(i, ) = 0 to the LP, solve it and recurse lnttﬁgreilhsolutllotr] SO ffal’ |EFE>etter

= Add x(i, /) = 1 to the LP, solve it and recurse an tne solution or a LF, no
need to explore branch further!

= Return best of these two solutions

= |If solution of LP integral, return objective value
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In the following, there are a few different runs of the demo.
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Iteration 1:
Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations
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Iteration 1: Eliminate Subtour 1,2,41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations
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Iteration 1: Eliminate Subtour 1,2,41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

[ Disallow subtour (1,2,42,41) by adding this constraint to the LP: ]

X(2,1) + x(41,1) + x(42, 1) + x(41,2) + x(42,2) + x(42,41) < 3

4 \ 2
\m\l‘? : || =

/ W ;i %
' Vol

1 2 -
oo “ 2 i 2
g : - \
3 nal L W
o
3
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Iteration 1: Eliminate Subtour 1,2,41,42
Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

14 [ Disallow subtour (1,2,42,41) by adding this constraint to the LP: ]

P

X(2,1) + x(41,1) + x(42, 1) + x(41,2) + x(42,2) + x(42,41) < 3
/)

71
Equivalent to: S = {1,2,41,42}, 2 i 42
> x(max(i,f), min(i, ) > 2

\:\w
i€S,jEV\S
9
I
L [
8, o 23 24

m;
m | J 7 ég 10
|

) , 7
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3
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Iteration 2:
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

3

i 3
4 35 o

:w
&

t

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17



Iteration 2: Eliminate Subtour 3 — 9
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

T
31

S VAN
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Iteration 3:
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

7 2f A
o
1 2
“ . 2
1 20 ! 30
[\g\m\ silg w
9
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Iteration 3: Eliminate Subtour 24,25, 26, 27

Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations
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Iteration 4:
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

12
2 42
. 11) 1
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Iteration 4: Eliminate Cut 11 — 23

Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

A=y /

31

v “J
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Iteration 4: Eliminate Cut 11 — 23

Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

ey '1

./

Tour has to include at least two edges between S = {11,12,...,23} and V\ S:
Z x(max(i, f), min(i,f)) > 2.

i€S,jeV\S
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Iteration 5:

Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations
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Iteration 5: Eliminate Subtour 13 — 23

Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations

/.1
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Iteration 6:

Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations

vl F\ /
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Iteration 6: Eliminate Cut 13 — 17

Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations

23
\@\7
1 2
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Iteration 7:
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations

14

E\ —m _
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Iteration 7: Branch 1a x4 15 =0
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations
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Iteration 8:
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations
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Iteration 8: Branch 2a xy7 13 =0
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations
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Iteration 9:
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations
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Iteration 9: Branch 2b x;7 13 = 1
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations
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Iteration 10:

Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations
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Iteration 10:
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

i |

Branch & Bound procedure would stop here, since value of the best
= 0is worse than a previously found tour.

LP solution for x1g15 =
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Iteration 10: Branch 1b xig 15 = 1
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

o |

Branch & Bound procedure would stop here, since value of the best

i\‘ﬂ\ LP solution for x1g.15 = 0 is worse than a previously found tour.
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Iteration 11:

Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations
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Iteration 11: Branch & Bound terminates
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations
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Branch & Bound Overview

1: LP solution 641
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1: LP solution 641
Eliminate Subtour 1,2,41,42
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Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676
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Branch & Bound Overview

*
Eliminate Subtour 1,2,41,42
*

Eliminate Subtour 3 — 9

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

27



Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
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3: LP solution 681
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Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676
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3: LP solution 681
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10, 11,12
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676
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3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10, 11,12

6: LP solution 694.5
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Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10, 11,12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X18,15 =0
8: LP solution 698
X17,13 =0 17,13 =1
" " Cut branch, since LP solution worse
[9. Valid tour 699] [10. LP solution 700]{ than current best possible tour. ]
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Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10, 11,12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X18,15 =0 Xi8,15 = 1
8: LP solution 698 11: Valid tour 701
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Iteration 7: Objective 697
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Iteration 7: Objective 697

[What about choosing a different branching variable? ]

28
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Solving Progress (Alternative Branch 1)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697
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Solving Progress (Alternative Branch 1)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

29



Alternative Branch 1: xi3 15, Objective 697

2 42
6 o,
g
0.50 m,1
17 .
8 ! 23
i T
40,
; '

35

@ ”

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 30



Alternative Branch 1: xi3 15, Objective 697
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Alternative Branch 1a: xi5 15 = 1, Objective 701 (Valid Tour)
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Alternative Branch 1b: xi5 15 = 0, Objective 698
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Solving Progress (Alternative Branch 1)

1: LP solution 641

Eliminate Subtour 1,2, 41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23
8: LP solution 697

X18,15 = 1 X18,15 =0
9: valid tour 701 10: LP solution 698
“.' 0“
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Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11, 12
Eliminate Subtour 13 — 23
7: LP solution 688
Eliminate Subtour 11 — 23

8: LP solution 697
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Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11, 12
Eliminate Subtour 13 — 23
7: LP solution 688
Eliminate Subtour 11 — 23

8: LP solution 697
Xo7,22 = 1 Xo7.20 =0
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Alternative Branch 2: xy7 »,, Objective 697
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Alternative Branch 2: xy7 »,, Objective 697
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Alternative Branch 2a: xy7 »» = 1, Objective 708 (Valid tour)
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Alternative Branch 2b: x;7 2 = 0, Objective 697.75
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Solving Progress (Alternative Branch 2)

1: LP solution 641

Eliminate Subtour 1,2, 41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,22 = 1

9: valid tour 708

(10: LP solution 697.75]

o Y
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Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697
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Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697
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Alternative Branch 3: xu7 24, Objective 697
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Alternative Branch 3: xu7 24, Objective 697
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Alternative Branch 3a: xy7 24 = 1, Objective 697.75
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Alternative Branch 3b: x»7 24 = 0, Objective 698
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Solving Progress (Alternative Branch 3)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676

Eliminate Subtour 3 — 9
Eliminate Subtour 24,25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10, 11,12
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,04 = 1 Xo7.04 =0
(9: LP solution 697.75) 10: LP solution 698
. .
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Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24,25, 26, 27
4: LP solution 682.5

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

6: LP solution 686
Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697
10: LP solution 698

T " = ‘0

(9: LP solution 697.75)
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Conclusion (1/2)

= How can one generate these constraints automatically?
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Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.
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Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26,27
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Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26,27

THE 49-CITY PROBLEM*

The optimal tour & is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(z) is a minimum for . We distinguish the following subsets of the

42 cities:
Si={1, 2, 41, 42} Ss=1{13, 14, ---, 23}
S=1{3,4, -, 9} Se={13, 14, 15, 16, 17}
S;={1,2, ---,9,29,30, ---,42}  S;=1{24, 25, 26, 27}.
Si={11,12, -+, 23}
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CPLEX

& 9 C [} enwikipedia.org/wiki/CPLEX

WIKIPEDIA
‘The Free Encyclopedia

Main page

Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages

CPLEX

From Wikipedia, the free encyclopedia

IBM ILOG CPLEX Optimization Studio (often informally
referred to simply as CPLEX) is an optimization software
package. In 2004, the work on CPLEX earned the first
INFORMS Impact Prize.

The CPLEX Optimizer was named for the simplex
method as implemented in the C programming language,
although today it also supports other types of
mathematical optimization and offers interfaces other
than just C. It was originally developed by Robert E.
Bixby and was offered commercially starting in 1988 by

Developer(s)
Stable release

CPLEX

IBM
12,6

Development status Active

Type
License
Website

Technical computing
Proprietary
ibm.com/software
Iproducts
fibmilogcpleoptistud/€

CPLEX Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently acquired by

IBM in January 2009.1"] CPLEX continues to be actively developed under IBM.

The IBM ILOG CPLEX Optimizer solves integer programming problems, very large!?! linear
programming problems using either primal or dual variants of the simplex method or the barrier interior
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Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.@
with Simplex, Mixed Integer & Barrier Optimizers

5725-AB6 5725-A20 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21

Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help' for a list of available commands.
Type 'help® followed by a command name for more
information on commands.

CPLEX> read tsp.lp

Problem 'tsp.lp' read.

Read time = @.@8 sec. (@.86 ticks)

CPLEX> primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = @.@@ sec. (®.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective 1518.e00000
Iteration: 98 Objective = 923.000000
Iteration: 155 Objective 711.eeeee8

Primal simplex - Optimal: Objective = 6.99222000800e+@2
Solution time = .09 sec, Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

crLEx= I
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CPLEX> display solution variables -

Variable Name Solution Value
x 2.1 1.000000
x_42_1 1.000000
x_3_2 1.000000
x_4_3 1.000000
x_5_4 1.000000
x_6_5 1.000000
x_7_6 1.000000
x_8_7 1.000000
x_9_8 1.000000
x_10_9 1.000000
x_11_10 1.000000
x_12_11 1.000000
x_13_12 1.000000
x_14_13 1.000000
x_15_14 1.000000
x_16_15 1.000000
x_17_16 1.000000
x_18_17 1.000000
x_19_18 1.000000
x_20_19 1.000000
x_21_20 1.000000
x_22_21 1.000000
x_23 22 1.000000
x_24_23 1.000000
x_25_24 1.000000
x_26_25 1.000000
x_27_26 1.000000
x_28_27 1.000000
x_29_28 1.000000
x_30_29 1.000000
x_31_30 1.000000
x_32_31 1.000000
x_33_32 1.000000
x_34_33 1.000000
x_35_34 1.000000
x_36_35 1.000000
x_37_36 1.000000
x_38_37 1.000000
x_39_38 1.000000
x_40_39 1.000000
x_41_40 1.000000
x_42_41 1.000000

All other variables in the range 1-861 are @.
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Randomised Approximation
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Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[ C] of the returned
solution and optimal cost C* satisfy:

(591 65) o0
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Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[ C] of the returned
solution and optimal cost C* satisfy:

max(E[Cl e )gp(n).

c- "E[C]
N

\

= Maximisation problem: g > 1

= Minimisation problem: EL¢1 > 1
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Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[ C] of the returned
solution and optimal cost C* satisfy:

(591 65) o0

not covered here (non-examinable) ]
Randomised Approximation Schemes 1

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + €)-approximation algorithm.
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Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[ C] of the returned
solution and optimal cost C* satisfy:

<(BL gfep) <ot

not covered here (non-examinable) ]
Randomised Approximation Schemes 1

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + €)-approximation algorithm.

