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Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But often: simple algorithm at the cost of a sophisticated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.
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Some stuff you should know...

In this course we will assume some basic knowledge of probability:

random variable

computing expectations and variances

notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

You should also be familiar with basic computer science, mathematics
knowledge such as:

graphs

basic algorithms (sorting, graph algorithms etc.)

matrices, norms and vectors
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Textbooks

(?) Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cambridge
University Press, 2nd edition, 2017
David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms, Cambridge University Press, 2011

Cormen, T.H., Leiserson, C.D., Rivest, R.L. and Stein, C. Introduction to
Algorithms. MIT Press (3rd ed.), 2009
(We will adopt some of the labels (e.g., Theorem 35.6) from this book in
Lectures 6-10)
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1 Introduction (Lecture)
Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)
Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs
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We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-12 cover a more advanced topic with ML flavour:

11–12 Spectral Graph Theory and Spectral Clustering (Lectures)
Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times
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Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (Ω,Σ,P).

The Sample Space Ω contains all the possible outcomes ω1, ω2, . . .
of the experiment.

The Event Space Σ is the power-set of Ω containing events, which
are combinations of outcomes (subsets of Ω including ∅ and Ω).
The Probability Measure P is a function from Σ to R satisfying

(i) 0 ≤ P [ E ] ≤ 1, for all E ∈ Σ
(ii) P [ Ω ] = 1
(iii) If E1, E2, . . . ∈ Σ are pairwise disjoint (Ei ∩ Ej = ∅ for all i 6= j) then

P

[ ∞⋃

i=1

Ei

]
=
∞∑

i=1

P [ Ei ] .

Components of the Probability Space (Ω,Σ,P)
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Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [ 1E ] = P [ E ].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables
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Recap: Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑

i=1

P [ Ei ] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [ 1Ei ] = P [ Ei ] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤∑n
i=1 1Ei (Check this)

4. Taking expectation completes the proof.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,Sc) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This problem will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6
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A Randomised Algorithm for MAX-CUT (2/2)
RANDMAXCUT(G)

1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RANDMAXCUT(G) gives a 2-approximation using time O(n).
Proposition More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear often in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc) ]

= E


 ∑

{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}




=
∑

{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑

{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]

= 2
∑

{u,v}∈E

P
[

u ∈ S, v ∈ Sc ] = 2
∑

{u,v}∈E

P [ u ∈ S ] · P
[

v ∈ Sc ] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, the proof is complete.
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise ( [Ex. 1.11] )

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1 − x ≤ e−x for all x

In this course: log n = ln n
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Concentration Inequalities

Concentration refers to the phenomena where random variables are very
close to their mean

This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour

It gives us the best of two worlds:
1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Chernoff Bounds: A Tool for Concentration (1952)

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

random variables can be discrete (or continuous)

usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

easy to apply, but requires independence
have found various applications in:

Randomised Algorithms
Statistics
Random Projections and Dimensionality Reduction
Learning Theory (e.g., PAC-learning)
...

Hermann Chernoff (1923-)

(1 + δ)µ(1 − δ)µ µ
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Recap: Markov and Chebyshev

If X is a non-negative random variable, then for any a > 0,

P [ X ≥ a ] ≤ E [ X ] /a.

Markov’s Inequality

If X is a random variable, then for any a > 0,

P [ |X − E [ X ] | ≥ a ] ≤ V [ X ] /a2.

Chebyshev’s Inequality

Let f : R→ [0,∞) and increasing, then f (X ) ≥ 0, and thus

P [ X ≥ a ] ≤ P [ f (X ) ≥ f (a) ] ≤ E [ f (X ) ] /f (a).

Similarly, if g : R→ [0,∞) and decreasing, then g(X ) ≥ 0, and thus

P [ X ≤ a ] ≤ P [ g(X ) ≥ g(a) ] ≤ E [ g(X ) ] /g(a).

Chebyshev’s inequality (or Markov) can be obtained by
chosing f (X ) := (X − µ)2 (or f (X ) := X , respectively).
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds
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Our First Chernoff Bound

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
. (F)

This implies that for any t > µ,

P [ X ≥ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Upper Tail)

While (F) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...
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Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23



Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23



Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23



Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23



Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 23



Example: Coin Flips (2/3)

0 10 20 30 40 50 60 70 80 90 100

0.00

0.02

0.04

0.06

0.08

0.10

x

P [ Bin(100, 1/2) = x ]
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

Markov’s inequality: E [ X ] = 100/2 = 50.

P [ X ≥ 3/2 · E [ X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality: V [ X ] =
∑100

i=1 V [ Xi ] = 100 · (1/2)2 = 25.

P [ |X − µ| ≥ t ] ≤ V [ X ]

t2 ,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

Chernoff bound: setting δ = 1/2 gives

P [ X ≥ 3/2 · E [ X ] ] ≤
(

e1/2

(3/2)3/2

)50

= 0.004472.

Remark: The exact probability is 0.00000028 . . .

Chernoff bound yields a much better result (but needs independence!)
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How to Derive Chernoff Bounds

Application 1: Balls into Bins
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General Recipe for Deriving Chernoff Bounds

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X1 + · · ·+ Xn are:

1. Instead of working with X , we switch to the moment generating
function eλX , λ > 0 and apply Markov’s inequality ; E

[
eλX ]

2. Compute an upper bound for E
[

eλX ] (using independence)

3. Optimise value of λ to obtain best tail bound

Recipe
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Chernoff Bound: Proof

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

Chernoff Bound (General Form, Upper Tail)

Proof:

1. For λ > 0,

P [ X ≥ (1 + δ)µ ] ≤
eλx is incr

P
[

eλX ≥ eλ(1+δ)µ
]
≤

Markov
e−λ(1+δ)µE

[
eλX

]

2. E
[

eλX ] = E
[

eλ
∑n

i=1 Xi
]

=
indep

∏n
i=1 E

[
eλXi

]

3.
E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

epi (e
λ−1)
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λ−1)

5. Choose λ = log(1 + δ) > 0 to get the result.
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any 0 < δ < 1 it holds that

P [ X ≤ (1− δ)µ ] ≤
[

e−δ

(1− δ)1−δ

]µ
,

and thus, by substitution, for any t < µ,

P [ X ≤ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Lower Tail)

Exercise on Supervision Sheet
Hint: multiply both sides by −1 and repeat the proof of the Chernoff Bound
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Nicer Chernoff Bounds

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then,

For all t > 0,
P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X ≤ E [ X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P [ X ≥ (1 + δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

3

)

P [ X ≤ (1− δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

2

)

“Nicer” Chernoff Bounds

All upper tail bounds hold even under a relaxed independence assumption:
For all 1 ≤ i ≤ n and x1, x2, . . . , xi−1 ∈ {0, 1},

P [ Xi = 1 | X1 = x1, . . . ,Xi−1 = xi−1 ] ≤ pi .
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Outline

How to Derive Chernoff Bounds

Application 1: Balls into Bins
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Balls into Bins

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

A very natural but also rich mathematical model

In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.
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Balls into Bins: Bounding the Maximum Load (1/4)

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

Question 1: How large is the maximum load if m = 2n log n?

Focus on an arbitrary single bin. Let Xi the indicator variable which is 1 iff
ball i is assigned to this bin. Note that pi = P [ Xi = 1 ] = 1/n.

The total balls in the bin is given by X :=
∑n

i=1 Xi .

Since m = 2n log n, then µ = E [ X ] = 2 log n

P [ X ≥ t ] ≤ e−µ(eµ/t)t

here we could have used
the “nicer” bounds as well!

By the Chernoff Bound,

P [ X ≥ 6 log n ] ≤ e−2 log n
(

2e log n
6 log n

)6 log n
≤ e−2 log n = n−2
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Balls into Bins: Bounding the Maximum Load (2/4)

Let Ej := {X (j) ≥ 6 log n}, that is, bin j receives at least 6 log n balls.

We are interested in the probability that at least one bin receives at least
6 log n balls⇒ this is the event

⋃n
j=1 Ej

By the Union Bound,

P




n⋃

j=1

Ej


 ≤

n∑

j=1

P [ Ej ] ≤ n · n−2 = n−1.

Therefore whp, no bin receives at least 6 log n balls

By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability :
An event E (that implicitly depends on an input parameter n) occurs whp if

P [ E ]→ 1 as n→∞.
This is a very standard notation in randomised algorithms

but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2. This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n) ≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:
(

e log log n
4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))

The term inside the exponential is

4 log n
log log n

·(log(e/4) + log log log n − log log n) ≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2. This inequality only
works for large enough n.

2. Concentration © T. Sauerwald Application 1: Balls into Bins 12



Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P [ X ≥ 4 log n/ log log n ] ≤ n−2,

thus by the Union Bound, no bin receives more than Ω (log n/ log log n) balls
with probability at least 1− 1/n.

As mentioned on the to prove that whp at least one bin receives at least
c log n/ log log n balls, for some constant c > 0.
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Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.

⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.
⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve this by sampling two bins in each step
and then assign the ball into the bin with lesser load.
⇒ for m = n this gives a maximum load of log2 log n + Θ(1) w.p. 1−1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms

(covered in Chapter 17 of the textbook by Mitzenmacher and Upfal)

2. Concentration © T. Sauerwald Application 1: Balls into Bins 14



ACM Paris Kanellakis Theory and Practice Award 2020

For “the discovery and analysis of balanced allocations, known as the
power of two choices, and their extensive applications to practice.”

“These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft
and Dropbox, which are all based on variants of the power of two
choices paradigm. There are many other software systems that use
balanced allocations as an important ingredient.”
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Simulation

https://www.dimitrioslos.com/balls_and_bins/visualiser.html
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Randomised Algorithms
Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions
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Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)
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QuickSort

QUICKSORT (Input A[1],A[2], . . . ,A[n])
1: Pick an element from the array, the so-called pivot
2: If |A| = 0 or |A| = 1 then
3: return A
4: else
5: Create two subarrays A1 and A2 (without the pivot) such that:
6: A1 contains the elements that are smaller than the pivot
7: A2 contains the elements that are greater (or equal) than the pivot
8: QUICKSORT(A1)
9: QUICKSORT(A2)

10: return A

Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot.

⇒ A1 = (2, 1, 5, 3, 4) and A2 = (8, 9, 7)

Worst-Case Complexity (number of comparisons) is Θ(n2),

while Average-Case Complexity is O(n log n).

We will now give a proof of this “well-known” result!
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

What is the number of comparisons?

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?).

In this case:

0 + 1 + 1 + 2 + 2 + 3 + 3 + 3 + 4 = 19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that there exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}
]
≥ 1− n−1.
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Randomised QuickSort: Analysis (2/4)

Let P be a path from the root to the deepest level of some element

A node in P is called good if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
otherwise, the node is bad

Further let st be the size of the array at level t in P.

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

good

bad

good

good

good

s0 = 9

s1 = 5

s2 = 4

s3 = 2

s4 = 1

Element 2: (2, 8, 9, 1, 7, 5, 6, 3, 4)→ (2, 1, 5, 3, 4)→ (2, 5, 3, 4)→ (2, 3)→ (2)
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Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 7



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n vertices of P to the deepest level of element i .

For any level j ∈ {0, 1, . . . , 24 log n − 1}, define an indicator variable Xj :

Xj = 1 if the node at level j is bad,
Xj = 0 if the node at level j is good.

P [ Xj = 1 | X0 = x0, . . . ,Xj−1 = xj−1 ]≤ 2
3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (Lecture 2)

pivot
1 `/3 2`/3 `

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds

P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ]

≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.

This implies P
[⋂n

i=1{Hi ≤ 24 log n}
]
≥ 1− n−1, as needed.
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3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (Lecture 2)

pivot
1 `/3 2`/3 `

bad good bad

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds
P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ] ≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.

This implies P
[⋂n

i=1{Hi ≤ 24 log n}
]
≥ 1− n−1, as needed.
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Randomised QuickSort: Final Remarks

Well-known: any comparison-based sorting algorithm needs Ω(n log n)

A classical result: expected number of comparison of randomised
QUICKSORT is 2n log n + O(n) (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of O(n log n) whp also
immediately implies a O(n log n) bound on the expected number
of comparisons!

It is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

The latter requires to compute the median of the array in linear time,
which is not easy...

The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)
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Hoeffding’s Extension

Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

Unfortunately the distribution of the Xi may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

Hoeffding’s Lemma helps us here:

Let X be a random variable with mean 0 such that a ≤ X ≤ b. Then for
all λ ∈ R,

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)

Hoeffding’s Extension Lemma

You can always consider
X ′ = X − E [ X ]

We omit the proof of this lemma!
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Hoeffding Bounds

Let X1, . . . ,Xn be independent random variable with mean µi such that
ai ≤ Xi ≤ bi . Let X = X1 + . . . + Xn, and let µ = E [ X ] =

∑n
i=1 µi . Then

for any t > 0

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2

∑n
i=1(bi − ai )2

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2

∑n
i=1(bi − ai )2

)
.

