Randomised Algorithms

Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{\mathbf{E}[C]}{C^{*}}, \frac{C^{*}}{\mathbf{E}[C]}\right) \leq \rho(n) .
$$

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{\mathrm{E}[C]}{C^{*}}, \frac{C^{*}}{\mathrm{E}[C]}\right) \leq \rho(n) .
$$

- Maximisation problem: $\frac{C^{*}}{E[C]} \geq 1$
- Minimisation problem: $\frac{\mathrm{E}[C]}{C^{*}} \geq 1$

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{E[C]}{C^{*}}, \frac{C^{*}}{E[C]}\right) \leq \rho(n) .
$$

An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^{*} satisfy:

$$
\max \left(\frac{\mathbf{E}[C]}{C^{*}}, \frac{C^{*}}{E[C]}\right) \leq \rho(n) .
$$

An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$-approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon>0$, the runtime is polynomial in n. For example, $O\left(n^{2 / \epsilon}\right)$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1 / \epsilon$ and n. For example, $O\left((1 / \epsilon)^{2} \cdot n^{3}\right)$.

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-3-CNF Satisfiability

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.
MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.
MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)
$$

$$
x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4 \text { clauses) }
$$

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge \ldots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$
\begin{aligned}
& \left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{5}}\right) \wedge\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \\
& x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0 \text { and } x_{5}=1 \text { satisfies } 3 \text { (out of } 4 \text { clauses) }
\end{aligned}
$$

Idea: What about assigning each variable uniformly and independently at random?

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:
$Y_{i}=\mathbf{1}$ \{clause i is satisfied \}

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\mathbf{P}[\text { clause } i \text { is not satisfied }]=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& \mathbf{P} \text { [clause } i \text { is not satisfied }]=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
\Rightarrow \quad & \mathbf{P}[\text { clause } i \text { is satisfied }]=1-\frac{1}{8}=\frac{7}{8}
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]
$$

Linearity of Expectations

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]
$$

Linearity of Expectations

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\underset{\text { Linearity of Expectations }}{\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]}=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\underset{\text { Linearity of Expectations }}{\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]}=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
$$

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
$$

Linearity of Expectations

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

- For every clause $i=1,2, \ldots, m$, define a random variable:

$$
Y_{i}=\mathbf{1}\{\text { clause } i \text { is satisfied }\}
$$

- Since each literal (including its negation) appears at most once in clause i,

$$
\begin{aligned}
& & \mathbf{P}[\text { clause } i \text { is not satisfied }] & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& \Rightarrow & \mathbf{P}[\text { clause } i \text { is satisfied }] & =1-\frac{1}{8}=\frac{7}{8} \\
\Rightarrow & & \mathbf{E}\left[Y_{i}\right] & =\mathbf{P}\left[Y_{i}=1\right] \cdot 1=\frac{7}{8} .
\end{aligned}
$$

- Let $Y:=\sum_{i=1}^{m} Y_{i}$ be the number of satisfied clauses. Then,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{m} \frac{7}{8}=\frac{7}{8} \cdot m
$$

Linearity of Expectations

Interesting Implications

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$
Probabilistic Method: powerful tool to show existence of a non-obvious property.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$
Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary
Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary
For any instance of MAX-3-CNF, there exists an assigment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$
Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary
Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

$$
\text { One of the two conditional expectations is at least } \mathbf{E}[Y]
$$

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right] .
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$ 1
Algorithm: Assign x_{1} so that the conditional expectation is maximised and recurse.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right]
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$

Greedy-3-CNF (ϕ, n, m)
1: for $j=1,2, \ldots, n$
2: \quad Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1} \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
3: \quad Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=0\right]$
4: Let $x_{j}=v_{j}$ so that the conditional expectation is maximised
5: return the assignment $v_{1}, v_{2}, \ldots, v_{n}$

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7 / 8) \cdot m$ clauses is at least $1 /(8 m)$

$$
\mathbf{E}[Y]=\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=1\right]+\frac{1}{2} \cdot \mathbf{E}\left[Y \mid x_{1}=0\right]
$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$