= Itis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. (For example, o(n2/e)_)

= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/€)? - ns).)
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MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A(X2 VX3V X5) A -+
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MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A(X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.
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MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

clauses as possible.

N

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A(X2 VX3V X5) A -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—
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MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

[

Assume that no literal (including its negation)
appears more than once in the same clause.

]

clauses as possible.

N

7
v

= Given: 3-CNF formula, e.g.: (X1 VXs VXa) A (X2 VX3V X5) A -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—
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MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (X1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible. N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
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MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (X1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible. N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
N
[x1 =1,x%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]
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MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A(X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX)A(X1 VX3V Xs)A(X2VXaV X5) A (X1 V X2V X3)
N
[x1 =1,x%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

' Idea: What about assigning each variable uniformly and independently at random? I
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
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Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

1 7
= P [clause i is satisfied] = 1 — il
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3", Y] be the number of satisfied clauses. Then,
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

E[Y]
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

>v]

i=1

E[Y] =E
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[Y,]=P[Y,=1]-1=2.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

>v]
-1 1

(Linearity of Expectations )

E[Y] =E
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Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[Y,]=P[Y,=1]-1=2.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

m m
S| =3 e
i=1 ] i=1
(Linearity of Expectations )
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

ZYI} =Y EvI=> 1
] i=1 i=1

E[Y] =E

i=1
(Linearity of Expectations )
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Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

ZY/} => E[Y] :Zgzg'm
A = i=1

E[Y] =E

i=1
(Linearity of Expectations )
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Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause /,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. s 1 7
= P[clause i is satisfied] =1 — = = —
8 8
7
= E[Y,]=P[Y,=1]-1=2.

= Let Y := 3", Y] be the number of satisfied clauses. Then,

> Y,}— E[V] =) s=g ™
=11 = i=1 S

(Linearity of Expectations) (maximum number of satisfiable clauses is m]
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Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
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Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.
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Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

~

\.

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.
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Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

~

\.

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1
[There s w € Q such that Y(w) > E[ Y]]
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Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.
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Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to ]

show existence of a non-obvious property.
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Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

~

\.

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to ]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

]
=5 E[Y | xi=1]+5-E[Y | x =0].

Y is defined as in
the previous proof.
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Expected Approximation Ratio
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Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1 1
=5 E[Y | xi=1]+5-E[Y | x =0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [ Y]]
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

[Y]=%-E[YIX1=1]+%-E[Y | x1 =0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [ Y]]
/1

Algorithm: Assign x; so that the conditional
expectation is maximised and recurse.
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

[Y]=%-E[YIX1=1]+%-E[Y | x1 =0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [ Y]]

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,....n
2: ComputeE[Y|x1:v1...,x,-,1:v,-,1,x,-:1]
3: Compute E[Y | x1 = v1,...,X_1 = Vj—1,X, = 0]
4: Let x; = v; so that the conditional expectation is maximised
5: return the assignment vy, vo, ..., vy
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Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8 /7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

[Y]=%-E[YIX1=1]+%-E[Y | x1 =0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [ Y]]

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,....n

2: Compute E[Y | x1 =vi...,X—1 = Vj—1, X =1]

3: Compute E[Y | x1 = v1,...,X_1 = Vj—1,X, = 0]

4: Let x; = v; so that the conditional expectation is maximised
5: return the assignment vy, vo, ..., vy

Skin Analysis
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Run of GREEDY-3-CNF(p, n,m)

(X1 VX2V Xa) A (X1 VX2 VXa) A (X1 V X V Xa)

(XIVXa VX)) A(Xi VX VX)) ATV VXE) A (X VXe VXa) A VXV Xs) A (X1 V Xa V Xa) A (X2 V Xa V Xa)

77?7

X1:1

X3 =0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 X3 =1
AV 7 Av- Iy A v A v S
I \ I S

(@) - [« - o - o - o
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Run of GREEDY-3-CNF(p, n,m)

(XTI A (AT A (XN A RV XV Xa) A N T A RV X2V XE) ARV XV xa) A GV X2 V Xs) A (XM x TR A (Xe V X V X)

?277?
x1 =0
0???]| 8.625
Xo = 0 Xo = 1
X3 =0 Xz =1 X3 =0 X3 =1

STARS &\ 7 STARS STARS

I \ 4 S 1 \ l \}

(@) - [« - o - o - o

- o -

8.75
x;p =1
1???| 8.875
Xo = 0 Xo = 1
X3 =0 X3 =1 x3 =0 X3
AV AV A v
I \ I \ I \ I

(e} -+ o

=1

SFAYS

\

-
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Run of GREEDY-3-CNF(p, n,m)
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rfAN AN\
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Run of GREEDY-3-CNF(p, n,m)
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Run of GREEDY-3-CNF(p, n,m)
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Run of GREEDY-3-CNF(p, n,m)
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Run of GREEDY-3-CNF(p, n,m)
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X1 = 0 X1 = 1
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[ Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]
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Run of GREEDY-3-CNF(p, n,m)

TATATATATATAOATATAL

?27?|_8.75
x1 =0 x; =1
07?7 8.625 1???| 8.875

X2:0 X2:1 Xz:O X2:1

00??| 8 01??] 9.25 10??] 9 11??] 8.75
X3 =0 Xz =1 X3 =0 X3 =1 X3 =0 Xz =1 X3 =0 Xz =1

000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5

NEARS &\ % INTATS &\ % NTARS NTARS SFAES AR
I \ I \ I \ I \!

Il \ Il \ 1l \ I \

(e} - (e} - o - (o) - (@) - [« - [« - (<) -
@) [@9er)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

MOxwmation Algorithms © T. Sauerwald

MAX-3-CNF



Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem '/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

)
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem '/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

)

Proof:
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

E[YIxg =V, 1=V, 5=1]
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y‘X1 = Vi X :vj*17X/‘:1J :ZE[YI‘)G =Vi,e X1 :Vj,1,Xj:1}
i=1
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y‘X1 = Vi X :vj*17X/‘:1J :ZE[YI‘)Q =Vi,e X1 :Vj,1,Xj:1}
i=1

computable in O(1)
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y‘X1 = Vi X :vj*17X/‘:1J :ZE[YI‘)Q =Vi,e X1 :Vj,1,Xj:1}
i=1

computable in O(1)
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)

Theorem /s
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y‘X1 = Vi X :vj*17X/‘:1J :ZE[YI‘)Q =Vi,e X1 :Vj,1,Xj:1}
i=1

= Step 2: satisfies at least 7/8 - m clauses
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Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.)
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Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.)

1/

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation. ]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j = 1,2,...,n, Y = Y(¢) averages over 2"—/+! assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi, . .,X 1=V =1] =D E[Yi[x=vi. ... X 1=V q1,06=1]
=1

= Step 2: satisfies at least 7/8 - m clauses v’

= Due to the greedy choice in each iterationj =1,2,...,n,
E[YIxi=Vi,...,X_1=Vi_1,5=V| 2E[Y|Xg=Vq,...,X_1=Vj_1]
>E[Y|x1=vi,....,X_2=V_2]
7
zE[Y]:é-m O

Go to Conclugion
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.
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MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

L\N

\
[Essentially there is nothing smarter than just guessing!]
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So you said you have been studying
the field of algorithms for MAX-3-SAT?

4

CEO

Source of Image: Stefan Szeider, TU Vienna
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Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

N 4

CEO

Source of Image: Stefan Szeider, TU Vienna
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Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

N 4

...the best approach
is to randomly
guess a solution.

CEO

Source of Image: Stefan Szeider, TU Vienna
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Outline

Weighted Vertex Cover
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The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif {u, v} € E(G),thenue V' orve V.

(2)»
'\)
w

©(2)
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The Weighted Vertex-Cover Problem

w

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif {u, v} € E(G),thenue V' orve V.

&

©(2)
~(®)

’ Question: How can we deal with graphs that have
? B ?negative weights?
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The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif {u, v} € E(G),thenue V' orve V.

N

\
[This is (still) an NP-hard problem.]
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The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif {u, v} € E(G),thenue V' orve V.

N

\
[This is (still) an NP-hard problem.]

Applications:
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The Weighted Vertex-Cover Problem

3
Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) °
= Goal: Find a minimum-weight subset V' C V such
that if {u, v} € E(G),thenuec V' orve V. e
2\ 2

[This is (still) an NP-hard problem.]

(©
3

e

Applications:

= Every edge forms a task, and every veriex represents a person/machine
which can execute that task
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3
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= Given: Undirected, vertex-weighted graph G = (V, E) °
= Goal: Find a minimum-weight subset V' C V such
that if {u, v} € E(G),thenuec V' orve V. e
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[This is (still) an NP-hard problem.]

(©
3

e

Applications:

= Every edge forms a task, and every veriex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person
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The Weighted Vertex-Cover Problem

3
Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) °
= Goal: Find a minimum-weight subset V' C V such
thatif {u, v} € E(G),thenue V' orve V.

2\ 2

[This is (still) an NP-hard problem.]
3

e

Applications:
= Every edge forms a task, and every veriex represents a person/machine
which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources
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A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)
C =290
E' = G.E
while £’ # 0
let (1, v) be an arbitrary edge of E’
C = CU{u,v}
remove from E’ every edge incident on either u or v
return C

~N NN R W=
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A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

N
[This algorithm is a 2-approximation for unweighted graphs!]
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A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© O ©
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A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]
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A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O © @ ©
1 1 1 1
)
[Optimal solution has weight 4]
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Invoking an (Integer) Linear Program

' Idea: Round the solution of an associated linear program. '
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Invoking an (Integer) Linear Program

' Idea: Round the solution of an associated linear program. '

——— 0-1 Integer Program

veVv

minimize > w(v)x(v)

subject to x(u) +x(v) > 1

x(v)

for each (u,v) € E
e {0,1} foreachv e V
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' Idea: Round the solution of an associated linear program. '

——— 0-1 Integer Program

minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachve V
Linear Program
minimize > w(v)x(v)
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subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
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Invoking an (Integer) Linear Program

' Idea: Round the solution of an associated linear program. '

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachve V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

e
minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
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Invoking an (Integer) Linear Program

' Idea: Round the solution of an associated linear program. '

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) e {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

=
minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]'
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)

1 C=90

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 if x(v) >1/2

5 C =CU{}

6 return C
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)

1
2
3
4
5
6

C=290

compute X, an optimal solution to the linear program

foreachv e IV
if x(v) >1/2
C =CU{}
return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-

gorithm for the minimum-weight vertex-cover problem.
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The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
1 C=9

2 compute X, an optimal solution to the linear program
3 foreachveV

4 ifx(v) >1/2

5 C =CU{}

6 return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

.

[is polynomial-time because we can solve the linear program in polynomial time]
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Example of APPROX-MIN-WEIGHT-VC

(Y(a) = X(b) = X(e) = 1, %(d) =1, %(c) = oJ
V

3
b
4
(&)
()
2

OO

3

fractional solution of LP
with weight = 5.5
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Example of APPROX-MIN-WEIGHT-VC

(Y(a) =X(b) =x(e) = % x(d) =1,x(c) = OJ (x(a) =x(b) = x(e) =1, x(d) =1, x(c) = OJ
74 =

3
b b

4 4
(@) @
Rounding
—_ e

()
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17



Example of APPROX-MIN-WEIGHT-VC

(Y(a) =X(b) =x(e) = % x(d) =1,x(c) = OJ (x(a) =x(b) = x(e) =1, x(d) =1, x(c) = OJ
74 =

3 3 3
b b b

4 4 4
(@) @ @)
Rounding
—_ e

() ()
2 2

2

O—O@ O0—0@  0—=~0

3 1 3 1 3 1
fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover



Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover



Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover



Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18



Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
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Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C") > z"

Rounding
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z =) w(v)X(v)

veV

Rounding
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
w(C)>z" = wvx(v) = > w)-

vev veV:x(v)>1/2

N =

Rounding
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
* * v . 1 fr 1
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZ* <w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
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Weighted Set Cover
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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F,
and a cost function ¢ : F — R"
= Goal: Find a minimum-cost subset
CCF
st.  X=J8

Sec
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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F,
and a cost function ¢ : F — R™

= Goal: Find a minimum-cost subset
CCF

Sum over the costs
of all sets in C

st X= U S.

Sec

[

o oo =
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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F, ® [ ) ()
and a cost function ¢ : F — R" S,
= Goal: Find a minimum-cost subset ° o | o
cCF
Sum over the costs | St X = U S. S
of all sets in C sec d e e
I
[ ) [ ] [ ]
&) 5

S S S 54 S5 Ss
c:2 3 3 5 1 2
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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F, [ [ ) [ )
and a cost function ¢ : F — R" S,
= Goal: Find a minimum-cost subset ° o | o
CCF
Sum over the costs | S-t: X = U S. S
of all sets in C sec d e e
I
[ ) [ ] [ ]
&) 5

Si S S S S5 S
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted Vertex-Cover problem

= models resource allocation problems
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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F, [ [ ) [ )
and a cost function ¢ : F — R™ S,
= Goal: Find a minimum-cost subset ° o | o
CCF
Sum over the costs | St X = U S. S,
of all sets in C sec \ e | @
L
o [ J [ J
Question: How can we reduce s S
, , ’ the Vertex-Cover problem to the >/ \>>/
= H = Set-Cover problem?

Si S S S S5 S
Remarks: c:2 3 3 5 12
= generalisation of the weighted Vertex-Cover problem

= models resource allocation problems
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Setting up an Integer Program

Question: Try to formulate the integer program and linear
D , P nprogram of the weighted SET-COVER problem
= B = (solution on next slide!)
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Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF

subject to dovS) = 1 for each x € X
SeF: xe$8

y(S) € {0,1} foreachSeF
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Setting up an Integer Program

— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dovS) = 1 for each x € X
SeF: xeS
y(S) € {0,1} foreachSeF
Linear Program
minimize > e(S)y(S)
SeF
subject to Sooy(s) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F
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Back to the Example

[ J [ J [ J
Si
° e |0
S,
o o _ZJ
[ J [ J [ J
Ss Ss
S1 32 S3 34 35 SG
c 2 3 3 5 1 2
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Back to the Example

[ ] o
S
° B
S,
. _ZJ
[ ) o
S S5
S; S Si S5 S
Cc: 2 3 5 1 2
y(): 1/2 1/2 1/2 1)2 1 1/2
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Back to the Example

° ° °
Si
° e |0
S,
o| o _ZJ
° ° °
Ss Ss

S1 32 S3 34 35 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
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Back to the Example

Sy

Sz

o

[ ] [ ] [ ]
Ss3 Ss

S1 32 S3 S4 35 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
N\

7\

[The strategy employed for Vertex-Cover would take all 6 sets!]
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Back to the Example

[ J [ J [ J
S
ol (o o
S
. Q_J
[ J [ J [ J
Ss
81 32 33 S4 35 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
N\

7\

[The strategy employed for Vertex-Cover would take all 6 sets!]
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]
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Randomised Rounding

S1 Sg 83 S4 85 86
C: 2 3 3 5 1 2
y): 1/2 1/2 12 1/2 1 1/2
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Randomised Rounding

81 Sz 83 S4 85 86
C: 2 3 3 5 1 2

y(): 12 12 1/2 1/2 1 1/2
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Randomised Rounding

S1 Sz 83 S4 85 SG
C: 2 3 3 5 1 2
y(): t1/2 12 1/2 1/2 A 1/2

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

_J 1 with probability y(S)
y(S) = { 0 otherwise. forall S € F.
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Randomised Rounding

S1 Sz 83 S4 85 SG
C: 2 3 3 5 1 2
y(): t1/2 12 1/2 1/2 A 1/2

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

_J 1 with probability y(S)
y(S) = { 0 otherwise. forall S € F.

= Therefore, E[y(S)] = ¥(S).
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Randomised Rounding

S1 Sz 33 S4 85 SB
C: 2 3 3 5 1 2

y(): 12 12 1/2 1/2 1 1/2

Lemma
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Randomised Rounding

S1 Sz 83 S4 85 SB
C: 2 3 3 5 1 2

y(): 12 12 1/2 1/2 1 1/2

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
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Randomised Rounding

81 Sz 83 S4 85 86
C: 2 3 3 5 1 2

y(): 12 12 1/2 1/2 1 1/2

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

P[erS]z1—e.

Sec

—_
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — (19
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — (19

Proof:
= Step 1: The expected cost of the random set C
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)]
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2;

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)}

Sec
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 25

Proof:
= Step 1: The expected cost of the random set C

Elc(C)] —E [Zc(S)} -E [Z 15ecvc(8)}

Sec SeFr
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 25

Proof:
= Step 1: The expected cost of the random set C

Elc(C)] —E [Zc(S)} -E [Z 15ecvc(8)}
SecC SeF

=Y P[SecC] ¢(S)

SeF
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C

Elc(C)] —E [Zc(S)} -E [Z 15ecvc(8)}

Sec SeF

=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

Elc(C)] —E [Zc(S)} -E [Z 15ecvc(8)}

Sec SeF

=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered

P[x & UsecS]
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered
PlxgusceS1 = [] PIS¢c]

SeF: xeS
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8

(1 + x < e* for any xﬁ
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered
Plx¢usecSI = [[ PIs¢cl= [ (1-%9)
SeF: xeS SeF: xeS8
< H e V(S

(1 + x < e for any xﬁ SeF:xes
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered
Plx¢usecSI = [[ PIs¢cl= [ (1-%9)
SeF: xeS SeF: xeS8
< H e V(S

(1 + x < e* for any xﬁ Serixes
_ o Sscr xes¥O)
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8

—3(s
< J[ e7® ¥ solves the LP!
(1 + x < e for any xﬁ SeF:xes

=e ZSE}_' XeS ¥(S)
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8

—3(s
< J[ e7® ¥ solves the LP!
(1 + x < e for any xﬁ SeF:xes

=e Yser: xes V() < e_1
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered v/

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 2—9

Proof:
= Step 1: The expected cost of the random set C v/

E[c(C)] =E [ZC(S)} =E [Z1s6cvc(8)]
SecC SeF
=Y P[SeC]-¢(S)=>_¥(S)- ().

SeF SeF
= Step 2: The probability for an element to be (not) covered v/

PlxgUsecSI= ] PIs¢cl= [ (1-¥%s)

SeF: xeS SeF: xeS8
-¥(S) (=
< II e ¥ solves the LP!
(1 + x < e* for any xﬁ Serixes
— e~ Xscr: xesV(S) < e ! O
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The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S)-

= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5
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The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S)-

= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]
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The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S)-

= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. I
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The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S)-
= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. I

WEIGHTED SET COVER-LP(X, F,c)
: compute y, an optimal solution to the linear program
cC=10
: repeat 2In ntimes
foreach S F
let C = C U {S} with probability y(S)
: return C

LA
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The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S)-
= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. I

WEIGHTED SET COVER-LP(X, F,c)
: compute y, an optimal solution to the linear program
cC=10
: repeat 2In ntimes
foreach S F
let C = C U {S} with probability y(S) __ ~_
: return C [clearly runs in polynomial—time!]

LA
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:
= Step 1: The probability that C is a cover
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn
Plx¢ UseeS] < ()
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

n2

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover



Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UsccS] =
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

[P[AUB] < P[A]+P[B]>
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

[P[AUB] < P[A]+P[B]> >1 —ZP[XQUSECS]

xeX
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

(P1auBl < PLAI+PIBI S > 1- Y PlxgusceS] 2 1-n- &

xeX
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

1
xeX n
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

1
xeX n
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n
iterations with probability at least 1 — 16 so that

1 2Inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

1
xeX n

= Step 2: The expected approximation ratio
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Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 16 so that
1 2inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

1
o

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ gc = ¢(S) - ¥(S).
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Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 16 so that
1 2inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

1
o

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ gc = ¢(S) - ¥(S).

= Linearity = E[c(C)] < 2In(n) - Y sc 7 ¢(S) - ¥(S)
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Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 16 so that
1 2inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX
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= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is 3~ gc = ¢(S) - ¥(S).

= Linearity = E[c(C)] < 2In(n) - 3 gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)
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Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 16 so that
1 2inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:
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= By previous lemma, the expected cost of one iteration is 3~ gc = ¢(S) - ¥(S).
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10. Approximation Algorithms © T. Sauerwald Weighted Set Cover



Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 16 so that
1 2inn 1
Plxduseesl< (5) =

2
= This implies for the event that all elements are covered:

P[X =UseS]=1-P [ U {X€U3ec3}}

xeX

1
o

[P[AUB] < P[A]+P[B]> >1- ) P[x¢UsecS] 21—"'%:1

xeX

= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is 3~ gc = ¢(S) - ¥(S).

= Linearity = E[c(C)] < 2In(n) - 3 gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*) O
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov’s inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2. ]
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov’s inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2. ]

Hence with probability at least 1—1—1 > 1, solution
is valid and within a factor of 4 In(n) of the optimum.
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1, the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov's inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2. ]

7 increased by repeating

Hence with probability at least 1—1 —1 > 1, solution probability could be further
is valid and within a factor of 4 In(n) of the optimum.
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1; the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov’s inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2. ]

Hence with probability at least 1—1 —1 > 1, solution probability could be further
is valid and within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1, the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov's inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2. ]

7 increased by repeating

Hence with probability at least 1—1 —1 > 1, solution probability could be further
is valid and within a factor of 4 In(n) of the optimum.

Typical Approach for Designing Approximation Algorithms based on LPs

NN
[ [Exercise Question (9/10).10] gives a different perspective on the }

amplification procedure through non-linear randomised rounding.
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MAX-CNF

Recall:

MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A~ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

— MAX-CNF Satisfiability (MAX-SAT)
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MAX-CNF

Recall:

MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A~ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (x1 VXa) A (X2 VX3V Xa VX5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.
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MAX-CNF

Recall:

MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXa VXg) A (X2 VX3V X5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (x1 VX&) A(Xa VX3V Xa VX5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?
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MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXg) A (X2 VX3V X5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (x1 VX&) A(Xa VX3V Xa VX5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF! J
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF! J

Analysis

For any clause i/ which has length ¢,
P[clause i is satisfied] = 1 — 27 := ay.

In particular, the guessing algorithm is a randomised 2-approximation.
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF! J

Analysis

For any clause i/ which has length ¢,
P[clause i is satisfied] = 1 — 27 := ay.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF! J

Analysis

For any clause i/ which has length ¢,
P [clause i is satisfied] =1 — 27" := .

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF! J

Analysis

For any clause i/ which has length ¢,
P [clause i is satisfied] =1 — 27" := .

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y := Y, Y; be the number of satisfied clauses. Then,

E[Y]E[zmjvi]iﬂmzi;;-m. .
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! j
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! j

0-1 Integer Program

m
maximize Z zi

i=1
subjectto > yi+ Y (1-y)

>z foreachi=1,2,....m

ject jec
zi € {0,1} foreachi=1,2,....,m
y; € {0,1} foreachj=1,2,...,n
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! j

0-1 Integer Program

m
maximize Z zi

i=1
subjectto Y y+ Y (1-y) > z foreachi=1,2,....m

ject jec
1 z € {01} foreachi=1,2,....m

m

Y {0,1} foreachj=1,2,...,n

negated variables of clause i.

[ C;" is the index set of the un- ]
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! j

0-1 Integer Program

m
maximize Z zi [

These auxiliary variables are used to
reflect whether a clause is satisfied or not

[

,n

i=1
Ve
subjectto Y y+ > (1-y) > z foreachi=1,2,...
ject jec
1 z € {0,1} foreachi=1,2,....m
Cfristheindexsetoftheun-] yi € {01} foreachj=1,2,...

negated variables of clause i.
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! J

0-1 Integer Program

m These auxiliary variables are used to
maximize Zzi [ reflect whether a clause is satisfied or not ]
i
subjectto > y+ > (1-y) > z,»V foreachi=1,2,...,m
ject jecy
1 z € {01} foreachi=1,2,....m
y; € {0,1} foreachj=1,2,...,n

negated variables of clause i.

[ C;" is the index set of the un- ]

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (y, Z) be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y
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Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

1
1

P [clause i is satisfied] > (1 — (1 — 7)4) - Zj.
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

1
1

4
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

Proof of Lemma (1/2):
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)

= P[clause iis satisfied] =
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V- -+ V X¢)
4
= P[clause iis satisfied] =1 — H P[ y;is false |
j=1
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > <1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)
4 J4
= P[clause i is satisfied] =1 - [[P[ yjisfalse ] =1 -] (1 -¥))
j=1 j=1

Arithmetic vs. geometric mean:
a+ ...+ a

> Yar x ... X a.
X > Va K
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For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > <1 — (1 — Z) ) - Zj.
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P [clause i is satisfied] > <1 — (1 — Z) ) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)
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= P[clause i is satisfied] =1 - [[P[ yjisfalse ] =1 -] (1 -¥))
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Arithmetic vs. geometric mean: ¢ 1_7, £
a + ...+ ag P >1 - M
ﬁzx/mx...xak. = ¢

L (1 = y,-)e
l
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Analysis of Randomised Rounding
Lemma

For any clause i of length ¢,

P [clause i is satisfied] > <1 — (

p%)l) -z

= Assume w.l.0.g. all literals in clause i appear non-negated

(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C;

Proof of Lemma (1/2):

(X1\/~~~\/Xe)
4

4
= P[clause i is satisfied] =1 - [[P[ yjisfalse ] =1 -] (1 -¥))
j=1 j=1
Arithmetic vs. geometric mean: ¢ 1_7, £
a + ...+ ag P >1 - M
f2\/a1><...><ak. = ¢
£ 7. £ =1\ 7
—1-[1= M >1-(1- Zi\
l l
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — Z) ) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

=1\ 7
P[clause i is satisfied] > 1 — (1 — %)
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

=1\ 7
P[clause i is satisfied] > 1 — (1 — %)

= Forany ¢ > 1, define g(z) :=1— (1 — 5)8.
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 - é)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e. This is a concave function

with g(0) = 0 and g(1) = 1 — (1 - %)e —: B 9(2)

= 9(2)>p-z foranyze[0,1] 1-(1-1)
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

P[clause i is satisfied] > (1 - (1 -

~——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

=~
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Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

~——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

=~

Proof of Theorem:
= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

~——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

=~

Proof of Theorem:

= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E[Y]=S E[V]>
i=1
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

~——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

=~

Proof of Theorem:

= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=Y E[v]> zmj<1 - (1 _gll_)") 'z
i=1

— i=1
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

P [clause i is satisfied] > <1 - (1 __

~—— Theorem

proximation algorithm for MAX-CNF.

\

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-

=~

Proof of Theorem:

= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.

= Then the expected number of satisfied clauses is:
E[Y]= ZE[Y,]> ( (1—7) ) z,>2(

7
By Lemma [Slnce (1 —1/x) < 1/e]

o) 7
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > <1 — (1 — —) ) - Zj.

~——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

=~

\

Proof of Theorem:

= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=3 E[v]> Y ( (1_7)) z,>2( ) ‘\<1—1e>-OPT
i=1 i=1 /
(ﬁﬁr@ [Smce (1 —1/x)* <1 /e] { al_spg?)cc))lgt:snoa;til;isntq J

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14




Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses
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Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches ]

HYBRID-MAX-CNF (e, n, m) >
1: Let b € {0, 1} be the flip of a fair coin v‘,\ m
2. If b = 0 then perform random guessing S ‘\A
3: If b =1 then perform randomised rounding & e oc
4: return the computed solution "é >
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Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches ]

HYBRID-MAX-CNF(p, n, m) :/cf,\%"
1: Let b € {0, 1} be the flip of a fair coin ¢ \<c
. ~LYc 3)
2: If b = 0 then perform random guessing C
3: If b = 1 then perform randomised rounding & e =
4: return the computed solution 3¢ 2

Algorithm sets each variable x; to TRUE with prob. - 1 + 1 - ;.
Note, however, that variables are not independently assigned!
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Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.
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Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
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Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.

« Note 2432 — 3/4for ¢ € {1,2},
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Theorem
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= Algorithm 2 satisfies it with probability 3, - Z;.
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= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.

* Note 232 = 3/4 for £ € {1,2}, and for ¢ > 3, “c2¢ > 3/4 (see figure)

0.5

0

|

|
| |
| |
| |
| |
| |
| |
| |

1 2 3 4

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16



Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.

* Note 232 = 3/4 for £ € {1,2}, and for ¢ > 3, “c2¢ > 3/4 (see figure)

0.5

0

I
T
I I
I I
I I
I I
I I

1 2 3 4

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16



Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.

* Note 232 = 3/4 for £ € {1,2}, and for ¢ > 3, “c2¢ > 3/4 (see figure)

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16



Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.