Hoeffding’s Inequality

Proof Outline (skipped):

Let X ′i = Xi − µi and X ′ = X ′1 + . . .+ X ′n, then P [ X ≥ µ+ t ] = P [ X ′ ≥ t ]

P [ X ′ ≥ t ] ≤ e−λt ∏n
i=1 E

[
eλX ′

i

]
≤ exp

[
−λt + λ2

8

∑n
i=1(bi − ai )

2
]

Choose λ = 4t∑n
i=1(bi−ai )

2 to get the result.

This is not magic! you just need to optimise λ!
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Method of Bounded Differences

Suppose, we have independent random variables X1, . . . ,Xn. We want
to study the random variable:

f (X1, . . . ,Xn)

Framework

Some examples:

1. X = X1 + . . .+ Xn (our setting earlier)

2. In balls into bins, Xi indicates where ball i is allocated, and f (X1, . . . ,Xm)
is the number of empty bins

3. In a randomly generated graph, Xi indicates if the i-th edge is present and
f (X1, . . . ,Xm) represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f (X1, . . . ,Xn) around its mean by
the so-called Method of Bounded Differences.
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Method of Bounded Differences

A function f is called Lipschitz with parameters c = (c1, . . . , cn) if for all
i = 1, 2, . . . , n,

|f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, x2, . . . , xi−1, x̃i , xi+1, . . . , xn)| ≤ ci ,

where xi and x̃i are in the domain of the i-th coordinate.

Let X1, . . . ,Xn be independent random variables. Let f be Lipschitz with
parameters c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then for any t > 0,

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2

∑n
i=1 c2

i

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2

∑n
i=1 c2

i

)
.

McDiarmid’s inequality

Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]

The proof is omitted here (it requires the concept of martingales).
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where xi and x̃i are in the domain of the i-th coordinate.

Let X1, . . . ,Xn be independent random variables. Let f be Lipschitz with
parameters c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then for any t > 0,

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2

∑n
i=1 c2

i

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2

∑n
i=1 c2

i

)
.

McDiarmid’s inequality

Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]

The proof is omitted here (it requires the concept of martingales).
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Application 3: Balls into Bins (again...)

Consider again m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi

Let Z be the number of empty bins (after assigning the m balls)
Z = Z (X1, . . . ,Xm) and Z is Lipschitz with c = (1, . . . , 1)

(If we move one ball to another bin, number of empty bins changes by ≤ 1.)

By McDiarmid’s inequality, for any t ≥ 0,

P [ |Z − E [ Z ] | > t ] ≤ 2 · e−2t2/m.

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

1

0.4

0.5

0.2

0.8

0.35

0.4

0.15

0.85

0.2

We are given n items of sizes in the unit interval [0, 1]

We want to pack those items into the fewest number of unit-capacity bins

Suppose the item sizes Xi are independent random variables in [0, 1]

Let B = B(X1, . . . ,Xn) be the optimal number of bins

The Lipschitz conditions holds with c = (1, . . . , 1). Why?
Therefore

P [ |B − E [ B ] | ≥ t ] ≤ 2 · e−2t2/n.

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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Moment Generating Functions (non-examinable)

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable) 19



Moment Generating Functions (non-examinable)

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable) 19



Moment Generating Functions (non-examinable)

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable) 19



Moment Generating Functions (non-examinable)

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable) 19



Randomised Algorithms
Lecture 4: Markov Chains and Mixing Times

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024



Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)

4. Markov Chains and Mixing Times © T. Sauerwald Recap of Markov Chain Basics 2



Applications of Markov Chains in Computer Science

Broadcasting

Clustering

Ranking Websites

A =




0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0




A =




0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0




Load Balancing

7
10

3
10

Particle Processes
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Markov Chains

We say that (Xt )
∞
t=0 is a Markov Chain on State Space Ω with Initial Dis-

tribution µ and Transition Matrix P if:

1. For any x ∈ Ω, P [ X0 = x ] = µ(x).

2. The Markov Property holds: for all t ≥ 0 and any x0, . . . , xt+1 ∈ Ω,

P
[

Xt+1 = xt+1

∣∣∣ Xt = xt , . . . ,X0 = x0

]
= P

[
Xt+1 = xt+1

∣∣∣ Xt = xt

]

:= P(xt , xt+1).

Markov Chain (Discrete Time and State, Time Homogeneous)

From the definition one can deduce that (check!)

For all t , x0, x1, . . . , xt ∈ Ω,

P [ Xt = xt ,Xt−1 = xt−1, . . . ,X0 = x0 ]

= µ(x0) · P(x0, x1) · . . . · P(xt−2, xt−1) · P(xt−1, xt ).

For all 0 ≤ t1 < t2, x ∈ Ω,

P [ Xt2 = x ] =
∑

y∈Ω

P [ Xt2 = x | Xt1 = y ] · P [ Xt1 = y ] .
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What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.

Rice Pasta

Potato

1/2

1/2

1/4

3/4

2/5

3/5

This has transition matrix:

P =

Rice Pasta Potato





0 1/2 1/2 Rice

1/4 0 3/4 Pasta

3/5 2/5 0 Potato
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (µ,P) on Ω = {1, . . . n} is given by

P =




P(1, 1) . . . P(1, n)
...

. . .
...

P(n, 1) . . . P(n, n)


 .

ρt = (ρt (1), ρt (2), . . . , ρt (n)): state vector at time t (row vector).

Multiplying ρt by P corresponds to advancing the chain one step:

ρt (y) =
∑

x∈Ω

ρt−1(x) · P(x , y) and thus ρt = ρt−1 · P.

The Markov Property and line above imply that for any t ≥ 0

ρt = ρ · P t−1 and thus P t (x , y) = P [ Xt = y | X0 = x ] .

Thus ρt (x) = (µP t )(x) and so ρt = µP t = (µP t (1), µP t (2), . . . , µP t (n)).

Everything boils down to deterministic vector/matrix computations

⇒ can replace ρ by any (load) vector and view P as a balancing matrix!
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Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for (Xt )t≥0 if for
every s ≥ 0 the event {τ = s} depends only on X0, . . . ,Xs.

Example - College Carbs Stopping times:

X “We had rice yesterday”

; τ := min {t ≥ 1 : Xt−1 = “rice”}
× “We are having pasta next Thursday”

For two states x , y ∈ Ω we call h(x , y) the hitting time of y from x :

h(x , y) := Ex [τy ] = E [ τy | X0 = x ] where τy = min{t ≥ 1 : Xt = y}.

Some distinguish between τ+
y = min{t ≥ 1 : Xt = y} and τy = min{t ≥ 0 : Xt = y}

Hitting times are the solution to a set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}
P(x , z) · h(z, y) ∀x 6= y ∈ Ω.

A Useful Identity
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x , y ∈ Ω there is an
integer k ≥ 0 such that Pk (x , y) > 0.

a b

c d

1

1/4

3/4

3/4

2/5

3/5 1/4

X irreducible

a b

c d

1

1/4

3/4
2/5

3/5 1

× not irreducible (thus reducible)

For any states x and y of a finite irreducible Markov Chain h(x , y) <∞.

Finite Hitting Time Theorem
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Stationary Distribution

A probability distribution π = (π(1), . . . , π(n)) is the stationary distribution of
a Markov Chain if πP = π (π is a left eigenvector with eigenvalue 1)

College carbs example:

(
4
13
,

4
13
,

5
13

)

π

·




0 1/2 1/2
1/4 0 3/4
3/5 2/5 0




P

=

(
4

13
,

4
13
,

5
13

)

π

Rice Pasta

Potato

1/2

1/2

1/4

3/4
2/5

3/5

A Markov Chain reaches stationary distribution if ρt = π for some t .
If reached, then it persists: If ρt = π then ρt+k = π for all k ≥ 0.

Let P be finite, irreducible M.C., then there exists a unique probability
distribution π on Ω such that π = πP and π(x) = 1/h(x , x) > 0, ∀x ∈ Ω.

Existence and Uniqueness of a Positive Stationary Distribution
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Periodicity

A Markov Chain is aperiodic if for all x ∈ Ω, gcd{t ≥ 1 : P t (x , x) > 0} = 1.

Otherwise we say it is periodic.

a b

d c

1/2

1/4

1/2

1/2 1/2

1/2

1/4

1/21/2

X Aperiodic

a b

d c

1/2

1/2

1/2 1/2

1/2

1/2

1/21/2

× Periodic

Question: Which of the two chains (if any) are aperiodic?
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Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution π. Then for any x , y ∈ Ω,

lim
t→∞

P t (x , y) = π(y).

Convergence Theorem

Ergodic = Irreducible + Aperiodic

mentioned before: For finite irreducible M.C.’s π exists, is unique and

π(y) =
1

h(y , y)
> 0.

We will prove a simpler version of the Convergence Theorem after
introducing Spectral Graph Theory.
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Step: 0