Greedy-3-CNF (ϕ, n, m)
1: for $j=1,2, \ldots, n$
2: \quad Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1} \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
3: \quad Compute $\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=0\right]$
4: Let $x_{j}=v_{j}$ so that the conditional expectation is maximised
5: return the assignment $v_{1}, v_{2}, \ldots, v_{n}$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$\left(\underline{x_{1}} \vee x_{2} \forall \overline{x_{3}}\right) \wedge\left(\underline{x_{1}} \vee \overline{x_{2}} \forall \overline{x_{4}}\right) \wedge\left(\underline{x_{1}} \vee x_{2} \forall \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(x_{1} \vee x_{2} \forall \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\underline{x_{1}} \vee x_{3} \forall \bar{x}_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge\left(\overline{x_{2}} \forall \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \forall x_{3}\right) \wedge 1 \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee x_{4}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)

$$
1 \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \forall \overline{x_{4}}\right) \wedge 1 \wedge 1 \wedge\left(x_{3}\right) \wedge 1 \wedge 1 \wedge\left(\overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Run of Greedy-3-CNF (φ, n, m)
$1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 1 \wedge 0 \wedge 1 \wedge 1 \wedge 1$

Analysis of Greedy-3-CNF (ϕ, n, m)

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.
Theorem
GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E [Y | x _ { 1 } = v _ { 1 } , \ldots , x _ { j - 1 } = v _ { j - 1 } , x _ { j } = 1] = \sum _ { i = 1 } ^ { m } \mathbf { E } [Y _ { i } | x _ { 1 } = v _ { 1 } , \ldots , x _ { j - 1 } = v _ { j - 1 } , x _ { j } = 1]}$ computable in $O(1)$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right]
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$\geq \mathbf{E}[Y]$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses \checkmark
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$$
\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m
$$

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses \checkmark
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m$.

Analysis of Greedy-3-CNF (ϕ, n, m)

This algorithm is deterministic.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm \checkmark
- In iteration $j=1,2, \ldots, n, Y=Y(\phi)$ averages over 2^{n-j+1} assignments
- A smarter way is to use linearity of (conditional) expectations:
$\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]=\sum_{i=1}^{m} \mathbf{E}\left[Y_{i} \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=1\right]$
- Step 2: satisfies at least 7/8 • m clauses \checkmark
- Due to the greedy choice in each iteration $j=1,2, \ldots, n$,

$$
\begin{aligned}
\mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}, x_{j}=v_{j}\right] & \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-1}=v_{j-1}\right] \\
& \geq \mathbf{E}\left[Y \mid x_{1}=v_{1}, \ldots, x_{j-2}=v_{j-2}\right]
\end{aligned}
$$

$\geq \mathbf{E}[Y]=\frac{7}{8} \cdot m$.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any $\epsilon>0$, there is no polynomial time 8/7- - approximation algorithm of MAX3-CNF unless $\mathrm{P}=\mathrm{NP}$.

MAX-3-CNF: Concluding Remarks

Theorem 35.6
Given an instance of MAX-3-CNF with n variables $x_{1}, x_{2}, \ldots, x_{n}$ and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF (ϕ, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97)
For any $\epsilon>0$, there is no polynomial time $8 / 7-\epsilon$ approximation algorithm of MAX3-CNF unless $P=N P$.

> Essentially there is nothing smarter than just guessing!

Source of Image: Stefan Szeider, TU Vienna

So you said you have been studying the field of algorithms for MAX-3-SAT?

Source of Image: Stefan Szeider, TU Vienna

Yes, my research has finally concluded...

So you said you have been studying the field of algorithms for MAX-3-SAT?

Source of Image: Stefan Szeider, TU Vienna

Source of Image: Stefan Szeider, TU Vienna

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

Question: How can we deal with graphs that have negative weights?

The Weighted Vertex-Cover Problem

Vertex Cover Problem

The Weighted Vertex-Cover Problem

Vertex Cover Problem

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

The Weighted Vertex-Cover Problem

Vertex Cover Problem

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task

The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph $G=(V, E)$
- Goal: Find a minimum-weight subset $V^{\prime} \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V^{\prime}$ or $v \in V^{\prime}$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person

The Weighted Vertex-Cover Problem

Vertex Cover Problem

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

A Greedy Approach working for Unweighted Vertex Cover

```
Approx-VERTEX-CoVER ( \(G\) )
    \(C=\emptyset\)
    \(E^{\prime}=G . E\)
    while \(E^{\prime} \neq \emptyset\)
    let \((u, v)\) be an arbitrary edge of \(E^{\prime}\)
    \(C=C \cup\{u, v\}\)
    remove from \(E^{\prime}\) every edge incident on either \(u\) or \(v\)
return \(C\)
```