* Note 232 = 3/4 for £ € {1,2}, and for ¢ > 3, “c2¢ > 3/4 (see figure)

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16



Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sap - Zj+ % - Be - Zj.
* Note 232 = 3/4 for £ € {1,2}, and for ¢ > 3, “c2¢ > 3/4 (see figure)
= = HYBRID-MAX-CNF(p. n, m) satisfies it with prob. at least 3/4 - Z; O
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MAX-CNF Conclusion

Summary
= Since ax = B2 = 3/4, we cannot achieve a better approximation
ratio than 4 /3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!
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Introduction to (Spectral) Graph Theory and Clustering

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering



Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kdnigsberg 1737
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

@ Is there a tour which crosses
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge exactly once?
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Graphs Nowadays: Clustering
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Graphs Nowadays: Clustering

K/

2
AR
A

% A

Goal: Use spectrum of graphs (unstructured data) to extract clustering

(communitites) or other structural information.
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Graph Clustering (applications)

= Applications of Graph Clustering

= Community detection

= Group webpages according to their topics

= Find proteins performing the same function within a cell
= Image segmentation

= |dentify bottlenecks in a network
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Graphs and Matrices

Graphs Matrices

4~ 020
o—0 =
N e e
o -0 =
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Graphs and Matrices

Graphs Matrices

0 1 0 1
1010
01 0 1
1010

= Connectivity = Eigenvalues

= Bipartiteness = Eigenvectors

* Number of triangles = Inverse

= Graph Clustering = Determinant

= Graph isomorphism = Matrix-powers

= Maximum Flow =
= Shortest Paths
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Graphs and Matrices

Graphs Matrices

01 0 1
1 0 1 0
0o 1 0 1
1 0 1 0

= Connectivity = Eigenvalues

* Bipartiteness = Eigenvectors

* Number of triangles = Inverse

» Graph Clustering = Determinant

= Graph isomorphism = Matrix-powers

= Maximum Flow =
= Shortest Paths
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Outline

Matrices, Spectrum and Structure
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{u,vieE
Au,v - .
0 otherwise.
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{uv}iekE
AW_{ {u,v}

0 otherwise.

- O =0
o =20 =
- O =0
o -0 =
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{uv}iekE
AW_{ {u,v}

0 otherwise.

- O =0
o =20 =
- O =0
o -0 =

Properties of A:
= The sum of elements in each row/column i equals the degree of the
corresponding vertex i, deg(/)
= Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

x € R"\ {0} such that

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

x € R"\ {0} such that

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let A be the adjacency matrix

of a d-regular graph G with n vertices.
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues Ay < --- < X\, and n corresponding
orthonormal eigenvectors fi, ..., fy.
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues Ay < --- < X\, and n corresponding
orthonormal eigenvectors fi, ..., f,.

1\

[: orthogonal and normalised]
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues Ay < --- < X\, and n corresponding
orthonormal eigenvectors fi, . .., fr. These eigenvalues associated with

their multiplicities constitute the spectrum of G.
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € R"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

LAn undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.
Graph Spectrum

Let A be the adjacency matrix of a d-regular graph G with n vertices.

Then, A has n real eigenvalues Ay < --- < X\, and n corresponding

orthonormal eigenvectors fi, . .., fr. These eigenvalues associated with

their multiplicities constitute the spectrum of G.

[Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise >) ]

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 9



Example 1

’ , , Question: What are the Eigenvalues and Eigenvectors?
m B =
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Example 1

, , , Question: What are the Eigenvalues and Eigenvectors?
m B =

1 1
A= 0 1
1 0
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Example 1

[Bonus: Can you find a short-cut to det(A — X\ - 1)? ]

’ , , Question: What are the Eigenvalues and Eigenvectors?
m B =

1 1
A= 0 1
1 0
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Example 1

[Bonus: Can you find a short-cut to det(A — X\ - 1)? ]

’ , , Question: What are the Eigenvalues and Eigenvectors?
m B =

Solution:

= The three eigenvalues are A\ = Ao = —1, 3 = 2.
= The three eigenvectors are (for example):

1 -1 1
=0, a=|1], =[1].
—1 ! 1

11. Spectral Graph Theory © T. Sauerwald
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L=1-JA,

where | is the n x nidentity matrix.
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L=1-_A,

1
d

where | is the n x nidentity matrix.

’ , , Question: What is the matrix & - A?
m B =
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

1
L=1--A
d )

where | is the n x nidentity matrix.

1 —1/2 0 -—1/2
L_|-12 1 —12 0
o 12 1 )2

12 0 -1/2 1

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 11



Laplacian Matrix

Laplacian Matrix

1
L=1--A
d ?

where | is the n x nidentity matrix.

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

Properties of L:

~1/2 0

1 —1)2
—1/2 1

0o -1/2

= The sum of elements in each row/column equals zero

—1/2

-1/2
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Laplacian Matrix

Laplacian Matrix

1
L=1--A
d ?

where | is the n x nidentity matrix.

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

Properties of L:

~1/2 0

1 —1)2
—1/2 1

0o -1/2

= The sum of elements in each row/column equals zero

= L is symmetric

—1/2

-1/2

11. Spectral Graph Theory © T. Sauerwald
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Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix

A and L have the same set of eigenvectors.

Exercise: Prove this correspondence. Hint: Use thatL =1 — };A.
[Exercise 11/12.1]
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Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € C"\ {0} such that
Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues Ay < --- < X\, and n corresponding
orthonormal eigenvectors fi, . .., fn. These eigenvalues associated with

their multiplicities constitute the spectrum of G.
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < A,

1. A+ = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < A,

1. A+ = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

3. M <2
4. \, = 2 iff there exists a bipartite connected component.
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < A,

1. A+ = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

3. An<2

4. \, = 2 iff there exists a bipartite connected component.

AN

The proof of these properties is based on a
powerful characterisation of eigenvalues/vectors!

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 14



A Min-Max Characterisation of Eigenvalues and Eigenvectors

——— Courant-Fischer Min-Max Formula N
Let M be an n by n symmetric matrix with eigenvalues Ay < --- < Ap.
Then,

. x0T Mx®
Ak = min max —————.
xM . xWerm {0y, i€{1,....k}  x () x()
x() 1 %)
The eigenvectors corresponding to A+, ..., Ax minimise such expression.
\ v
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < Ap.
Then,
. x0T Mx®
Ak = min omax .
x . xB) erm\ {0}, I€{1,--; Kk} x()' x(1)
x() 1 %)
The eigenvectors corresponding to A+, ..., Ax minimise such expression.
x"Mx

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula

Then,

A =

min

MO

Let M be an n by n symmetric matrix with eigenvalues Ay < ---

The eigenvectors corresponding to A4, ..

< An.

O T
max

a _—.
X0 erm oy, i€t ok} x()T x()

., Ak minimise such expression.

xTMx

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A

. x"Mx
min 7.’_
xeRM {0} XTX
xLf

A2 =

minimised by £

11. Spectral Graph Theory © T. Sauerwald

Matrices, Spectrum and Structure




A Min-Max Characterisation of Eigenvalues and Eigenvectors

——— Courant-Fischer Min-Max Formula

Then,

A =

min

MO

Let M be an n by n symmetric matrix with eigenvalues Ay < ---

The eigenvectors corresponding to A4, ..

O T
max

a _—.
X0 erm oy, i€t ok} x()T x()

., Ak minimise such expression.

< An.

xTMx

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A

. x"Mx
min 7.’_
xeRM {0} XTX
xLf

A2 =

minimised by £
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

——— Courant-Fischer Min-Max Formula

Then,

A =

min

MO

Let M be an n by n symmetric matrix with eigenvalues Ay < ---

The eigenvectors corresponding to A4, ..

O T
max

a _—.
X0 erm oy, i€t ok} x()T x()

., Ak minimise such expression.

< An.

xTMx

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A

. x"Mx
min 7.’_
xeRM {0} XTX
xLf

A2 =

minimised by £
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Quadratic Forms of the Laplacian

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R",

T _ (Xu — Xv)2
x"Lx = Z e

{u,v}iecE
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Quadratic Forms of the Laplacian

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R”,

T _ (Xu - Xv)2
x"Lx = Z e

{u,v}€E
Proof:
xx=x"(1- lA X=x"x— leAx
d d
2
=355 %
ueV {uv}iecE
1
=3 (X2 + X2 — 2xuxv)
{u,v}eE
> buo et
J .
{u,v}eE

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 16



Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown
graph with many vertices in low-dimensional space?
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

mnates givem
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

mnates givem

Z{u,v}eE(Xu—Xv)z
lIx113
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

Z{u,v} eE(Xu—Xv)2
lIx113

The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 17



Outline

A Simplified Clustering Problem

11. Spectral Graph Theory © T. Sauerwald

A Simplified Clustering Problem



A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-

tices in the same component is connected, but vertices in different com-
ponents are not.




A Simplified Clustering Problem

tices in the same component is connected, but vertices in different com-

Partition the graph into connected components so that any pair of ver-
ponents are not.

|

let's see how we can tackle this using the spectrum of L!

[ We could obviously solve this easily using DFS/BFS, but ]
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Example 2

2

5

, Question: What are the Eigenvectors with Eigenvalue 0 of L?
u

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem

20



Example 2

’ , , Question: What are the Eigenvectors with Eigenvalue 0 of L?
| |

- 0

- O —-20000
oO—_20—+000
—o—_000O0

0
0
0
1
0
1
0

[eNeRe e
OO0 =0 =
OO O0OOO = —
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Example 2

’ , , Question: What are the Eigenvectors with Eigenvalue 0 of L?
m B =

001 1 0 0 0 0
1.0 1 00 0 0
1100 0 0 0
A=|0 0 0 0 1 0 1
000 1 0 1 0
000 0 1 0 1
(D—® 000 1 0 1 0
1 b -3 0o 0 0 o0
-3 I o o o o
I 1 17 o o o o
(D—) L=[o o o 1 -1 o -}
o o o0 -} 1 -1 o0
o o 0o o0 -—i 1 -}
o 0 0 -} 0 -} 1

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem



Example 2

QO

’ ’ ’ Question: What are the Eigen
| |

[SENEN

0o 1 1 0
1 0 1 0
1 1 0 0
A=]0 0 0 O
0 0 0 1
0 0 0 O
o 0 0 1
1 _1 0
2
S
-1 1 0
0 0 1
0 0 -3
0 0 0
0 0 -3

o ooo

Solution:
= Two smallest eigenvalues are Ay = X, = 0.
® The corresponding two eigenvectors are:

1

0
0
0
1
1
1
1

OOoOO0O ==

vectors with Eigenvalue 0 of L?

0 0 O

0o 0 O

0O 0 O

1 0 1

0o 1 0

1 0 1

o 1 0
0 0 0
0 0 0
0 0 0
} o -}
1 7‘5 0
1 1 _1
2 2
0 715 1
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Example 2

’ ’ ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?

m H =
@&@

e e L=
Solution:

= Two smallest eigenvalues are Ay = X, = 0.
® The corresponding two eigenvectors are:
1

(or fi =

OO0 ==
A aaa000
-

0

[eNeRe e

OO0 =0 =
OO O0OOO = —
- O —-20000

-
=
=
|
rol—pol—

[SESE
S
- O OO

[SE

o ooo
o ooo
o

cococo =
|

[SE

—-1/3
—-1/3
—-1/8
=1 1/4 |)
1/4
1/4
1/4

0 0 O

0o 0 O

0O 0 O

1 0 1

0o 1 0

1 0 1

o 1 0
0 0 0
0 0 0
0 0 0
} o -}
1 7‘5 0
1 1 _1
2 2
0 715 1
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Example 2

’ ’ ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
| |

u 01 100 0 0
101 00 0 0
1100 0 0 0
A=|0 0 0 0 1 0 1
000101 0
0000 1 0 1
(D)—) 000101 0
e
b I o o o o
I 1 1+ o o o o
O—() L=| o o o 1 1o -}
o 0 o0 1 1 10
o o o 0 -1 1 -}
Solution: 0 0 0 12 0 -3 1

2

" Two smallest eigenvalues are A1 = X2 = 0. ( Thus we can easily solve the simplified clustering prob-
® The corresponding two eigenvectors are: lem by computing the eigenvectors with eigenvalue 0
1

0
0
0
1
1
1
1

OOoOO0O ==
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Example 2

’ ’ ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
| |

u 01 100 0 0
101 00 0 0
1100 0 0 0
A=|0 0 0 0 1 0 1
000101 0
0000 1 0 1
(D)—) 000101 0
e
b I o o o o
I 1 1+ o o o o
O—() L=| o o o 1 1o -}
o 0 o0 1 1 10
o o o 0 -1 1 -}
Solution: 0 0 0 12 0 -3 1

2

" Two smallest eigenvalues are A1 = X2 = 0. ( Thus we can easily solve the simplified clustering prob-
® The corresponding two eigenvectors are: lem by computing the eigenvectors with eigenvalue 0
1

Next Lecture: A fine-grained
approach works even if the
clusters are sparsely connected!

0
0
0
1
1
1
1

OOoOO0O ==
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]
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[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem 21



Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V
= Clearly, the x¢,’s are orthogonal
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V
= Clearly, the x¢,’s are orthogonal
- X&Lxc, = 1 Sueexq W) = xg (V=0 = A= =X\ =
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V
= Clearly, the x¢,’s are orthogonal
- X&Lxc, = 1 Sueexq W) = xg (V=0 = A= =X\ =

2. ("«<="cc(G) > mult(0)). We will show:
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V
= Clearly, the x¢,’s are orthogonal

- XZ;/.LXC, = 1 Sueexq W) = xg (V=0 = A= =X\ =
2. ( G) > mult(0)). We will show:
)\1 = =X =0 = G has at least k connected comp. Cy, ..., Ck
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! J

Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢c¢, forallu e V
= Clearly, the x¢,’s are orthogonal
XZ;/.LXC, = 1 Sumeexg ) = xg(V))F=0 = A= =X=0

( Sl ( G) > mult(0)). We will show:
= =X =0 = G has at least k connected comp. Cy, ..., Ck
= there exist fy, ..., fi orthonormal such that 3=, 3 e (fi(u) — fi(v))2 =0
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Outline

Conductance, Cheeger’s Inequality and Spectral Clustering
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Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters
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Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters

—

Let us for simplicity focus on the case of two clusters! j
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is
e(S, S%
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is
e(S, %)

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is

_ &5 5%

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is

_ &5 5%

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2

= $(S) =77
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Conductance

Conductance
Let G = (V, E) be a d-regular and undirected graph and ) # S C V.

The conductance (edge expansion) of S is

_ &5 5%

Moreover, the conductance (edge expansion) of the graph G is

¢(S)

(G): _scv 1<\S|<n/2

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering



Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is

_ &5 5%

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2

" $(S) =3

= ¢(G) € [0,1] and ¢(G) = 0iff Gis
disconnected
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is

e(S, 8%
d-|S]

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2

?(S) =

" $(S) =3

= ¢(G) € [0,1] and ¢(G) = 0iff Gis
disconnected

= If Gis a complete graph, then
e(s,V\ 5) =S| (n—1S]) and
¢(G) =~ 1/2.
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Conductance

Conductance

Let G = (V, E) be a d-regular and undirected graph and ) # S C V.
The conductance (edge expansion) of S is

e(S, 8%

Moreover, the conductance (edge expansion) of the graph G is

¢(G) = ¢(S)

scv: 1<\S|<n/2

/1

( NP-hard to compute! j

= H(S) = g

= ¢(G) € [0,1] and ¢(G) = 0iff Gis
disconnected

= If Gis a complete graph, then
e(S, V\ §) =8| (n—|S]) and
¢(G) =~ 1/2.
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A2 versus Conductance (1/2)

G is disconnected
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A2 versus Conductance (1/2)

G is disconnected

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering



A2 versus Conductance (1/2)

»(G) =0 & G@Gisdisconnected
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A2 versus Conductance (1/2)

»(G) =0 & G@Gisdisconnected < X(G)=0
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A2 versus Conductance (1/2)

»(G) =0 & G@Gisdisconnected < X(G)=0

What is the relationship between ¢(G)
and A\>(G) for connected graphs?
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A2 versus Conductance (2/2)

1D Grid (Path) 2D Grid 3D Grid

Ao ~ n_2 Ao~ n’1 Ao ~ n72/3

b~ Nt b~ n-1/2 b ~ n1/3
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A2 versus Conductance (2/2)

1D Grid (Path) 2D Grid 3D Grid

Ao ~ n_2 Ao~ n’1 Ao ~ n72/3

b~ Nt b~ n-1/2 b~ n1/3

Hypercube Random Graph (Expanders) Binary Tree

.
S
y
X2 ~ (logn)™" Xo = 0(1) Xo~n
¢ ~ (logn)™" ¢ =0(1) ¢p~n
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Relating )\; and Conductance

Cheeger’s inequality
Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

% <4(G) < Vo
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Relating )\; and Conductance

Cheeger’s inequality
Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

% <4(G) < Vo

Spectral Clustering:
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Relating )\; and Conductance

Cheeger’s inequality
Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»

2. Order the vertices so that x; < x» < --- < x, (embed V on R)
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»

2. Order the vertices so that x; < x» < --- < x, (embed V on R)

3. Try all n— 1 sweep cuts of the form ({1,2,...,k}, {k+1,...,n})
and return the one with smallest conductance
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»

2. Order the vertices so that x; < x» < --- < x, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,...,k}, {k+1,...,n})
and return the one with smallest conductance

N\

= |t returns cluster S C V such that ¢(S) < v2X2
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»

2. Order the vertices so that x; < x» < --- < x, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,...,k}, {k+1,...,n})
and return the one with smallest conductance

N\

= It returns cluster S C V such that ¢(S) < v2X2 < 21/¢(G)
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A»

2. Order the vertices so that x; < x» < --- < x, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,...,k}, {k+1,...,n})
and return the one with smallest conductance

N\

= It returns cluster S C V such that ¢(S) < v2X2 < 21/¢(G)

= no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)
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Relating )\; and Conductance

Cheeger’s inequality

Let G be a d-regular undirected graph and A\ < --- < A\, be the eigenval-
ues of its Laplacian matrix. Then,

Spectral Clustering:
1. Compute the eigenvector x corresponding to A,

2. Order the vertices so that x; < x» < --- < x, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,...,k}, {k+1,...,n})
and return the one with smallest conductance

N\

= It returns cluster S C V such that ¢(S) < v2X2 < 21/¢(G)

= no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

= very fast: can be implemented in O(|E|log |E|) time
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
= By the Courant-Fischer Formula,

. x"Lx
Ao = min T
xeR?” X' X
x#0,x_L1
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
= By the Courant-Fischer Formula,

_ox"Lx A Y (xu = x)?
A2 = min Fo- = min =
xeR"  XTx d  xern >ouXé
x#0,x_L1 x#0,x L1
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction): Optimisation Problem: Embed vertices on a line
= By the Courant-Fischer Formula, such that sum of squared distances is minimised
v 2
o xX"Lx 1 (X —x)
Ao = min —F - =4 min T
€R R"
XX L1 x;z(&x L1 usu
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction): Optimisation Problem: Embed vertices on a line
= By the Courant-Fischer Formula, such that sum of squared distances is minimised
v 2
o xX"Lx 1 (e = xv)
Ao = min —F - =4 min T
cR R"
XX L1 x;f&x L1 usu

= Let S C V be the subset for which ¢(G) is minimised. Define y € R" by:

TS ifueS,

y“_{ Ty fueV\s.
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction): Optimisation Problem: Embed vertices on a line
= By the Courant-Fischer Formula, such that sum of squared distances is minimised
v 2
o xX"Lx 1 (e = xv)
Ao = min —F - =4 min T
cR R"
XX L1 x;f&x L1 us

= Let S C V be the subset for which ¢(G) is minimised. Define y € R" by:

ifueS,

1
_Jm
Yu {—w‘\a ifueV\S.

= Since y L 1, it follows that

oo b S 1 ES VA (g + ig)”
- d SLYe d ﬁ+|v173|
1 1 1
=~ L EG VS [t
LB VL) <|sw+|\/\3\)
1 2.|E(S,V\S)
g e =20 O
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Outline

lllustrations of Spectral Clustering and Extension to Non-Regular Graphs
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 o0 o -} -F -1 o
100100 0 1 7501%000%
At 0100010 [ |- 0 -5 1 0 0 -f 0
0100010 1 o -y o o 1t - o -}
0100100 1 0 -3 0 0 -3 1 0 -3
11010000 %720%0010
00101100 0 -1 0o -1 -t o 1
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lllustration on a small Example

00110010 10 -5 5 0 0 -3
00001110 o 1 o o i -1 %
10010001 75017%000
A_|1 0100010 , |- 0 -5 1 0 0 -3
0100010 1 o - 0o o 1t -1 o0
0100100 1 0 -3 0 0 -3 1 0
11010000 7%7207%001
00101100 0 -1 o -1 -1 o
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lllustration on a small Example

00110010 10—%—%00—%0
00001110 0 1 0 -1 -t -1 o
100100 0 1 75017%000%

At 0100010 [ |- 0 -5 1 0 0 -f 0
0100010 1 o -5y 0o o 1 -} 0o -}
0100100 1 0 -3 0 0 -3 1 0 -3
11010000 %7207%0010
00101100 0 0 -1 0o -l -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1
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v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

—0.425-0.263 0 +0.263-+0.425 X
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lllustration on a small Example
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(@]

O (@] (@]
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12. Clustering © T. Sauerwald lllustrations of Spectral Clustering and Extension to Non-Regular Graphs



lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
1 3 2 5
—0.425-0.263 0 +0.263-+0.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
Conductance: 1
1 3 2 5
—0.425-0.263 0 4+0.26340.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
Conductance: 0.666
1 3 2 5
—0.425-0.263 0 4+0.26340.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
Conductance: 0.333
1 3 2 5
—0.425-0.263 0 +0.263+0.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
M Sweep: 4
Conductance: 0.166
1 3 2 5
—0.425-0.263 0 4+0.26340.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
Conductance: 0.333
1 3 2 5
—0.425-0.263 0 +0.263+0.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
Conductance: 0.666
1 3 2 5
—0.425-0.263 0 +0.263+0.425 X
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lllustration on a small Example

00110010 10 -5 -5 0 0 -3 0
00001110 o 1 0 -1 -1 -1 0
100100 0 1 -3 0 1 -3 0o o0 o0 -}
101000 10 -2 0 -5 1t 0 0 -3 0
A=lo 10001 01 L= ¢ -1 0 0 1 -1 0 -1
01001001 o -f o o -3 1+ o -}
11010000 -1 7§ 0 -3 0 0 1 0
00101100 0 o -4 o -4 -1 o 1

Ae=1-+5/3~0.25
v = (—0.425, +0.263, —0.263, —0.425, +0.425, +0.425, —0.263, +0.263)"

4 7 8 6
M Sweep: 7
Conductance: 1
1 3 2 5
—0.425-0.263 0 4+0.26340.425 X
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Physical Interpretation of the Minimisation Problem

= For each edge {u, v} € E(G), add spring between pins at x, and x,
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Physical Interpretation of the Minimisation Problem

= For each edge {u, v} € E(G), add spring between pins at x, and x,

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

= For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

= For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?
= Courant-Fisher characterisation:

xTLx

A2 =  min —
xeR™M{0} X'X
x11
4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} € E(G), add spring between pins at x, and x,
The potential energy at each spring is (xy — x,)?
Courant-Fisher characterisation:
T
A2 =  min g
xeR™M{0} X'X
x11

In our example, we found out that A\, ~ 0.25

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?
Courant-Fisher characterisation:
xTLx
min —_—
xeRMN {0} XTX
x11

A2 =

= In our example, we found out that A\, ~ 0.25
= The eigenvector x on the last slide is normalised (i.e., ||x||3 = 1). Hence,

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?
Courant-Fisher characterisation:

o xXTx A ) 5
A2= min —— =—.  min (Xu — xv)
xe€RM {0} XX d x€R"
x11 [Ix]13=1,xL1

= In our example, we found out that A\, ~ 0.25
= The eigenvector x on the last slide is normalised (i.e., ||x||3 = 1). Hence,

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?
Courant-Fisher characterisation:

o xXTx A ) 5
A2= min —— =—.  min (Xu — xv)
xe€RM {0} XX d x€R"
x11 [Ix]13=1,xL1

= In our example, we found out that A\, ~ 0.25
= The eigenvector x on the last slide is normalised (i.e., ||x||3 = 1). Hence,

A2 = % : ((X1 - X3)2 +(x1 — X4)2 +(x1 — X7)2 + (X — X8)2>

4 7 8 6
1 3 2 5
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} € E(G), add spring between pins at x, and x,
= The potential energy at each spring is (xy — x,)?
Courant-Fisher characterisation:

o xXTx A ) 5
A2= min —— =—.  min (Xu — xv)
xe€RM {0} XX d x€R"
x11 [Ix]13=1,xL1

= In our example, we found out that A\, ~ 0.25
= The eigenvector x on the last slide is normalised (i.e., ||x||3 = 1). Hence,

1
Ao = § . ((X1 — X3)2 + (X1 — X4)2 + (X1 — X7)2 + -+ (Xe — X8)2> ~ 0.25

4 7 8 6
1 3 2 5
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Let us now look at an example of a non-regular graph!
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The Laplacian Matrix (General Version)

( A

The (normalised) Laplacian matrix of G = (V, E, w) is the n by n matrix
L=I-D"2AD"/2

where D is a diagonal n x n matrix such that Dy, = deg(u) =
> (uvee WU, v), and A'is the weighted adjacency matrix of G.
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The Laplacian Matrix (General Version)

( A

The (normalised) Laplacian matrix of G = (V, E, w) is the n by n matrix
L=I-D"2AD"/2

where D is a diagonal n x n matrix such that Dy, = deg(u) =
> (uvee WU, v), and A'is the weighted adjacency matrix of G.

\. J

16

®7
1 —16/25 0  —9/20
9 5 L_ | —16/25 1 -9/20 0
= 0 ~9/20 1 —7/16
—0 ~9/20 0 ~7/16 1
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The Laplacian Matrix (General Version)

r

The (normalised) Laplacian matrix of G = (V, E, w) is the n by n matrix

L=1-D"2AD"/?

where D is a diagonal n x n matrix such that Dy, = deg(u)
> (uvee WU, v), and A'is the weighted adjacency matrix of G.

\.

: 16
1 -16/25 0  —9/20
o 5 L_|-18/28 1 ~9/20 0
= 0 ~9/20 1 -7/16
—® ~9/20 0 ~7/16 1
- Luv:f\‘”/(:u’%foruiv
= L is symmetric
= If Gis d-regular, L=1—1 - A.
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Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and ) C S C V. The conductance (edge expansion)
of Sis

— w(S, S°%)
9(8) = min{vol(S), vol(S¢)}’

where w(S,8°) = 3, csyese W(U,v) and vol(S) = >, sd(u).
Moreover, the conductance (edge expansion) of G is

?(G) = ogﬁsiquﬁ(s)»
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Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and ) C S C V. The conductance (edge expansion)
of Sis

— w(S, S°%)
9(3) = min{vol(S), vol(S¢)}’

where w(S,8°) = 3, csyese W(U,v) and vol(S) = >, sd(u).
Moreover, the conductance (edge expansion) of G is

?(G) = ogﬁsiquﬁ(s)»

Spectral Clustering (General Version):
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Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and ) C S C V. The conductance (edge expansion)
of Sis

— w(S, S°%)
9(3) = min{vol(S), vol(S¢)}’

where w(S,8°) = 3, csyese W(U,v) and vol(S) = >, sd(u).
Moreover, the conductance (edge expansion) of G is

?(G) = mgﬁsiquﬁ(s)»

Spectral Clustering (General Version):
1. Compute the eigenvector x corresponding to A\, and y = D~

1/2X.
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Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and ) C S C V. The conductance (edge expansion)
of Sis

— w(S, S°%)
9(3) = min{vol(S), vol(S¢)}’

Moreover, the conductance (edge expansion) of G is

?(G) = mgﬁsiquﬁ(s)»

where w(S,8°) = 3, csyese W(U,v) and vol(S) = >, sd(u).

Spectral Clustering (General Version):
1. Compute the eigenvector x corresponding to A\, and y = D~

1/2X.

2. Order the vertices so that y1 < y» < --- < y, (embed V on R)
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Conductance and Spectral Clustering (General Version)

Conductance (General Version)

Let G=(V,E,w)and 0 C S C V. The conductance (edge expansion)

of Sis
w(S, S°)

() = aeol(S), vol(ST)]
where w(S,8°) = 3, csyese W(U,v) and vol(S) = >, sd(u).
Moreover, the conductance (edge expansion) of G is

?(G) = mgﬁsiquﬁ(s)»

Spectral Clustering (General Version):
1. Compute the eigenvector x corresponding to A2 and y = D~"/2x.

2. Order the vertices so that y1 < y» < --- < y, (embed V on R)

3. Try all n — 1 sweep cuts of the form ({1,2,..., k}, {k+1,...,n})
and return the one with smallest conductance
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Stochastic Block Model and 1D-Embedding

Stochastic Block Model
G=(V,E)withclusters $;,S; C V,0<g<p<1

p ifuves,
Pl{uv}eE]= ) .
[ v} ] {q ifue S,vesS,i#j
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Stochastic Block Model and 1D-Embedding

Stochastic Block Model
G = (V,E) withclusters $1,S: C V,0<g< p <1

p ifuves,
Pl{uv}eE]= ) .
[ v} ] {q ifue S,vesS,i#j

Here:

- S| = 80,
|Ss| = 120

« p=0.08
= g =0.01
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Stochastic Block Model and 1D-Embedding

Stochastic Block Model Here:
G=(V,E)withclusters $;,S, C V,0<g<p<1 S| = 80,
" s |S:| = 120
nmu,v i
Pl{uyv}cE]={P "WVES - p=0.08
g ifueS,ves,i#j.
= g=0.01
Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : -1.1968431479565368e-16
Eigenvalue 2 0.1543784937248489
Eigenvalue 3 0.37049909753568877
Eigenvalue 4 0.39770640242147404
Eigenvalue 5 0.4316114413430584
Eigenvalue 6 0.44379221120189777
Eigenvalue 7 0.4564011652684181
Eigenvalue 8 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904
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Stochastic Block Model and 1D-Embedding

—— Stochastic Block Model
G = (V,E) withclusters $1,S: C V,0<g< p <1

p ifuves,

p E]=
Huvi€EI=9y fues.ves.iz)

Number of Vertices: 200
Number of Edges: 919

Eigenvalue 1 : -1.1968431479565368e-16
Eigenvalue 2 0.1543784937248489
Eigenvalue 3 0.37049909753568877
Eigenvalue 4 0.39770640242147404
Eigenvalue 5 0.4316114413430584
Eigenvalue 6 0.44379221120189777
Eigenvalue 7 0.4564011652684181
Eigenvalue 8 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904

Here:

- |Si| = 80,
1S2| = 120

« p=0.08

« g=0.01
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Drawing the 2D-Embedding
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Spectral Clustering

12. Clustering © T. Sauerwald
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Best Solution found by Spectral Clustering

e Step: 78

e Threshold: —0.027
Partition Sizes: 78/122
Cut Edges: 84
Conductance: 0.145

[}
1
051
N
0+ t
100

Step
0
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Clustering induced by Blocks

e Step: 1

e Threshold: 0

e Partition Sizes: 80/120
e Cut Edges: 838

e Conductance: 0.1486
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V, E) with clusters
51,5,5CV;, 0<g<p<i

p uves
Pl{{u,v} e E]l= o
[{u.v} ] {q ueS,veS,i#j
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V, E) with clusters
51,5,5CV;, 0<g<p<i

p uves
Pl{{u,v} e E]l= o
[{u.v} ] {q ueS,veS,i#j

|V| =300,|Si| = 100
p=0.08,q=0.01.

e s 4 s 2 a4 o 1z 1
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V, E) with clusters
51,5,5CV;, 0<g<p<i

p uves
Pl{{u,v} e E]l= o
[{u.v} ] {q ueS,veS,i#j

|V| =300,|Si| = 100
p=0.08,q=0.01.

Spectral embedding
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V, E) with clusters
51,5,5CV; 0<qg<p<i

p uves
Pl{{u,v} e E]l= o
[{u.v} ] {q ueS,veS,i#j

V| = 300, S| = 100 “
p=10.08,g=0.01. ’

Spectral embedding Output of Spectral Clustering

004
Ery
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How to Choose the Cluster Number k

= |f kK is unknown:

= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)
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How to Choose the Cluster Number k

= If k is unknown:
= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)
= large Ay, 1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)
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How to Choose the Cluster Number k

= If k is unknown:
= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)
= large Ay, 1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

= choose smallest k > 2 so that the spectral gap A1 — Ak is “large”
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How to Choose the Cluster Number k

= |f kK is unknown:

= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)

= large Ay, 1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

= choose smallest k > 2 so that the spectral gap A1 — Ak is “large”

= In the latter example A = {0,0.20,0.22,0.43,0.45,...} — k=3.
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How to Choose the Cluster Number k

= |f kK is unknown:

= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)

= large Ay, 1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

= choose smallest k > 2 so that the spectral gap A1 — Ak is “large”
= In the latter example A = {0,0.20,0.22,0.43,0.45,...} — k=3.

= |n the former example A = {0,0.15,0.37,0.40,0.43,...} = k=2.
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How to Choose the Cluster Number k

If k is unknown:
= small A\, means there exist k sparsely connected subsets in the graph
(recall: Ay = ... = Ax = 0 means there are k connected components)
= large Ay, 1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

= choose smallest k > 2 so that the spectral gap A1 — Ak is “large”

In the latter example A = {0,0.20,0.22,0.43,0.45,...} = k=3.

= |n the former example A = {0,0.15,0.37,0.40,0.43,...} = k=2.

= For k = 2 use sweep-cut extract clusters. For k > 3 use embedding in
k-dimensional space and apply k-means (geometric clustering)
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Another Example

(many thanks to Kalina Jasinska)

= nodes represent math topics taught within 4 weeks of a Mathcamp
= node colours represent to the week in which they thought

= teachers were asked to assign weights in 0 — 10 indicating how closely
related two classes are
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Summary: Spectral Clustering

Compute Sweep Cuts

Spectral Embedding onto Line

001100 10
00O0O0OT1TTI1T 10
10010001
Ao 10100010
0100010 1
01001001
11010000
00101100
/1
. z:u,\,v(xu*xv)2
min n =
xeRI\{0} T 2
= Given any graph (adjacency mairix) = Cheeger’s Inequality
* Graph Spectrum (computable in poly-time) * relates \; to conductance
= )\, (relates to connectivity) = unbounded approximation ratio

= )\ (relates to bipartiteness) = effective in practice
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Outline

Appendix: Relating Spectrum to Mixing Times (non-examinable)
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Relation between Clustering and Mixing (non-examinable)

= Which graph has a “cluster-structure”?
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Relation between Clustering and Mixing (non-examinable)

= Which graph has a “cluster-structure”?
= Which graph mixes faster?
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution = = (1/n, ..., 1/n), which satisfies 7P = =.
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution 7 = (1/n,...,1/n), which satisfies 7P = 7.

[Here all vector multiplications (including eigenvectors) will always be from the Ieft!]
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution = = (1/n, ..., 1/n), which satisfies 7P = =.

[Here all vector multiplications (including eigenvectors) will always be from the Ieft!]

Lemma

Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x,

o] <
2

with 1 =Xy > X > --- > A, as eigenvalues and A := max{|\z|, |An|}.
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution 7 = (1/n,...,1/n), which satisfies 7P = 7.

[Here all vector multiplications (including eigenvectors) will always be from the Ieft!]

Lemma

Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x,

o] <
2

with 1 =Xy > X > --- > A, as eigenvalues and A := max{|\z|, |An|}.
N
[due to laziness, \p > 0]
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution 7 = (1/n,...,1/n), which satisfies 7P = 7.

[Here all vector multiplications (including eigenvectors) will always be from the Ieft!]

Lemma
Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x,

ol <
2

with 1 =Xy > X2 > --- > A, as eigenvalues and A := max{|Az|, |An|}.
= This implies for t = O (2%755) = O(££4), N
due to laziness, \p > 0]

<1
v 4

prt_ﬂ-
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Proof of Lemma (non-examinable)
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = E ajVi.
i=1
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = E V.
i=1

= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = E V.
i=1

= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

= 2
[[XP — =l
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

R B (L LB
i=1
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

R B (L LB
i=1

n
2
ROV
i=2
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, v{ = 7, vo,..., V!

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

- [xP — 7|2 = H(.Zn:a,-v,)PfﬂHz
i=1 . i
S s
=2

n
= HZ QjAjvi
i—2

2
2
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

R B (L LB
i=1

n
2
ROV
i=2

n

2

since the v;’s = H E % )
i—2

are orthogonal

n
=" llairivil3
=2
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

= 5 n 2
[t
I 3 ZO‘I i ™ B
i=1
n 2
_ i
H7T+; AV — T 5

2
2

n
since the v;’s = HZ aiAjv
i—2

are orthogonal

since the v;’s

n
2 are orthogonal
=3 lleinvilld 9
i=2

2
n
<Y [layvill3 = A2

=2 2

n
D
i=2
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

= 5 n 2
[t
I 3 ZO‘I i ™ B
i=1
n 2
_ i
H7T+; AV — T 5

2
2

n
since the v;’s = HZ aiAjv
i—2

are orthogonal

since the v;’s

n
2 are orthogonal
=3 lleinvilld 9
i=2

2 2
=M x —llz

2
n
<Y [layvill3 = A2

=2 2

n
D
i=2
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

= 5 n 2
[t
I 3 ZO‘I i ™ B
i=1
n 2
_ i
H7T+; AV — T 5

2
2

n
since the v;’s = HZ aiAjv
i—2

are orthogonal

since the v;’s

n
2 are orthogonal
=3 lleinvilld 9
i=2

2 2
=M x —llz

2
n
<Y [layvill3 = A2

=2 2

n
D
i=2

= Hence ||xP! — 7|3
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Proof of Lemma (non-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to 7, iy = 1.

= 5 n 2
[t
I 3 ZO‘I i ™ B
i=1
n 2
_ i
H7T+; AV — T 5

2
2

n
since the v;’s = HZ aiAjv
i—2

are orthogonal

since the v;’s

n
2 are orthogonal
=3 lleinvilld 9
i=2

n
<Y oyl = A2 =22|x — 3
=2

n
D
i=2

2
2

= Hence ||xP! — 7|2 < X2t ||x — 7|2
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Proof of Lemma (hon-examinable)

= Express x in terms of the orthonormal basis of P, vi = m, v, ..., vn:

n
X = Z V.
i=1
= Since x is a probability vector and all v; > 2 are orthogonal to m, oy = 1.

R B (L LB
i=1

n

2

- S|
i=2

n

2

since the v;’s = H E % )
i—2

are orthogonal

since the v;’s

n
2 are orthogonal
=3 lleinvilld 9
i=2

2 2
=M x —llz

2
n
<Y [layvill3 = A2

=2 2

n
D
i=2

* Hence [|xP! — 7|3 < 3 - [x — 73 < X2 1. < flx — w3 + flwlf = XI5 < 1]
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The End...

[ Thank you and Best Wishes for the Exam! ]
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