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.500

0.250

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.250

Step: 1
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.375

0.250

0.062

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.062

0.250

Step: 2
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.312

0.234

0.094

0.016

0.000

0.000

0.000

0.000

0.000

0.016

0.094

0.234

Step: 3
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.273

0.219

0.109

0.031

0.004

0.000

0.000

0.000

0.004

0.031

0.109

0.219

Step: 4
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.246

0.205

0.117

0.044

0.010

0.001

0.000

0.001

0.010

0.044

0.117

0.205

Step: 5
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.226

0.193

0.121

0.054

0.016

0.003

0.000

0.003

0.016

0.054

0.121

0.193

Step: 6
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.209

0.183

0.122

0.061

0.022

0.006

0.002

0.006

0.022

0.061

0.122

0.183

Step: 7
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.196

0.175

0.122

0.067

0.028

0.009

0.004

0.009

0.028

0.067

0.122

0.175

Step: 8
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.185

0.167

0.121

0.071

0.033

0.012

0.006

0.012

0.033

0.071

0.121

0.167

Step: 9
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.176

0.160

0.120

0.074

0.037

0.016

0.009

0.016

0.037

0.074

0.120

0.160

Step: 10
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.168

0.154

0.119

0.076

0.041

0.020

0.013

0.020

0.041

0.076

0.119

0.154

Step: 11
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.161

0.149

0.117

0.078

0.044

0.023

0.016

0.023

0.044

0.078

0.117

0.149

Step: 12
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.155

0.144

0.115

0.079

0.048

0.027

0.020

0.027

0.048

0.079

0.115

0.144

Step: 13
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.149

0.139

0.113

0.080

0.050

0.030

0.023

0.030

0.050

0.080

0.113

0.139

Step: 14
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.144

0.135

0.112

0.081

0.053

0.033

0.027

0.033

0.053

0.081

0.112

0.135

Step: 15
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.140

0.132

0.110

0.082

0.055

0.037

0.030

0.037

0.055

0.082

0.110

0.132

Step: 16

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.136

0.128

0.108

0.082

0.057

0.040

0.033

0.040

0.057

0.082

0.108

0.128

Step: 17
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.132

0.125

0.107

0.082

0.059

0.042

0.036

0.042

0.059

0.082

0.107

0.125

Step: 18

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.129

0.122

0.105

0.083

0.061

0.045

0.039

0.045

0.061

0.083

0.105

0.122

Step: 19
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.126

0.120

0.104

0.083

0.062

0.048

0.042

0.048

0.062

0.083

0.104

0.120

Step: 20
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.123

0.117

0.103

0.083

0.064

0.050

0.045

0.050

0.064

0.083

0.103

0.117

Step: 21
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.120

0.115

0.101

0.083

0.065

0.052

0.047

0.052

0.065

0.083

0.101

0.115

Step: 22
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.117

0.113

0.100

0.083

0.066

0.054

0.050

0.054

0.066

0.083

0.100

0.113

Step: 23

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.115

0.111

0.099

0.083

0.067

0.056

0.052

0.056

0.067

0.083

0.099

0.111

Step: 24
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.113

0.109

0.098

0.083

0.069

0.058

0.054

0.058

0.069

0.083

0.098

0.109

Step: 25
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.111

0.107

0.097

0.083

0.070

0.060

0.056

0.060

0.070

0.083

0.097

0.107

Step: 26
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.109

0.106

0.096

0.083

0.070

0.061

0.058

0.061

0.070

0.083

0.096

0.106

Step: 27
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.107

0.104

0.095

0.083

0.071

0.063

0.059

0.063

0.071

0.083

0.095

0.104

Step: 28
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.106

0.103

0.094

0.083

0.072

0.064

0.061

0.064

0.072

0.083

0.094

0.103

Step: 29
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.104

0.101

0.094

0.083

0.073

0.065

0.063

0.065

0.073

0.083

0.094

0.101

Step: 30
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.103

0.100

0.093

0.083

0.074

0.067

0.064

0.067

0.074

0.083

0.093

0.100

Step: 31
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.101

0.099

0.092

0.083

0.074

0.068

0.065

0.068

0.074

0.083

0.092

0.099

Step: 32
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.100

0.098

0.092

0.083

0.075

0.069

0.066

0.069

0.075

0.083

0.092

0.098

Step: 33
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.099

0.097

0.091

0.083

0.075

0.070

0.068

0.070

0.075

0.083

0.091

0.097

Step: 34
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.098

0.096

0.091

0.083

0.076

0.071

0.069

0.071

0.076

0.083

0.091

0.096

Step: 35
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.097

0.095

0.090

0.083

0.076

0.071

0.070

0.071

0.076

0.083

0.090

0.095

Step: 36
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.096

0.094

0.090

0.083

0.077

0.072

0.071

0.072

0.077

0.083

0.090

0.094

Step: 37
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.095

0.094

0.089

0.083

0.077

0.073

0.071

0.073

0.077

0.083

0.089

0.094

Step: 38
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.094

0.093

0.089

0.083

0.078

0.074

0.072

0.074

0.078

0.083

0.089

0.093

Step: 39
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.094

0.092

0.089

0.083

0.078

0.074

0.073

0.074

0.078

0.083

0.089

0.092

Step: 40
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.093

0.092

0.088

0.083

0.078

0.075

0.074

0.075

0.078

0.083

0.088

0.092

Step: 41
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.092

0.091

0.088

0.083

0.079

0.075

0.074

0.075

0.079

0.083

0.088

0.091

Step: 42
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.092

0.091

0.088

0.083

0.079

0.076

0.075

0.076

0.079

0.083

0.088

0.091

Step: 43
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.091

0.090

0.087

0.083

0.079

0.077

0.075

0.077

0.079

0.083

0.087

0.090

Step: 44

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.091

0.090

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.090

Step: 45
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.090

0.089

0.087

0.083

0.080

0.077

0.076

0.077

0.080

0.083

0.087

0.089

Step: 46

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.090

0.089

0.087

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.087

0.089

Step: 47
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.089

0.089

0.086

0.083

0.080

0.078

0.077

0.078

0.080

0.083

0.086

0.089

Step: 48
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 49
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 50

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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How Similar are Two Probability Measures?

You are presented three loaded (unfair) dice A,B,C:
x 1 2 3 4 5 6

P [ A = x ] 1/3 1/12 1/12 1/12 1/12 1/3
P [ B = x ] 1/4 1/8 1/8 1/8 1/8 1/4
P [ C = x ] 1/6 1/6 1/8 1/8 1/8 9/24

Question 1: Which dice is the least fair?

Most choose A.
Why?

Question 2: Which dice is the most fair?

Dice B and C seem
“fairer” than A but which is fairest?

Loaded Dice

We need a formal “fairness measure” to compare probability distributions!

x

P [ · = x ]

1 2 3 4 5 6

0.16
0.33
0.5
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Question 1: Which dice is the least fair?

Most choose A.
Why?

Question 2: Which dice is the most fair?

Dice B and C seem
“fairer” than A but which is fairest?

Loaded Dice

We need a formal “fairness measure” to compare probability distributions!

x

P [ · = x ]

1 2 3 4 5 6

0.16
0.33
0.5
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Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑

ω∈Ω

|µ(ω)− η(ω)|.

Loaded Dice: let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

3

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

12

∣∣∣∣
)

=
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

4

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

8

∣∣∣∣
)

=
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣
1
6
− 1

8

∣∣∣∣+

∣∣∣∣
1
6
− 9

24

∣∣∣∣
)

=
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − B‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair”, however B and C are equally “fair” (in TV distance).

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 16



Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑

ω∈Ω

|µ(ω)− η(ω)|.

Loaded Dice: let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

3

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

12

∣∣∣∣
)

=
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

4

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

8

∣∣∣∣
)

=
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣
1
6
− 1

8

∣∣∣∣+

∣∣∣∣
1
6
− 9

24

∣∣∣∣
)

=
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − B‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair”, however B and C are equally “fair” (in TV distance).

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 16



Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑

ω∈Ω

|µ(ω)− η(ω)|.

Loaded Dice: let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

3

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

12

∣∣∣∣
)

=
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

4

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

8

∣∣∣∣
)

=
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣
1
6
− 1

8

∣∣∣∣+

∣∣∣∣
1
6
− 9

24

∣∣∣∣
)

=
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − B‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair”, however B and C are equally “fair” (in TV distance).

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 16



Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑

ω∈Ω

|µ(ω)− η(ω)|.

Loaded Dice: let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

3

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

12

∣∣∣∣
)

=
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣
1
6
− 1

4

∣∣∣∣+ 4
∣∣∣∣
1
6
− 1

8

∣∣∣∣
)

=
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣
1
6
− 1

8

∣∣∣∣+

∣∣∣∣
1
6
− 9

24

∣∣∣∣
)

=
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − B‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair”, however B and C are equally “fair” (in TV distance).

4. Markov Chains and Mixing Times © T. Sauerwald Total Variation Distance and Mixing Times 16



TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

Let µ be a prob. vector on Ω (might be just one vertex) and t ≥ 0. Then

P t
µ := P [ Xt = · | X0 ∼ µ ] ,

is a probability measure on Ω.

[Exercise 4/5.5] For any µ,
∥∥∥P t

µ − π
∥∥∥

tv
≤ max

x∈Ω

∥∥∥P t
x − π

∥∥∥
tv
.

For any finite, irreducible, aperiodic Markov Chain

lim
t→∞

max
x∈Ω

∥∥∥P t
x − π

∥∥∥
tv

= 0.

Convergence Theorem (Implication for TV Distance)

We will see a similar result later after introducing spectral techniques (Lecture 12)!
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

The mixing time τx (ε) of a finite Markov Chain P with stationary distribu-
tion π is defined as

τx (ε) = min
{

t ≥ 0 :
∥∥∥P t

x − π
∥∥∥

tv
≤ ε
}
,

and,
τ(ε) = max

x
τx (ε).

Mixing Time

This is how long we need to wait until we are “ε-close” to stationarity

We often take ε = 1/4, indeed let tmix := τ(1/4)

See final slides for some comments on why we choose 1/4.
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Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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Experiment Gone Wrong...

 

Thanks to Krzysztof Onak (pointer) and Eric Price (graph) 
Source: Slides by Ronitt Rubinfeld

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 19



What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

Persi Diaconis (Professor of Statistics and former Magician)
Source: www.soundcloud.com

One of the leading experts
in the field who has related
card shuffling to many other

mathematical problems.

Here we will focus on one shuffling scheme which is easy to analyse.

How quickly do we converge to the uniform distribution over all n! permutations?
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The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)
1: For t = 1, 2, . . .
2: Pick i ∈ {1, 2, . . . , n} uniformly at random
3: Take the top card and insert it behind the i-th card

This is a slightly informal definition, so let us look at a small example...

8
1

6
4

7
5

2
3

We will focus on this “small” set of cards (n = 8)

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 21



The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)
1: For t = 1, 2, . . .
2: Pick i ∈ {1, 2, . . . , n} uniformly at random
3: Take the top card and insert it behind the i-th card

This is a slightly informal definition, so let us look at a small example...

8
1

6
4

7
5

2
3

We will focus on this “small” set of cards (n = 8)

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 21



The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)
1: For t = 1, 2, . . .
2: Pick i ∈ {1, 2, . . . , n} uniformly at random
3: Take the top card and insert it behind the i-th card

This is a slightly informal definition, so let us look at a small example...

8
1

6
4

7
5

2
3

We will focus on this “small” set of cards (n = 8)

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 21



8
1

6
4

7
5

2
3

8
1

6
4

7
5

2
3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

2
5

8
1

6
4

3
7

Even if we know which set of cards come after 8, every permutation is equally likely!

8
1

6
4

7
5

2
3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

5
2

8
1

6
4

3
7

; the deck of cards is perfectly mixed after the last card
“8” reaches the top and is inserted to a random position!
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“8” reaches the top and is inserted to a random position!
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Analysing the Mixing Time (Intuition)
8

1
6

4
7

5
2

3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

2
5

8
1

6
4

3
7

; deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

How long does it take for the last card “n” to become top card?

At the last position, card “n” moves up with probability 1
n at each step

At the second last position, card “n” moves up with probability 2
n

...

At the second position, card “n” moves up with probability n−1
n

One final step to randomise card “n”

(with probability 1)

This is a “reversed” coupon collector process
with n cards, which takes n log n in expectation.

Using the so-called coupling method, one could prove tmix ≤ n log n.
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Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

Riffle Shuffle

t 1 2 3 4 5 6 7 8 9 10
‖P t − π‖tv 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Figure: Total Variation Distance for t riffle shuffles of 52 cards.
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Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

1

2

3

4

5

6

7
8

Given an undirected graph G = (V ,E), an independent set is a subset
S ⊆ V such that there are no two vertices u, v ∈ S with {u, v} ∈ E(G).

Independent Set

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

1

2
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8

S = {1,4} is an independent set X

Given an undirected graph G = (V ,E), an independent set is a subset
S ⊆ V such that there are no two vertices u, v ∈ S with {u, v} ∈ E(G).

Independent Set

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

1
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S = {2,6,8} is an independent set X

Given an undirected graph G = (V ,E), an independent set is a subset
S ⊆ V such that there are no two vertices u, v ∈ S with {u, v} ∈ E(G).

Independent Set

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

1
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5

6

7
8

S = {1,7,8} is not an independent set ×

Given an undirected graph G = (V ,E), an independent set is a subset
S ⊆ V such that there are no two vertices u, v ∈ S with {u, v} ∈ E(G).

Independent Set

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER

1: Let X0 be an arbitrary independent set in G
2: For t = 0, 1, 2, . . .:
3: Pick a vertex v ∈ V (G) uniformly at random
4: If v ∈ Xt then Xt+1 ← Xt \ {v}
5: elif v 6∈ Xt and Xt ∪ {v} is an independent set then Xt+1 ← Xt ∪ {v}
6: else Xt+1 ← Xt

Key Question: What is the mixing time of this Markov Chain?

not covered here, see the textbook by Mitzenmacher and Upfal
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X1 = {1, 4, 8}
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X1 = {4}
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X1 = {1, 4}

Key Question: What is the mixing time of this Markov Chain?

not covered here, see the textbook by Mitzenmacher and Upfal
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Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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Further Remarks on the Mixing Time (non-examin.)
One can prove maxx

∥∥P t
x − π

∥∥
tv is non-increasing in t (this means if the chain is

“ε-mixed” at step t , then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]

We chose tmix := τ(1/4), but other choices of ε are perfectly fine too (e.g,
tmix := τ(1/e) is often used); in fact, any constant ε ∈ (0, 1/2) is possible.

Remark: This freedom on how to pick ε relies on the sub-multiplicative property of a (version) of the
variation distance. First, let

d(t) := max
x

∥∥∥P t
x − π

∥∥∥
tv

be the variation distance after t steps when starting from the worst state. Further, define

d(t) := max
µ,ν

∥∥∥P t
µ − P t

ν

∥∥∥
tv
.

These quantities are related by the following double inequality

d(t) ≤ d(t) ≤ 2d(t).

Further, d(t) is sub-multiplicative, that is for any s, t ≥ 1,

d(s + t) ≤ d(s) · d(t).

Hence for any fixed 0 < ε < δ < 1/2 it follows from the above that

τ(ε) ≤
⌈

ln ε

ln(2δ)

⌉
τ(δ).

In particular, for any ε < 1/4
τ(ε) ≤

⌈
log2 ε

−1
⌉
τ(1/4).

This 2 is the reason why we ultimately
need ε < 1/2 in this derivation. On

the other hand, see [Exercise (4/5).8]
why ε < 1/2 is also necessary.

Hence smaller constants ε < 1/4 only increase the mixing time by some constant factor.
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Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT
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The Ehrenfest Markov Chain

A simple model for the exchange of molecules
between two boxes

We have d particles

labelled 1, 2, . . . , d

At each step a particle is selected uniformly at
random and switches to the other box

If Ω = {0, 1, . . . , d} denotes the number of
particles in the red box, then:

Px,x−1 =
x
d

and Px,x+1 =
d − x

d
.

Ehrenfest Model

P7,6 = 7
10

P7,8 = 3
10

Let us now enlarge the state space by looking at each particle individually!

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d ] and flip it

Random Walk on the Hypercube
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Analysis of the Mixing Time

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d ] and flip it

(Non-Lazy) Random Walk on the Hypercube

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

At each step t = 0, 1, 2 . . .

Pick a random coordinate in [d ]
With prob. 1/2 flip coordinate.

Lazy Random Walk (1st Version)

At each step t = 0, 1, 2 . . .

Pick a random coordinate in [d ]
Set coordinate to {0, 1} uniformly.

Lazy Random Walk (2nd Version)

These two chains are equivalent!
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Example of a Random Walk on a 4-Dimensional Hypercube

0000 0001

0010 0011

0110

0100 0101

0111

1010

1000

1011

1001

1110 1111

1100 1101

Once all coordinates have been picked at least
once, the state is uniformly at random in {0, 1}d .

Coupon Collector ; mixing time should be O(d log d)

We won’t formalise this argument here (see [Ex. 4/5.11] )

t Coord. Xt

0 0 0 0 0

1 0 0 0

2 0 1 0

3 0 1 0

4 0 1 1

5 0 1 1

6 0 1 1

7 0 1 0

8 0 0 1

9 0 0 0

10 done! 0 1 0
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Total Variation Distance of Random Walk on Hypercube (d = 22)
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Theoretical Results (by Diaconis, Graham and Morrison)

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

This is a numerical plot of a theoretical bound, where d = 1012

(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
The variation distance exhibits a so-called cut-off phenomena:

Distance remains close to its maximum value 1 until step 1
4 n log n −Θ(n)

Then distance moves close to 0 before step 1
4 n log n + Θ(n)
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Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 8



Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =





1
2 deg(u)

if {u, v} ∈ E ,
1
2 if u = v ,
0 otherwise

.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.
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Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT
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1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n
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SRW Random Walk on Two-Dimensional Grids: Animation
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Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [0, n], E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Exercise: [Exercise 4/5.15] What happens for the LRW on Pn?
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Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}
P(x , z) · h(z, y) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1)

and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.
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Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
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2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED-2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,

(i) P [ Xi+1 = 1 | Xi = 0 ] = 1
(ii) P [ Xi+1 = k + 1 | Xi = k ] ≥ 1/2
(iii) P [ Xi+1 = k − 1 | Xi = k ] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The process Xi is complicated to describe in full; however by (i)− (iii) we can
bound it by Yi (SRW on the n-path from 0). This gives (see also [Ex 4/5.16] )

E [ time to find sol ] ≤ E0[min{t : Xt = n}]≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Running for 2n2 steps and using Markov’s inequality yields:
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Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The process Xi is complicated to describe in full; however by (i)− (iii) we can
bound it by Yi (SRW on the n-path from 0). This gives (see also [Ex 4/5.16] )

E [ time to find sol ] ≤ E0[min{t : Xt = n}]≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Running for 2n2 steps and using Markov’s inequality yields:
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Provided a solution exists, RANDOMISED-2-SAT will return a valid solu-
tion in O

(
n2) steps with probability at least 1/2.

Proposition
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Exercise: (difficult, beyond this course) What happens to the
above analysis if we apply the same algorithm to 3-SAT?
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Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [ t runs all fail ] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-step algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED-2-SAT
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Introduction

Extended Example: Visualization of SIMPLEX
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(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)
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28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?
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linear programming is a powerful tool in optimisation

inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)
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What are Linear Programs?

maximise or minimise an objective, given limited resources
(competing constraint)

constraints are specified as (in)equalities

objective function and constraints are linear

Linear Programming (informal definition)
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A Simple Example of a Linear Optimisation Problem

Laptop

selling price to retailer: 1,000 GBP
glass: 4 units
copper: 2 units
rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP
glass: 1 unit
copper: 1 unit
rare-earth elements: 2 units

You have a daily supply of:

glass: 20 units
copper: 10 units
rare-earth elements: 14 units
(and enough of everything else...)

How to maximise your daily earnings?
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The Linear Program

maximise x1 + x2

subject to
4x1 + x2 ≤ 20
2x1 + x2 ≤ 10
x1 + 2x2 ≤ 14
x1, x2 ≥ 0

Linear Program for the Production Problem

The solution of this linear program yields the optimal production schedule.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimise or maximise a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints
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Finding the Optimal Production Schedule

maximise x1 + x2

subject to
4x1 + x2 ≤ 20
2x1 + x2 ≤ 10
x1 + 2x2 ≤ 14
x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution
Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.
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1
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Question: Which aspect did we ignore in the formulation of the
linear program?
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While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.
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Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk ) is minimised.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximise dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxim-
isation problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E
{

du + w(u, v)
}
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Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+

(recall c(u, v) = 0 if (u, v) 6∈ E), pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem
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maximise
∑

v∈V fsv − ∑
v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP
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Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s
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t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27
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function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27
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Minimum Cost Flow as a LP

minimise
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for u, v ∈ V .

Minimum Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!
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Formulating Problems as Linear Programs

Standard and Slack Forms
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Standard and Slack Forms

maximise
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximise cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

minimise −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximise 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximise 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.
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Converting into Standard Form (5/5)

maximise 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i-th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.
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Converting Standard Form into Slack Form (2/3)

maximise 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximise 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables
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Converting Standard Form into Slack Form (3/3)

maximise 2x1 − 3x2 + 3x3

subject to
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x5 = −7 + x1 + x2 − x3
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z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.
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Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑

j∈N

cjxj

xi = bi −
∑

j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.
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Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =




a13 a15 a16

a23 a25 a26

a43 a45 a46


 =



−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0




b =




b1

b2

b4


 =




8
4
18


 ,

c =




c3

c5

c6


 =



−1/6
−1/6
−2/3




v = 28

Slack Form Notation
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Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)
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Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.
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Extended Example: Conversion into Slack Form

maximise 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form
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Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = ( 33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
− x3

2
− x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
− x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4− 8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations
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2 − 3x6
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Extended Example: Iteration 3
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Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: [Ex. 6/7.6] How many basic solutions (including
non-feasible ones) are there?
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Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2 − x5

2

x2 = 12 − x1 − 5x3
2 − x5

2

x4 = 18 − x2 − x3
2 + x5

2

x6 = 24 − 3x1 + x3
2 + x5

2

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

Switch roles of x2 and x5

Switch roles of x1 and x6
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Extended Example: Alternative Runs (2/2)
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The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [ flg
20 yB D B " flg [ feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!
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Effect of the Pivot Step (extra material, non-examinable)

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑

j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After substituting into the other constraints, we have

x i = b̂i = bi − aieb̂e.
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Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!
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The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are
non-positive

Line 4 picks enterring variable
xe with positive coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.
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A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are
non-positive

Line 4 picks enterring variable
xe with positive coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.
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Finding an Initial Solution

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!
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Geometric Illustration
maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?
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Formulating an Auxiliary Linear Program

maximise
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximise −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof. Exercise!
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Let us illustrate the role of x0 as “distance from feasibility”

We’ll also see that increasing x0 enlarges the feasible region
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Let us now modify the original linear program so that it is not
feasible

⇒ Hence the auxiliary linear program has only a solution for a
sufficiently large x0 > 0!
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29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
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13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x1 − x2

subject to
2x1 − x2 ≤ 2
x1 − 5x2 ≤ −4

x1, x2 ≥ 0

maximise − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

7. Linear Programming © T. Sauerwald Finding an Initial Solution 23



Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 + x1
5 + x4

5
x3 = 14

5 + 4x0
5 − 9x1

5 + x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leaving
Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!
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Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!
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Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 + x1
5 + x4

5
x3 = 14

5 + 4x0
5 − 9x1

5 + x4
5

z = −4
5 + 9x1

5 − x4
5

x2 = 4
5 + x1

5 + x4
5

x3 = 14
5 − 9x1

5 + x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − ( 4

5 −
x0
5 + x1

5 + x4
5 )

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12
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Fundamental Theorem of Linear Programming

For any linear program L, given in standard form, either:

1. L is infeasible⇒ SIMPLEX returns “infeasible”.

2. L is unbounded⇒ SIMPLEX returns “unbounded”.

3. L has an optimal solution with a finite objective value
⇒ SIMPLEX returns an optimal solution with a finite objective value.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Small Technicality: need to equip SIMPLEX with an “anti-cycling strategy” (see extra slides)

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

Linear Program (in any form)

Standard Form

Slack Form

No Feasible Solution
INITIALIZE-SIMPLEX terminates

Feasible Basic Solution
INITIALIZE-SIMPLEX followed by SIMPLEX

LP bounded
SIMPLEX returns optimum

LP unbounded
SIMPLEX terminates
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Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3
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Outlook: Alternatives to Worst Case Analysis (non-examinable)

Source: “Beyond the Worst-Case Analysis of Algorithms” by Tim Roughgarden, 2020
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Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack form at two
iterations are identical, SIMPLEX fails to terminate!
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Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.
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Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-
ded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.
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Outline

Introduction

Examples of TSP Instances

Demonstration
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Given: A complete undirected graph G = (V ,E) with
nonnegative integer cost c(u, v) for each edge (u, v) ∈ E

Goal: Find a hamiltonian cycle of G with minimum cost.

Formal Definition

Solution space consists of at most n! possible tours!

Actually the right number is (n − 1)!/2

3

1

2 1

4

3

3 + 2 + 1 + 3 = 92 + 4 + 1 + 1 = 8

Metric TSP: costs satisfy triangle inequality:

∀u, v ,w ∈ V : c(u,w) ≤ c(u, v) + c(v ,w).

Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

Special Instances
Even this version is

NP hard (Ex. 35.2-2)
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33 city contest (1964)

  Traveling Salesman 12 
 

rather simple methods could be found to yield a tour much nearer optimal than 30 

percent.  However, even a few percent gain would be well worth-while in some 

cases, so the problem does seem to have practical importance as well as 

mathematical interest. (p. 65) 

 
Thus Flood realized that the Nearest Neighbor method is not a good estimate of the TSP 

but it created a decent first solution.  

 In 1962 a contest brought the TSP national recognition through a contest given by 

Proctor and Gamble.  A flyer of the contest is pictured below.   

 

The traveling salesman problem recently achieved national prominence when a 

soap company used it as the basis of a promotional contest.  Prizes up to $10,000 
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532 cities (1987 [Padberg, Rinaldi])
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13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN 
PROBLEM* 

G. DANTZIG, R. FULKERSON, AND S. JOHNSON 
The Rand Corporation, Santa Monica, California 

(Received August 9, 1954) 

It is shown that a certain tour of 49 cities, one in each of the 48 states and 
Washington, D. C., has the shortest road distance. 

THE TRAVELING-SALESMAN PROBLEM might be described as 
follows: Find the shortest route (tour) for a salesman starting from a 

given city, visiting each of a specified group of cities, and then returning to 
the original point of departure. More generally, given an n by n sym- 
metric matrix D= (d1i), where doi represents the 'distance' from I to J, 
arrange the points in a cyclic order in such a way that the sum of the d1j 
between consecutive points is minimal. Since there are only a finite 
number of possibilities (at most (n - 1)!) to consider, the problem is 
to devise a method of picking out the optimal arrangement which is 
reasonably efficient for fairly large values of n. Although algorithms have 
been devised for problems of similar nature, e.g., the optimal assignment 
problem,3"78 little is known about the traveling-salesman problem. We 
do not claim that this note alters the situation very much; what we shall do 
is outline a way of approaching the problem that sometimes, at least, en- 
ables one to find an optimal path and prove it so. In particular, it will be 
shown that a certain arrangement of 49 cities, one in each of the 48 states 
and Washington, D. C., is best, the djj used representing road distances as 
taken from an atlas. 

* HISTORICAL NOTE: The origin of this problem is somewhat obscure. It 
appears to have been discussed informally among mathematicians at mathematics 
meetings for many years. Surprisingly little in the way of results has appeared in 
the mathematical literature.10 It may be that the minimal-distance tour problem 
was stimulated by the so-called Hamiltonian game' which is concerned with finding 
the number of different tours possible over a specified network. The latter problem 
is cited by some as the origin of group theory and has some connections with the 
famous Four-Color Conjecture.9 Merrill Flood (Columbia University) should be 
credited with stimulating interest in the traveling-salesman problem in many quar- 
ters. As early as 1937, he tried to obtain near optimal solutions in reference to 
routing of school buses. Both Flood and A. W. Tucker (Princeton University) re- 
call that they heard about the problem first in a seminar talk by Hassler Whitney 
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall 
the problem). The relations between the traveling-salesman problem and the 
transportation problem of linear programming appear to have been first explored by 
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and 
H. Kuhn.4 5'6 

393 
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The 42 (49) Cities
394 DANTZIG, FULKERSON, AND JOHNSON 

In order to try the method on a large problem, the following set of 49 
cities, one in each state and the District of Columbia was selected: 

1. Manchester, N. HI. 18. Carson City, Nev. 34. Birmingham, Ala. 
2. Montpelier, Vt. 19. Los Angeles, Calif. 35. Atlanta, Ga. 
3. Detroit, Mich. 20. Phoenix, Ariz. 36. Jacksonville, Fla. 
4. Cleveland, Ohio 21. Santa Fe, N. M. 37. Columbia, S. C. 
5. Charleston, W. Va. 22. Denver, Colo. 38. Raleigh, N. C. 
6. Louisville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va. 
7. Indianapolis, Ind. 24. Omaha, Neb. 40. Washington, D. C. 
8. Chicago, Ill. 25. Des Moines, Iowa 41. Boston, Mass. 
9. Milwaukee, Wis. 26. Kansas City, Mo. 42. Portland, Me. 

10. Minneapolis, Minn. 27. Topeka, Kans. A. BaltimoreA Md. 

12. Bismark, N. D. 28. Oklahoma City, Okla. B. Wilmington, Del. 
13. Helenar, MNt. 29. Dallas, Tex. C. Philadelphia, Penn. 
14. Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J. 
15. Portland, Ore. 31. Memphis, Tenn. E. New York, N. Y. 
16. Boise, Idaho 32. Jackson, Miss. F. Hartford, Conn. 
17. Salt Lake City, Utah 33. New Orleans, La. G. Providence, R. I. 

The reason for picking this particular set was that most of the road 
distances between them were easy to get from an atlas. The triangular 
table of distances between these cities (Table I) is part of the original one 
prepared by Bernice Brown of The Rand Corporation. It gives dj= 
K7 (di; - 11) (IJ = 1, 2, * , 42), where dii is the road distance in miles 
between I and J. The d1i have been rounded to the nearest integer. 
Certainly such a linear transformation does not alter the ordering of the 
tour lengths, although, of course, rounding could cause a tour that was 
not optimal in terms of the original mileage to become optimal in terms of 
the adjusted units used in this paper. 

We will show that the tour (see Fig. 16) through the cities 1, 2, * *, 42 
in this order is minimal for this subset of 42 cities. Moreover, since in 
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts) 
by the shortest road distance one goes through A, B, * * *, G, successively, 
it follows that the tour through 49 cities 1, 2, .*, 40, A, B, *., G, 41, 
42 in that order is also optimal. 

PRELIMINARY NOTIONS 

Whenever the road from I to J (in that order) is traveled, the value 
XIJ I is entered into the IJ element of a matrix; otherwise xiJ 0 is 
entered. A (directed) tour through n cities can now be thought of as a 
permutation matrix of order n which represents an n-cycle (we assume 

* This particular transformation was chosen to make the d1j of the original table 
less than 256 which would permit compact storage of the distance table in binary 
representation; however, no use was made of this. 
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Combinatorial Explosion
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Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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Road Distances

Hence this is an instance of the Metric TSP, but not Euclidean TSP.

\0) 
cO

 0O
 

00 
n 

00 
e 

cn 
C

- I- 
tr\ 

o 
C

N
C

 
cl 

cn cn -t 
00 

rN
 

C
4 

f 
0 

00\,O
 

0 
tn 

0 \ 
' 

C
C

, 
C

-) 
n 

n\ ,O
 

c 
0 

t 
Q

 
>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 

O
. 

0 
q O

 00 
ol 

o 
e 

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i 
c 

C
t'I t n 

+ 
+ t-oo 

0 
N

 
0 

0 
> 

n 
cn 

0 
t- 

z 
> 

? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C
, 

C
,> 

e 
?-\, 

roo +r" 
0 

e 
0 

? 
0 

? 
\o 

0 
c 

o 
O

 
- 

t" 00 ]00 C
~ 

H
 

F 
,, 

E 
m

N
 

> 
+ 

> 
> 

t 
+ 

+ 
? 

+?t 
+ 

O
 

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t 

t 
Q

' 
m

+m
O

 
> 

tw
#)b 

.-w
9 

C
-4 C

, 
C

4 
Q

o 
\1- 

\0 
0 

00 ac 
s 

(0 
iC

 
it 

3 
i0 

t 
00 

I- , 

t1 
? 

t (~~~~~~~n 
Itm

-< 
. r -\o 

,O
 C

o ~O
 rO

o 
e 4 

? 6>t 
I 

00 
M

 
M

 
f- 

4 r 
> 00 

C
6 O

 H
e %4 

00) 
Q

 
o 

an 
~ 

b 
6 

on 
6 

H
 

X
 

? 
O

 
H

 
ct 

+ 
tn 

a> a> 
4 

0 

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cn 
r 

X
bt 

X
e\o \0 

to 
00 

0 
0 C

, O
 0 

O
n m

 
?i 

? 00 
0tC

I 
0 

0 0 00 
. 

00 ??o 
00 

L"O
 

tO
 

ci t es ) c i 
t'Thf?ci 

.00' 
000 

cn 
st 0, 

4i 

~ ~4-~0) 
00 

ci 
C

) 
C

S) t~ 'tci\O
 

'-ci t0-~ ~, 
j.0 

t 0- 
H

 
00 

0C
 

i 

cd 
-,o 

o-o 
r- 

coZ\~ 
00 

oo 
O

 
(7 

0 
ft+m

? 
s 

SA
? 

c 
H

 
cn 

ocall 0 
0 

0 
W

 
C

S- 
o 

tn 
o 

cic~~-000000 
00m

000-'-'M
~ 

c 
00c 

Z 
t '.' 

t0 
t"-'t00 

ci) 
0 

i 
0 

H
 

a 
- 

tc 
t Z-000 

ci 
00 

V
-. 

t O
 

0)' 
C

, 
0 

0 
0 

0"0o 
C

it 
N

', 
'' 

kf 
~~ 

)'t'ci0000 
-~~~~~~~ci'C

00 
0000 

d 
I0~0 

cic 
-p\ 

- 
0 

ci 
0 

0 O
~~~~(~~f--~~ 

'-cic~~ 0',tci0',00 
O

~~~~c-) 
~~ t-0',tfl\,~~~~ ci00 

0 
C

 

X
~~~~~~~~~~~~~~~~~~~~- 

*0 
C

' 
- 

)+ mo 
v00 

1c H
F 

tl 
C

A
 C

 n 
C

 
,oo 

t- 
o 

_I 

-o 
o 

ci 
~cif-~0 

O
 

0 
0 

', 
-, 

, 
00 

- 
t 

r 
0 

o 
0 

C
 

C
 

c 
F4 

i 
" 

0 
\O

'-ci00 
ci 

0N
00\0 

00 
f--0000 

-00X
-= 

~-A
 

tit- 
c 

C
A

 
"C

, 
00 

0N
0c'c 

ci 
0 

c 
c 

i 
c00 roN

 
C

o\ 
r' 

" 
04 

r 
r0 

00 
-\ 

"O
 

cm
 

C
\ 

m
 

0 
rb4 

t- 
-t 

r\. 
o 

m
O

O
 

C
P\ 0 

0 
t3n C

n 
\ d 

U
N

 CP\00 
r-0 

0 
0 

c 
0 

i 
0 

't 
' 

0 
N

 
, 

' 
b0 

""O
 

-- 
m

0 
00 

ci 
m

m
00 0 

't 
'tci)00 

080 O
N

 
i00 

fm
 cN

 
' 

0 
'0 

' 

0) 
ci 

ci 
'-'~0 

'-ci'~0 'tf--00 
000000 

O
N

O
 

c 
\.O

 
ci 

t- 
',tr 

~\C
 0 

w
m

 

ci 
'tci)'-ci00 

00 
f--i 

c 
o 

it N ci 
m

 
4 c 

cO
 

n 
q- tn 

W
 

0e 
ci'- 

O
~ci 

0-?O
 ci 

~i't"0 
'ciO

N
O

 
ci 

c 
I-,0 O

N
- 

'-cic'o 
-,o 

O
C

) C
O

 C
 

)'c\ 
. tO

 X
 

o0 0) 
Q

r0 
F- 

0 
C

')'t 
t-4 

4 
0 

0 
f- 

C
= 

f\ 
C

%
 

f 
00 

-* 

c')t 
C

4 
" 

) 
'cX

Io --\O
 

t 
-f 

O
N

 
0 

ci 
c 

c 
cn 

t 
- 

'tO
-00 

+ 
 

00 
.) 

- 
I 

C
, ) 0) 

F- 
H

 
-00 

0)0 
O

N
 

O
N

O
C

= 
0 

- 

\O
 

-C
O

 
ciO

N
 rC

 
' 

C
A

 
o 

't00 
)o 

n 
O

N
 O

 
rt 

O
 

C
' )\00 

ci ' 
rcic 

o 
00- o"- 

- 

-0 
00 

000 
'- 

c 
ci 

\i' 
C

) 
"0f--00 

0 
0 

M
 

0 
0 

- 
O

N
 

C
IA

 
O

 0C
i-' 

0 
0 

0- 
r0 

00 
C

0 ci 
C

 
00 

0-O
N

 I- 
c 

i 
' 

- 
0 

-c 
c 

0 

ci 
i 

- 
00 

0-0 
c 

0 
'H

'tc 
C

n 
C

Y
'o 

-I 
'. 

-0 
00 

O
t 

) 
0000 

- 
C

A
 

11- 
-00 

C
i ci 

000 
? 

W
 

0 
C

c 
" 

' 
- 

- 
- 

- 
O

 
- -00N

 
0 

M
'- 

\o 
0 

c 
M

q0-~ 
0N

 
cc-\,O

N
'.0 

"C
 ci 

O
O

N
 ci 

\,O
 00 \000 

ci 
't~~~ci00ciC

')C
00c~~ic0 

'-~ 
\O

C
ic 

C
A

ic 
cn -,i,-4t 

tj 

t 
- 

O
 

M
O

O
 ', 

O
 

O
 

V
 

- 
0\, 

C
) 

',) 
'.O

O
N

N
C

) 
00 

" 
C

) 
, -- 

-C
 

C
'\00 

0 
ci 

'I 
O

 
O

'4 
. 

C
l C

n 0 
000 

O
 

t 
0 

0M
 

- 
O

 
-??? 

r 

f-o- 
0 

C
, 

-'t 
O

0 
0 

C
0 

' t 
--C

-) 
o 

0 
00 

0\, 
- O

 
'ci00 

O
C

A
 

t 
00 

0 
M

 
t 

ci 
C

')'-ci 
f--- 

C
''- 

' t '3 t o ci 
o)0000 

'-cit 
' t't 

0'-t 
c')'-+W

'c 
) 

t 
ci 

0 
V

6 
V

 
c 

ci 
ci ~~~ 

~ 't'0 
0-C

 
f- -'c 

ci 
(' 

''c 
)0 

0'-- 
'-i- 

-vi 
-l0'" 

'C
A

~ici 
c 

0c 
0 X

ci 
0- 

ci 
0 't0"0 

0-'-800c C
"C

i 
0 

, 
0 

C
')'t 

', 
00 

C
,) 

cn 
i'c 

tl 
''' 

-i 
i'c 

f 
cici 

C
A

ci 
I- 

\- 
.-0 

-N
#- 

C
A

 
-, 

c 
N

.t 
'' 

C
'. 

iN
-tc'c) 

' 
o~~~~~~~~~~~~~~~~~~~~~~~C

 
H

7O
 

r- 
-1 

r 
tn 

3 
\3 ,O

 
45 

m
 

C
4 

C
A

 
-n+< 

t6> 
c n 

'-f 
0 

O
 C
i4 

\ 
- 'I- 

i 
O

 
\cO

 
O

 
00 

0)0 
cn 

')ci 
'-'- 

i-I 
O

- 
O

N
-C

 
f--"-, 

'-) 
m

 

i ' 
0 

%
,O

 
0O

 
' 

tt-\ 
00\ )O

 
c\ 

0 
04 

0) 
O

N
C

 
f 

O
N

 
-\ C

> 
Y

 
C

f- O
 

ci'3 
' 

+ + 
+ 

)00 0 
O

a 
-0 

00 
ooci 

C
",00 

'-ci'-o 
C

-- 
ci 

't'-ci 
f--f-- 

f-i 
' 

i- 
00 

i 
cO

N
cO

N
 

0 
0- 

0C
 

- 

C
'O

cim
 -c 

-n 
--N

o 
000 

o 0 
0w

'0000 
1. 

t-0 
C

" ,'- 
r- 

00 
'T0 

C
O

N
 00 

O
 

sf-C
-A

 
f- 

' 
iti 

c 

N
m

 
m

 
M

) 
'i s) 

ooO
 

O
O

 
y 

Q
tN

 130dt 
000 C

~, 
O

 
i 

Z 
o 

o 
M

c 
\O

 
8-Q

-) 
C

\ 

S~~~~~~~diF~~~~~~~" 
r*tO

 
"_ G

e 
.- 

V
d iU4(" 

N
6~h 

N
eez 

F#0 
) 

-m
m

etm
 

m
bo 

m
m

 

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 12



Road Distances

Hence this is an instance of the Metric TSP, but not Euclidean TSP.
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Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:

As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, j), i > j , which is one if the tour includes
edge {i, j} (in either direction)

minimize
∑42

i=1

∑i−1
j=1 c(i, j)x(i, j)

subject to ∑
j<i x(i, j) +

∑
j>i x(j, i) = 2 for each 1 ≤ i ≤ 42

0 ≤ x(i, j) ≤ 1 for each 1 ≤ j < i ≤ 42

Constraints x(i , j) ∈ {0,1} are not allowed in a LP!

Branch & Bound to solve an Integer Program:
As long as solution of LP has fractional x(i , j) ∈ (0,1):

Add x(i, j) = 0 to the LP, solve it and recurse
Add x(i, j) = 1 to the LP, solve it and recurse
Return best of these two solutions

If solution of LP integral, return objective value

Bound-Step: If the best known
integral solution so far is better

than the solution of a LP, no
need to explore branch further!

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13



Outline

Introduction

Examples of TSP Instances

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 14



In the following, there are a few different runs of the demo.
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Iteration 1:
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Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations
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Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16



Iteration 1: Eliminate Subtour 1,2,41,42
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Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations
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Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2
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Iteration 1: Eliminate Subtour 1,2,41,42
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Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations
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Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2
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Iteration 1: Eliminate Subtour 1,2,41,42
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Objective value: −641.000000, 861 variables, 945 constraints, 1809 iterations
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Disallow subtour (1, 2, 42, 41) by adding this constraint to the LP:

x(2, 1) + x(41, 1) + x(42, 1) + x(41, 2) + x(42, 2) + x(42, 41) ≤ 3

Equivalent to: S = {1, 2, 41, 42},
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2
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Iteration 2:
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Objective value: −676.000000, 861 variables, 946 constraints, 1802 iterations
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Iteration 2: Eliminate Subtour 3− 9
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Objective value: −676.000000, 861 variables, 946 constraints, 1802 iterations
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Iteration 3:
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Objective value: −681.000000, 861 variables, 947 constraints, 1984 iterations
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Iteration 3: Eliminate Subtour 24,25,26,27
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Objective value: −681.000000, 861 variables, 947 constraints, 1984 iterations
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Iteration 4:
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Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations
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Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2.
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Iteration 4: Eliminate Cut 11− 23
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Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations
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Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2.
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Iteration 4: Eliminate Cut 11− 23
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Objective value: −682.500000, 861 variables, 948 constraints, 1492 iterations
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Tour has to include at least two edges between S = {11, 12, . . . , 23} and V \ S:
∑

i∈S,j∈V\S
x(max(i, j),min(i, j)) ≥ 2.
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Iteration 5:
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Objective value: −686.000000, 861 variables, 949 constraints, 2446 iterations
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Iteration 5: Eliminate Subtour 13− 23
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Objective value: −686.000000, 861 variables, 949 constraints, 2446 iterations
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Iteration 6:
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Objective value: −694.500000, 861 variables, 950 constraints, 1690 iterations
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Iteration 6: Eliminate Cut 13− 17
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Objective value: −694.500000, 861 variables, 950 constraints, 1690 iterations
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Iteration 7:
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Objective value: −697.000000, 861 variables, 951 constraints, 2212 iterations
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Iteration 7: Branch 1a x18,15 = 0
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Iteration 8:
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Iteration 8: Branch 2a x17,13 = 0
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Iteration 9:
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Iteration 9: Branch 2b x17,13 = 1
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Iteration 10:
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Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.
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Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.
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Iteration 10: Branch 1b x18,15 = 1
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Branch & Bound procedure would stop here, since value of the best
LP solution for x18,15 = 0 is worse than a previously found tour.
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Iteration 11:
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Iteration 11: Branch & Bound terminates
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Branch & Bound Overview

1: LP solution 641

1: LP solution 641

2: LP solution 6762: LP solution 676

3: LP solution 6813: LP solution 681

4: LP solution 682.54: LP solution 682.5

5: LP solution 6865: LP solution 686

6: LP solution 694.56: LP solution 694.5

7: LP solution 6977: LP solution 697

8: LP solution 6988: LP solution 698

9: Valid tour 6999: Valid tour 699 10: LP solution 70010: LP solution 700

11: Valid tour 70111: Valid tour 701

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 11 − 23

Eliminate Subtour 10, 11, 12

Eliminate Cut 13 − 17

x18,15 = 0

x17,13 = 0 x17,13 = 1

x18,15 = 1

Cut branch, since LP solution worse
than current best possible tour.
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Iteration 7: Objective 697
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What about choosing a different branching variable?
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Solving Progress (Alternative Branch 1)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x15,18 = 1 x15,18 = 0
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Alternative Branch 1: x18,15, Objective 697
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Alternative Branch 1a: x18,15 = 1, Objective 701 (Valid Tour)
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Alternative Branch 1b: x18,15 = 0, Objective 698
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Solving Progress (Alternative Branch 1)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: valid tour 701 10: LP solution 698

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x18,15 = 1 x18,15 = 0
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Solving Progress (Alternative Branch 2)
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Alternative Branch 2: x27,22, Objective 697
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Alternative Branch 2: x27,22, Objective 697
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Alternative Branch 2a: x27,22 = 1, Objective 708 (Valid tour)
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Alternative Branch 2b: x27,22 = 0, Objective 697.75
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Solving Progress (Alternative Branch 2)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: valid tour 708 10: LP solution 697.75

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,22 = 1 x27,22 = 0
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Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: ??? 10: ???

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0
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Alternative Branch 3: x27,24, Objective 697
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Alternative Branch 3: x27,24, Objective 697
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Alternative Branch 3a: x27,24 = 1, Objective 697.75
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Alternative Branch 3b: x27,24 = 0, Objective 698

1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12
13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22
23

23
24

24
25

25

26

26
27

27

28

28

29

29

30

30
31

31

32

32

33

33

34

34
35

35

36

36

37

37

38

38

39

39

40

40

41

41

42

42

1 1

1

1

1

1

1

1

1

1

0.50

0.50

1

0.50 0.50

0.50

1

0.50

1

0.50

0.50

10.50

0.50

1

1 1

0.50

0.50

1

0.50

1

0.50 0.50

1

0.50

1
1

1

1

1

1

1

1
1

1

1

1

1

1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 42



Solving Progress (Alternative Branch 3)

1: LP solution 641

2: LP solution 676

3: LP solution 681

4: LP solution 682.5

5: LP solution 686

6: LP solution 686

7: LP solution 688

8: LP solution 697

9: LP solution 697.75 10: LP solution 698

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3 − 9

Eliminate Subtour 24, 25, 26, 27

Eliminate Cut 13 − 17

Eliminate Subtour 10, 11, 12

Eliminate Subtour 13 − 23

Eliminate Subtour 11 − 23

x27,24 = 1 x27,24 = 0

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!
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Conclusion (1/2)

How can one generate these constraints automatically?

Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON 

It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 

REFERENCES 
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M. 

Coxeter, 11th ed., Macmillan, New York, 1939. 
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method 

for Minimizing a Linear Form under Linear Inequality Restraints, Rand 
Research Memorandum RM-1264 (April 5, 1954). 

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation 
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans, 
Ed., Wiley, New York, 1951. 

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II 
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953). 

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc- 
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951. 

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc. 
Sixth Symposium in Applied Mathematics of the American Mathematical 
Society, McGraw-Hill, New York. 

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium 
on Linear Inequalities and Programming, Comptroller, Headquarters U. S. 
Air Force (June 14-16, 1951). 

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the 
Optimal Assignment Problem," Contributions to the Theory of Games II, 
Princeton University Press, 1953. 

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal 
XXI, Part 2, No. 82, 98-101 (April, 1946). 

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc. 
Am. Math. Soc. II, 6 (December, 1951). 

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44



Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON 

It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 

REFERENCES 
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M. 

Coxeter, 11th ed., Macmillan, New York, 1939. 
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method 

for Minimizing a Linear Form under Linear Inequality Restraints, Rand 
Research Memorandum RM-1264 (April 5, 1954). 

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation 
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans, 
Ed., Wiley, New York, 1951. 

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II 
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953). 

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc- 
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951. 

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc. 
Sixth Symposium in Applied Mathematics of the American Mathematical 
Society, McGraw-Hill, New York. 

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium 
on Linear Inequalities and Programming, Comptroller, Headquarters U. S. 
Air Force (June 14-16, 1951). 

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the 
Optimal Assignment Problem," Contributions to the Theory of Games II, 
Princeton University Press, 1953. 

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal 
XXI, Part 2, No. 82, 98-101 (April, 1946). 

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc. 
Am. Math. Soc. II, 6 (December, 1951). 

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44



Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?

There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON 

It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 

REFERENCES 
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M. 

Coxeter, 11th ed., Macmillan, New York, 1939. 
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method 

for Minimizing a Linear Form under Linear Inequality Restraints, Rand 
Research Memorandum RM-1264 (April 5, 1954). 

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation 
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans, 
Ed., Wiley, New York, 1951. 

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II 
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953). 

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc- 
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951. 

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc. 
Sixth Symposium in Applied Mathematics of the American Mathematical 
Society, McGraw-Hill, New York. 

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium 
on Linear Inequalities and Programming, Comptroller, Headquarters U. S. 
Air Force (June 14-16, 1951). 

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the 
Optimal Assignment Problem," Contributions to the Theory of Games II, 
Princeton University Press, 1953. 

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal 
XXI, Part 2, No. 82, 98-101 (April, 1946). 

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc. 
Am. Math. Soc. II, 6 (December, 1951). 

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44



Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON 

It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 

REFERENCES 
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M. 

Coxeter, 11th ed., Macmillan, New York, 1939. 
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method 

for Minimizing a Linear Form under Linear Inequality Restraints, Rand 
Research Memorandum RM-1264 (April 5, 1954). 

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation 
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans, 
Ed., Wiley, New York, 1951. 

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II 
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953). 

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc- 
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951. 

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc. 
Sixth Symposium in Applied Mathematics of the American Mathematical 
Society, McGraw-Hill, New York. 

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium 
on Linear Inequalities and Programming, Comptroller, Headquarters U. S. 
Air Force (June 14-16, 1951). 

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the 
Optimal Assignment Problem," Contributions to the Theory of Games II, 
Princeton University Press, 1953. 

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal 
XXI, Part 2, No. 82, 98-101 (April, 1946). 

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc. 
Am. Math. Soc. II, 6 (December, 1951). 

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44



Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?

BFS may be more attractive, even though it might need more memory.

410 DANTZIG, FULKERSON, AND JOHNSON 

It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 

REFERENCES 
1. W. W. R. BALL, Mathematical Recreations and Essays, as rev. by H. S. M. 

Coxeter, 11th ed., Macmillan, New York, 1939. 
2. G. B. DANTZIG, A. ORDEN, AND P. WOLFE, The Generalized Simplex Method 

for Minimizing a Linear Form under Linear Inequality Restraints, Rand 
Research Memorandum RM-1264 (April 5, 1954). 

3. G. B. DANTZIG, "Application of the Simplex Method to a Transportation 
Problem," Activity Analysis of Production and Allocation, T. C. Koopmans, 
Ed., Wiley, New York, 1951. 

4. I. HELLER, "On the Problem of Shortest Path Between Points," I and II 
(abstract), Bull. Am. Math. Soc. 59, 6 (November, 1953). 

5. T. C. KOOPMAN',S "A Model of Transportation," Activity Anal ysis of Produc- 
tion and Allocation, T. C. Koopmans, Ed., Wiley, New York, 1951. 

6. H. W. KUHN, "The Traveling-Salesman Problem," to appear in the Proc. 
Sixth Symposium in Applied Mathematics of the American Mathematical 
Society, McGraw-Hill, New York. 

7. D. F. VOTAW AND A. ORDEN, "Personnel Assignment Problem," Symposium 
on Linear Inequalities and Programming, Comptroller, Headquarters U. S. 
Air Force (June 14-16, 1951). 

8. J. voN NEUMANN, "A Certain Zero-sum Two-person Game Equivalent to the 
Optimal Assignment Problem," Contributions to the Theory of Games II, 
Princeton University Press, 1953. 

9. W. T. TUTTE, "On Hamiltonian Circuits," London Mathematical Society Journal 
XXI, Part 2, No. 82, 98-101 (April, 1946). 

10. S. VERBLUNSKY, "On the Shortest Path Through a Number of Points," Proc. 
Am. Math. Soc. II, 6 (December, 1951). 

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44



Conclusion (1/2)

How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.
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It can be shown by introducing all links for which aI2 - A that x 
is the unique minimum. There are only 7 such links in addition to those 
shown in Fig. 17, and consequently all possible tying tours were enumer- 
ated without too much trouble. None of them proved to be as good as x. 

CONCLUDING REMARK 
It is clear that we have left unanswered practically any question one 

might pose of a theoretical nature concerning the traveling-salesman 
problem; however, we hope that the feasibility of attacking problems 
involving a moderate number of points has been successfully demon- 
strated, and that perhaps some of the ideas can be used in problems of 
similar nature. 
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Conclusion (2/2)

Eliminate Subtour 1, 2, 41, 42

Eliminate Subtour 3− 9

Eliminate Subtour 10, 11, 12

Eliminate Subtour 11− 23

Eliminate Subtour 13− 23

Eliminate Cut 13− 17

Eliminate Subtour 24, 25, 26, 27

408 DANTZIG FULKERSON, AND JOHNSON 

use the remaining admissible links. By extending this type of combin- 
atorial argument to the range of values of the 'slack' variables yK, it is 
often possible at an earlier stage of the iterative algorithm to rule out so 
many of the tours that direct examination of the remaining tours for 
minimum length is a feasible approach. 

THE 49-CITY PROBLEM* 
The optimal tour x is shown in Fig. 16. The proof that it is optimal is 

given in Fig. 17. To make the correspondence between the latter and its 
programming problem clear, we will write down in addition to 42 relations 
in non-negative variables (2), a set of 25 relations which suffice to prove 
that D(x) is a minimum for L We distinguish the following subsets of the 
42 cities: 

Si= {1, 2, 41, 421 S5= 113, 14, , 231 
S2i =3,4, ,91 S= 113, 14, 15, 16, 171 
S ={1, 2, ,9, 29, 30, ..., 42} S7{= 24, 25, 26, 271. 
S4= 111, 12, ...,23} 

Except for two inequalities which we will discuss in a moment, the pro- 
gramming problem may now be written as the following 65 relations:t 

2; XIj=2 (I 1 42), X41,1 < 1 X4,3 < 1 X7,6 <1 

X12,11<1, X14,13<1, X20,19<1 

X23,22< 1, X25,24?l, X27,26<1, X29,28l< , X31,30< 

X33,32 < 1, X3,34<1, X37,36?1, XIjj2, - XIjjB2, 

2 xIJ >2, z xIJ>2, z xIJ?52, 2 xIJ<4, 2 xIJ?3. 
88"93 S4,034 85,96 '86 8 7 

The remaining two relations (66 and 67) are perhaps most easily described 
verbally. 

66: X14,15 minus the sum of all other Xij on links out of 15, 16, 19, except for xm8, 
X18,16 X17,16, x19,18, and x20 ,9, is not positive. 

67: faijxij?42, where a23,22=2, a26.25=0, all other aij=l except aIJ=O if 
Xjj is a non-basic variable and either (a) I is in S3, J not in S3, or (b) I or 
J is 10, 21, 25, 26, 27, or 28.t 

These two inequalities are satisfied by all tours. For example, if a 
tour were to violate the first one, it must have successively X15,14=1, 

* As indicated earlier, it was possible to treat this as a 42-city problem. 

t 2,s sxIJ means the sum of all variables where only one of the subscripts I or J is 
in S. Us XIj means the sum of all variables such that I and J are in S-see relations 
(4), (5), (6). 

I We are indebted to I. Glicksberg of Rand for pointing out relations of this 
kind to us. 
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Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [ C ] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [ C ]

C∗
,

C∗

E [ C ]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗
E[ C ]

≥ 1

Minimisation problem: E[ C ]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).
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MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·

Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?
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Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:

For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}
Since each literal (including its negation) appears at most once in clause i ,

P [ clause i is not satisfied ] =
1
2
· 1

2
· 1

2
=

1
8

⇒ P [ clause i is satisfied ] = 1− 1
8

=
7
8

⇒ E [Yi ] = P [Yi = 1 ] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y ]

= E

[ m∑

i=1

Yi

]
=

m∑

i=1

E [Yi ] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m
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Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]

Probabilistic Method: powerful tool to
show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis
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One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis
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Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]

≥ E
[

Y | x1 = v1, . . . , xj−2 = vj−2
]

...

≥ E [Y ] =
7
8
·m.

computable in O(1)

Go to Conclusion
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MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!
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...the best approach
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The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.
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d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources
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which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [ fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its
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This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101Optimal solution has weight 4
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑

v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑

v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.
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The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [ f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time
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Example of APPROX-MIN-WEIGHT-VC
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑

v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).
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Randomised Algorithms
Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024



Outline

Weighted Set Cover

MAX-CNF
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The Weighted Set-Cover Problem

Given: set X and a family of subsets F ,
and a cost function c : F → R+

Goal: Find a minimum-cost subset
C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems
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Goal: Find a minimum-cost subset
C ⊆ F

s.t. X =
⋃

S∈C
S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

Question: How can we reduce
the Vertex-Cover problem to the
Set-Cover problem?

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems
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Setting up an Integer Program

Question: Try to formulate the integer program and linear
program of the weighted SET-COVER problem
(solution on next slide!)

minimize
∑

S∈F
c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0,1} for each S ∈ F

0-1 Integer Program

minimize
∑

S∈F
c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0,1] for each S ∈ F

Linear Program
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Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2

y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!
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Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [ c(C) ] =
∑

S∈F
c(S) · y(S)
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P
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⋃

S∈C
S

]
≥ 1− 1

e
.

Lemma
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Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [ c(C) ] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [ x ∈ ∪S∈CS ] ≥ 1− 1
e .

Lemma

Proof:

Step 1: The expected cost of the random set C

X

E [ c(C) ]

= E


∑

S∈C
c(S)


 = E


 ∑

S∈F
1S∈C · c(S)




=
∑

S∈F
P [S ∈ C ] · c(S) =

∑

S∈F
y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X
P [ x 6∈ ∪S∈CS ]

=
∏

S∈F : x∈S

P [S 6∈ C ] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!
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The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [ c(C) ] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [ x ∈ ∪S∈CS ] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!
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Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [ c(C) ≤ 4 ln(n) · c(C∗) ] ≥ 1/2.

Hence with probability at least 1− 1
n− 1

2 >
1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:

Step 1: The probability that C is a cover

X
By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [ x 6∈ ∪S∈CS ] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS ] = 1− P


 ⋃

x∈X

{x 6∈ ∪S∈CS}




≥ 1−
∑

x∈X

P [ x 6∈ ∪S∈CS ] ≥ 1− n · 1
n2

= 1− 1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [ c(C) ] ≤ 2 ln(n) ·∑S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B ] ≤ P [A ] + P [B ]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.
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MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches
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Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [ clause i is satisfied ] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [ Y ] = E

[
m∑

i=1

Yi

]
=

m∑

i=1

E [ Yi ] ≥
m∑

i=1

1
2

=
1
2
·m.
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑

j∈C+
i

yj +
∑

j∈C−i

(1− yj ) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y
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Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma
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Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [ clause i is satisfied ] = 1−
∏̀

j=1

P [ yj is false ] = 1−
∏̀

j=1

(
1− y j

)

≥ 1−
(∑`

j=1(1− y j )

`

)`

= 1−
(

1−
∑`

j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .
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Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [ clause i is satisfied ] ≥ 1−
(

1− z i

`

)`

For any ` ≥ 1, define g(z) := 1−
(
1− z

`

)`.

This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [ clause i is satisfied ] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3 )

3
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Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥

m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥

m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥

m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥

m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i

≥
m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma

Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i

≥
(

1− 1
e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e

LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Analysis of Randomised Rounding

For any clause i of length `,

P [ clause i is satisfied ] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [ Y ] =
m∑

i=1

E [ Yi ] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14



Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 · 1

2 + 1
2 · y i .

Note, however, that variables are not independently assigned!
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Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5
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MAX-CNF Conclusion

Since α2 = β2 = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
The 4/3-approximation algorithm can be easily derandomised

Idea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution

The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

Even MAX-2-CNF (every clause has length 2) is NP-hard!

Summary

10. Approximation Algorithms © T. Sauerwald MAX-CNF 17
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Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?

A
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D
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Source: Wikipedia
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Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering
(communitites) or other structural information.
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Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications

Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.
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Graphs and Matrices

Graphs

1 2

34

Connectivity

Bipartiteness

Number of triangles

Graph Clustering

Graph isomorphism

Maximum Flow

Shortest Paths

. . .

Matrices




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




Eigenvalues

Eigenvectors

Inverse

Determinant

Matrix-powers

. . .
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
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Adjacency Matrix

Let G = (V ,E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

Au,v =

{
1 if {u, v} ∈ E
0 otherwise.

Adjacency matrix

1 2

34

A =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




Properties of A:

The sum of elements in each row/column i equals the degree of the
corresponding vertex i , deg(i)

Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Rn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and Eigenvectors

Let A be the adjacency matrix of a d-regular graph G with n vertices.

Then, A has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn. These eigenvalues associated with
their multiplicities constitute the spectrum of G.

Graph Spectrum

An undirected graph G is d-regular if every degree
is d , i.e., every vertex has exactly d connections.

Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise ≥)
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Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise ≥)
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Example 1

Question: What are the Eigenvalues and Eigenvectors?

Bonus: Can you find a short-cut to det(A− λ · I)?

1

2 3

A =




0 1 1
1 0 1
1 1 0




Solution:

The three eigenvalues are λ1 = λ2 = −1, λ3 = 2.

The three eigenvectors are (for example):

f1 =




1
0
−1


 , f2 =



− 1

2
1
− 1

2


 , f3 =




1
1
1


 .
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Laplacian Matrix

Let G = (V ,E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L = I− 1
d

A,

where I is the n × n identity matrix.

Laplacian Matrix

1 2

34

L =




1 −1/2 0 −1/2
−1/2 1 −1/2 0

0 −1/2 1 −1/2
−1/2 0 −1/2 1




Properties of L:

The sum of elements in each row/column equals zero

L is symmetric
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Relating Spectrum of Adjacency Matrix and Laplacian Matrix

A and L have the same set of eigenvectors.

Correspondence between Adjacency and Laplacian Matrix

Exercise: Prove this correspondence. Hint: Use that L = I− 1
d A.

[Exercise 11/12.1]
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Eigenvalues and Graph Spectrum of L

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Cn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and eigenvectors

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn. These eigenvalues associated with
their multiplicities constitute the spectrum of G.

Graph Spectrum
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Useful Facts of Graph Spectrum

Let L be the Laplacian matrix of an undirected, regular graph G = (V ,E)
with eigenvalues λ1 ≤ · · · ≤ λn.

1. λ1 = 0 with eigenvector 1
2. the multiplicity of the eigenvalue 0 is equal to the number of

connected components in G

3. λn ≤ 2

4. λn = 2 iff there exists a bipartite connected component.

Lemma

The proof of these properties is based on a
powerful characterisation of eigenvalues/vectors!
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

Let M be an n by n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn.
Then,

λk = min
x(1),...,x(k)∈Rn\{0},

x(i)⊥x(j)

max
i∈{1,...,k}

x (i)T
Mx (i)

x (i)T x (i)
.

The eigenvectors corresponding to λ1, . . . , λk minimise such expression.

Courant-Fischer Min-Max Formula

λ1 = min
x∈Rn\{0}

xT Mx
xT x

minimised by an eigenvector f1 for λ1

λ2 = min
x∈Rn\{0}

x⊥f1
xT x

minimised by f2
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Quadratic Forms of the Laplacian

Let L be the Laplacian matrix of a d-regular graph G = (V ,E) with n
vertices. For any x ∈ Rn,

xT Lx =
∑

{u,v}∈E

(xu − xv )
2

d
.

Lemma

Proof:

xT Lx = xT
(

I− 1
d

A
)

x = xT x − 1
d

xT Ax

=
∑

u∈V

x2
u −

2
d

∑

{u,v}∈E

xuxv

=
1
d

∑

{u,v}∈E

(x2
u + x2

v − 2xuxv )

=
∑

{u,v}∈E

(xu − xv )
2

d
.
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown
graph with many vertices in low-dimensional space?

A Larger Example

Algorithms and ML: Examples of Spectral Clustering 3

Embedding onto Line

Coordinates given by x

Algorithms and ML: Examples of Spectral Clustering 5

λ2 = 1
d · min

x∈Rn\{0}
x⊥f1

∑
{u,v}∈E (xu−xv )

2

‖x‖2
2

The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.

We could obviously solve this easily using DFS/BFS, but
let’s see how we can tackle this using the spectrum of L!
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Example 2

Question: What are the Eigenvectors with Eigenvalue 0 of L?

1

2 3

4 5

7 6

A =




0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0




L =




1 − 1
2 − 1

2 0 0 0 0
− 1

2 1 − 1
2 0 0 0 0

− 1
2 − 1

2 1 0 0 0 0
0 0 0 1 − 1

2 0 − 1
2

0 0 0 − 1
2 1 − 1

2 0
0 0 0 0 − 1

2 1 − 1
2

0 0 0 − 1
2 0 − 1

2 1




Solution:
Two smallest eigenvalues are λ1 = λ2 = 0.
The corresponding two eigenvectors are:

f1 =




1
1
1
0
0
0
0



, f2 =




0
0
0
1
1
1
1




Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0

Next Lecture: A fine-grained
approach works even if the

clusters are sparsely connected!
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( or f1 =




1
1
1
1
1
1
1



, f2 =




−1/3
−1/3
−1/3
1/4
1/4
1/4
1/4




)
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Proof of Lemma, 2nd statement (non-examinable)

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (“=⇒” cc(G) ≤ mult(0)). We will show:
G has exactly k connected comp. C1, . . . ,Ck ⇒ λ1 = · · · = λk = 0

Take χCi
∈ {0, 1}n such that χCi

(u) = 1u∈Ci
for all u ∈ V

Clearly, the χCi
’s are orthogonal

χT
Ci

LχCi
= 1

d ·
∑
{u,v}∈E (χCi

(u)− χCi
(v))2 = 0 ⇒ λ1 = · · · = λk = 0

2. (“⇐=” cc(G) ≥ mult(0)). We will show:
λ1 = · · · = λk = 0 ⇒ G has at least k connected comp. C1, . . . ,Ck

there exist f1, . . . , fk orthonormal such that
∑
{u,v}∈E (fi (u)− fi (v))2 = 0

⇒ f1, . . . , fk constant on connected components
as f1, . . . , fk are pairwise orthogonal, G must have k different connected
components.
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Outline

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 2



Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters

Let us for simplicity focus on the case of two clusters!
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Conductance

Let G = (V ,E) be a d-regular and undirected graph and ∅ 6= S ( V .
The conductance (edge expansion) of S is

φ(S) :=
e(S,Sc)

d · |S|

Moreover, the conductance (edge expansion) of the graph G is

φ(G) := min
S⊆V : 1≤|S|≤n/2

φ(S)

Conductance

NP-hard to compute!

1

2

3

4

5

6

7
8

φ(S) =

5
9

φ(G) ∈ [0, 1] and φ(G) = 0 iff G is
disconnected

If G is a complete graph, then
e(S,V \ S) = |S| · (n − |S|) and
φ(G) ≈ 1/2.
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λ2 versus Conductance (1/2)

1

2 3

4 5

7 6

φ(G) = 0 ⇔

G is disconnected

⇔ λ2(G) = 0

What is the relationship between φ(G)
and λ2(G) for connected graphs?
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λ2 versus Conductance (2/2)

1D Grid (Path)

λ2 ∼ n−2

φ ∼ n−1

2D Grid

λ2 ∼ n−1

φ ∼ n−1/2

3D Grid

λ2 ∼ n−2/3

φ ∼ n−1/3

Binary Tree

λ2 ∼ n−1

φ ∼ n−1

Random Graph (Expanders)

λ2 = Θ(1)

φ = Θ(1)

Hypercube

λ2 ∼ (log n)−1

φ ∼ (log n)−1
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Relating λ2 and Conductance

Let G be a d-regular undirected graph and λ1 ≤ · · · ≤ λn be the eigenval-
ues of its Laplacian matrix. Then,

λ2

2
≤ φ(G) ≤

√
2λ2.

Cheeger’s inequality

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ2

2. Order the vertices so that x1 ≤ x2 ≤ · · · ≤ xn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance

It returns cluster S ⊆ V such that φ(S) ≤
√

2λ2

≤ 2
√
φ(G)

no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

very fast: can be implemented in O(|E | log |E |) time
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):

By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Outline

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)
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Illustration on a small Example

A =




0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0




L =




1 0 − 1
3 − 1

3 0 0 − 1
3 0

0 1 0 0 − 1
3 − 1

3 − 1
3 0

− 1
3 0 1 − 1

3 0 0 0 − 1
3

− 1
3 0 − 1

3 1 0 0 − 1
3 0

0 − 1
3 0 0 1 − 1

3 0 − 1
3

0 − 1
3 0 0 − 1

3 1 0 − 1
3

− 1
3 − 1

3 0 − 1
3 0 0 1 0

0 0 − 1
3 0 − 1

3 − 1
3 0 1




1

2
3

4

5

6
7

8

λ2 = 1−
√

5/3 ≈ 0.25

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)T

4 7

2 51 3

8 6

x−0.425−0.263 0 +0.263+0.425
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Illustration on a small Example
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Illustration on a small Example
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} ∈ E(G), add spring between pins at xu and xv

The potential energy at each spring is (xu − xv )2

Courant-Fisher characterisation:

λ2 = min
x∈Rn\{0}

x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

‖x‖2
2=1,x⊥1

(xu − xv )2

In our example, we found out that λ2 ≈ 0.25

The eigenvector x on the last slide is normalised (i.e., ‖x‖2
2 = 1). Hence,

λ2 =
1
3
·
(

(x1 − x3)2 + (x1 − x4)2 + (x1 − x7)2 + · · ·+ (x6 − x8)2
)
≈ 0.25
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Let us now look at an example of a non-regular graph!
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The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of G = (V ,E ,w) is the n by n matrix

L = I− D−1/2AD−1/2

where D is a diagonal n × n matrix such that Duu = deg(u) =∑
v : {u,v}∈E w(u, v), and A is the weighted adjacency matrix of G.

1 2

34

16

9

7

9
L =




1 −16/25 0 −9/20
−16/25 1 −9/20 0

0 −9/20 1 −7/16
−9/20 0 −7/16 1




Luv = − w(u,v)√
dudv

for u 6= v

L is symmetric

If G is d-regular, L = I− 1
d · A.
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Conductance and Spectral Clustering (General Version)

Let G = (V ,E ,w) and ∅ ( S ( V . The conductance (edge expansion)
of S is

φ(S) :=
w(S,Sc)

min{vol(S), vol(Sc)} ,

where w(S,Sc) :=
∑

u∈S,v∈Sc w(u, v) and vol(S) :=
∑

u∈S d(u).
Moreover, the conductance (edge expansion) of G is

φ(G) := min
∅6=S(V

φ(S).

Conductance (General Version)

Spectral Clustering (General Version):

1. Compute the eigenvector x corresponding to λ2 and y = D−1/2x .

2. Order the vertices so that y1 ≤ y2 ≤ · · · ≤ yn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance
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Stochastic Block Model and 1D-Embedding

G = (V ,E) with clusters S1,S2 ⊆ V , 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p if u, v ∈ Si ,
q if u ∈ Si , v ∈ Sj , i 6= j .

Stochastic Block Model

Here:

|S1| = 80,
|S2| = 120

p = 0.08

q = 0.01

Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : -1.1968431479565368e-16
Eigenvalue 2 : 0.1543784937248489
Eigenvalue 3 : 0.37049909753568877
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue 6 : 0.44379221120189777
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904

0
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Drawing the 2D-Embedding
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Spectral Clustering
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Best Solution found by Spectral Clustering

Step
100 200

1

0.5

0

Φ

• Step: 78

• Threshold: −0.027

• Partition Sizes: 78/122

• Cut Edges: 84

• Conductance: 0.145
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Clustering induced by Blocks

• Step: 1

• Threshold: 0

• Partition Sizes: 80/120

• Cut Edges: 88

• Conductance: 0.1486

(0, 0)
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V ,E) with clusters
S1,S2,S3 ⊆ V ; 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p u, v ∈ Si

q u ∈ Si , v ∈ Sj , i 6= j

|V | = 300, |Si | = 100
p = 0.08, q = 0.01.

Spectral embedding Output of Spectral Clustering
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How to Choose the Cluster Number k

If k is unknown:
small λk means there exist k sparsely connected subsets in the graph
(recall: λ1 = . . . = λk = 0 means there are k connected components)

large λk+1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

⇒ choose smallest k ≥ 2 so that the spectral gap λk+1 − λk is “large”

In the latter example λ = {0, 0.20, 0.22, 0.43, 0.45, . . . } =⇒ k = 3.

In the former example λ = {0, 0.15, 0.37, 0.40, 0.43, . . . } =⇒ k = 2.

For k = 2 use sweep-cut extract clusters. For k ≥ 3 use embedding in
k -dimensional space and apply k -means (geometric clustering)
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Another Example

(many thanks to Kalina Jasinska)

nodes represent math topics taught within 4 weeks of a Mathcamp

node colours represent to the week in which they thought

teachers were asked to assign weights in 0− 10 indicating how closely
related two classes are
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Summary: Spectral Clustering

Illustration on a (very) small Example

A =

0
BBBBBBBBBB@

0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0

1
CCCCCCCCCCA

M =

0
BBBBBBBBBB@

0 0 1
3

1
3 0 0 1

3 0
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4 7

2 51 3

8 6
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1

4

3

7

52

8 6
Sweep: 2

Edge Expansion: 0.666

Clustering Demos T.S. 2

Clustering Demos T.S. 6

A Larger Example: Sweep Cut

Threshold: 0.00
Partition Sizes: 201 / 200
Cut Edges / Total Edges: 53 / 2601
Edge Expansion: 0.021

Clustering Demos T.S. 7

Spectral Embedding onto Line
Compute Sweep Cuts

Given any graph (adjacency matrix)
Graph Spectrum (computable in poly-time)

λ2 (relates to connectivity)
λn (relates to bipartiteness)
. . .

Cheeger’s Inequality
relates λ2 to conductance
unbounded approximation ratio
effective in practice

minx∈Rn\{0}
x⊥1

∑
u∼v (xu−xv )

2
∑

u x2
u

12. Clustering © T. Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs 21



Outline

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 22



Relation between Clustering and Mixing (non-examinable)

Which graph has a “cluster-structure”?

Which graph mixes faster?
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution π = (1/n, . . . , 1/n), which satisfies πP = π.

Here all vector multiplications (including eigenvectors) will always be from the left!

Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x ,

∥∥∥xPt − π
∥∥∥

2
≤ λt ,

with 1 = λ1 > λ2 ≥ · · · ≥ λn as eigenvalues and λ := max{|λ2|, |λn|}.

⇒ This implies for t = O
(

log n
log(1/λ)

)
= O

(
log n
1−λ

)
,

∥∥∥xPt − π
∥∥∥

tv
≤ 1

4
.

Lemma

due to laziness, λn ≥ 0
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Proof of Lemma (non-examinable)

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥
( n∑

i=1

αi vi

)
P− π

∥∥∥
2

2

=
∥∥∥π +

n∑

i=2

αiλi vi − π
∥∥∥

2

2

=
∥∥∥

n∑

i=2

αiλi vi

∥∥∥
2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥

2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1
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αiλi vi

∥∥∥
2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥

2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2 ≤ λ2t · ‖x − π‖2

2

≤ λ2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1
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Proof of Lemma (non-examinable)

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥
( n∑

i=1

αi vi

)
P− π

∥∥∥
2

2

=
∥∥∥π +

n∑

i=2

αiλi vi − π
∥∥∥

2

2

=
∥∥∥

n∑

i=2

αiλi vi

∥∥∥
2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥

2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2 ≤ λ2t · ‖x − π‖2

2 ≤ λ2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 25



Some References on Spectral Graph Theory and Clustering

Fan R.K. Chung.
Graph Theory in the Information Age.
Notices of the AMS, vol. 57, no. 6, pages 726–732, 2010.

Fan R.K. Chung.
Spectral Graph Theory.
Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.

S. Hoory, N. Linial and A. Widgerson.
Expander Graphs and their Applications.
Bulletin of the AMS, vol. 43, no. 4, pages 439–561, 2006.

Daniel Spielman.
Chapter 16, Spectral Graph Theory
Combinatorial Scientific Computing, 2010.

Luca Trevisan.
Lectures Notes on Graph Partitioning, Expanders and Spectral Methods,
2017.
https://lucatrevisan.github.io/books/expanders-2016.pdf

12. Clustering © T. Sauerwald Appendix: Relating Spectrum to Mixing Times (non-examinable) 26



The End...

Thank you and Best Wishes for the Exam!
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