A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER(G)
    C=\emptyset
    E' = G.E
    while }\mp@subsup{E}{}{\prime}\not=
        let (u,v) be an arbitrary edge of E'
        C=C\cup{u,v}
        remove from E' every edge incident on either }u\mathrm{ or v
    return C
```


This algorithm is a 2-approximation for unweighted graphs!

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER(G)
    C=\emptyset
    E
    while }\mp@subsup{E}{}{\prime}\not=
        let (u,v) be an arbitrary edge of E'
        C=C\cup{u,\nu}
        remove from E}\mp@subsup{E}{}{\prime}\mathrm{ every edge incident on either }u\mathrm{ or v
    return C
```


A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER(G)
    C=\emptyset
    E'}=G.
    while }\mp@subsup{E}{}{\prime}\not=
            let (u,v) be an arbitrary edge of E'
            C=C\cup{u,v}
            remove from E' every edge incident on either }u\mathrm{ or v
    return C
```


Computed solution has weight 101

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER(G)
    C=\emptyset
    E'}=G.
    while }\mp@subsup{E}{}{\prime}\not=
        let (u,v) be an arbitrary edge of E'
        C=C\cup{u,v}
        remove from E' every edge incident on either }u\mathrm{ or v
    return C
```


Optimal solution has weight 4

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \\
x(v) & \in\{0,1\} & & \text { for each } v \in V
\end{aligned}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \\
x(v) & \in\{0,1\} & & \text { for each } v \in V
\end{aligned}
$$

Linear Program
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in E \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize $\quad \sum_{v \in V} w(v) x(v)$
subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \\
x(v) & \in\{0,1\} & & \text { for each } v \in V
\end{aligned}
$$

optimum is a lower bound on the optimal weight of a minimum weight-cover.
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in E \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize $\quad \sum_{v \in V} w(v) x(v)$
subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \\
x(v) & \in\{0,1\} & & \text { for each } v \in V
\end{aligned}
$$

optimum is a lower bound on the optimal weight of a minimum weight-cover.
minimize

$$
\sum_{v \in V} w(v) x(v)
$$

subject to

$$
\begin{aligned}
x(u)+x(v) & \geq 1 & & \text { for each }(u, v) \in E \\
x(v) & \in[0,1] & & \text { for each } v \in V
\end{aligned}
$$

Rounding Rule: if $x(v) \geq 1 / 2$ then round up, otherwise round down.

The Algorithm

Approx-Min-Weight-VC (G, w)
$1 C=\emptyset$
2 compute \bar{x}, an optimal solution to the linear program
3 for each $v \in V$
4 if $\bar{x}(v) \geq 1 / 2$
$5 \quad C=C \cup\{\nu\}$
6 return C

```
Approx-Min-Weight-VC \((G, w)\)
    \(C=\emptyset\)
compute \(\bar{x}\), an optimal solution to the linear program
for each \(v \in V\)
        if \(\bar{x}(\nu) \geq 1 / 2\)
            \(C=C \cup\{v\}\)
    return \(C\)
```

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

```
Approx-Min-Weight-VC( \(G, w)\)
\(1 C=\emptyset\)
2 compute \(\bar{x}\), an optimal solution to the linear program
3 for each \(v \in V\)
4 if \(\bar{x}(v) \geq 1 / 2\)
\(5 \quad C=C \cup\{v\}\)
6 return \(C\)
```

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.
is polynomial-time because we can solve the linear program in polynomial time

Example of Approx-Min-Weight-VC

fractional solution of LP
with weight $=5.5$

Example of Approx-Min-Weight-VC

Example of Approx-Min-Weight-VC

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
z^{*}
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v) \geq \sum_{v \in V: \bar{x}(v) \geq 1 / 2} w(v) \cdot \frac{1}{2}
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v) \geq \sum_{v \in V: \bar{x}(v) \geq 1 / 2} w(v) \cdot \frac{1}{2}=\frac{1}{2} w(C)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

$$
w\left(C^{*}\right) \geq z^{*}=\sum_{v \in V} w(v) \bar{x}(v) \geq \sum_{v \in V: \bar{x}(v) \geq 1 / 2} w(v) \cdot \frac{1}{2}=\frac{1}{2} w(C)
$$

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C^{*} be an optimal solution to the minimum-weight vertex cover problem
- Let z^{*} be the value of an optimal solution to the linear program, so

$$
z^{*} \leq w\left(C^{*}\right)
$$

- Step 1: The computed set C covers all vertices:
- Consider any edge $(u, v) \in E$ which imposes the constraint $x(u)+x(v) \geq 1$
\Rightarrow at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least $1 / 2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \leq 2 z^{*}$:

