
Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 2

Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [C] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [C]

C∗
,

C∗

E [C]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗

E[C]
≥ 1

Minimisation problem: E[C]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 3

Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [C] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [C]

C∗
,

C∗

E [C]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗

E[C]
≥ 1

Minimisation problem: E[C]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 3

Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [C] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [C]

C∗
,

C∗

E [C]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗

E[C]
≥ 1

Minimisation problem: E[C]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 3

Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [C] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [C]

C∗
,

C∗

E [C]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗

E[C]
≥ 1

Minimisation problem: E[C]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 3

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 4

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·

Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:

For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:

For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y]

= E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]

=
m∑

i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]

=
m∑

i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations

maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi]

=
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations

maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations

maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations

maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:
For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [clause i is not satisfied] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [clause i is satisfied] = 1−
1
8

=
7
8

⇒ E [Yi] = P [Yi = 1] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[m∑
i=1

Yi

]
=

m∑
i=1

E [Yi] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]

Probabilistic Method: powerful tool to
show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [Y]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof.

One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [Y] =
1
2
· E [Y | x1 = 1] +

1
2
· E [Y | x1 = 0] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [Y]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1]
3: Compute E [Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

Skip Analysis
9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

((((
(((x1 ∨ x2 ∨ x3) ∧((((

(((x1 ∨ x2 ∨ x4) ∧((((
(((x1 ∨ x2 ∨ x4) ∧ (��x1 ∨ x3 ∨ x4) ∧((((

(((x1 ∨ x2 ∨ x4) ∧ (��x1 ∨ x2 ∨ x3) ∧ (��x1 ∨ x2 ∨ x3) ∧ (��x1 ∨ x2 ∨ x3) ∧((((
(((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧ (x2 ∨ x3)∧1∧ (x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1∧1∧1∧ (x3 ∨ x4)∧1∧���
�(x2 ∨ x3)∧ (��x2 ∨ x3)∧���

�(x2 ∨ x3)∧1∧ (��x2 ∨ x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ (x3 ∨ x4) ∧ 1 ∧ 1 ∧ (x3) ∧ 1 ∧ 1 ∧ (x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧���
�(x3 ∨ x4) ∧ 1 ∧ 1 ∧ (��x3) ∧ 1 ∧ 1 ∧ (��x3 ∨ x4)

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF(ϕ,n,m)

1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∧ 1 ∧ 1 ∧ 1

????

0??? 1???

00?? 01?? 10?? 11??

000? 001? 010? 011? 100? 101? 110? 111?

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0??? 8.625 1??? 8.875

???? 8.75

10?? 9 11?? 8.75

100? 9 101? 9

1000

9

1001

9

1000

9

0110

10

0110

10

Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

???? 8.75

0??? 8.625 1??? 8.875

00?? 8 01?? 9.25 10?? 9 11?? 8.75

000? 8 001? 8 010? 9 011? 9.5 100? 9 101? 9 110? 9 111? 8.5

0000

8

0001

8

0010

9

0011

7

0100

9

0101

9

0111

9

1001

9

1010

9

1011

9

1100

9

1101

9

1110

8

1111

9

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

x4
=

0

x
4
=

1

Go to Analysis
9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments

A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm

X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]

≥ E
[

Y | x1 = v1, . . . , xj−2 = vj−2
]

...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]

...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y]

=
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X

Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:
Step 1: polynomial-time algorithm X

In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]
=

m∑
i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,
E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y] =
7
8
·m.

computable in O(1)

Go to Conclusion
9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

CEO

So you said you have been studying
the field of algorithms for MAX-3-SAT?

Yes, my research has
finally concluded...

...the best approach
is to randomly

guess a solution.

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

CEO

So you said you have been studying
the field of algorithms for MAX-3-SAT?

Yes, my research has
finally concluded...

...the best approach
is to randomly

guess a solution.

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

CEO

So you said you have been studying
the field of algorithms for MAX-3-SAT?

Yes, my research has
finally concluded...

...the best approach
is to randomly

guess a solution.

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

CEO

So you said you have been studying
the field of algorithms for MAX-3-SAT?

Yes, my research has
finally concluded...

...the best approach
is to randomly

guess a solution.

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 12

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

Question: How can we deal with graphs that have
negative weights?

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is (still) an NP-hard problem.

a

4
b

3

c

3

d

1

e

2

c

e

b

a

d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

bb c d e

This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101Optimal solution has weight 4

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

bb c d e

This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101Optimal solution has weight 4

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

bb c d e

This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101Optimal solution has weight 4

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

b

b c d e

This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101

Optimal solution has weight 4

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109

b c d

a e f g
(a)

b c d

a e f g
(b)

b c d

a e f g
(c)

b c d

a e f g
(d)

b c d

a e f g
(e)

b c d

a e f g
(f)

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its

a

100

b

1

c

1

d

1

e

1

a

b

b c d e

This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101

Optimal solution has weight 4

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 16

The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 16

The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

x(a) = x(b) = x(e) = 1
2 , x(d) = 1, x(c) = 0

4

3

c

3

d

2

a

b

e

d

1

fractional solution of LP
with weight = 5.5

x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = 0

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

rounded solution of LP
with weight = 10

a

4
b

3

c

3

d

1

e

2

b

d

e

optimal solution
with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

x(a) = x(b) = x(e) = 1
2 , x(d) = 1, x(c) = 0

4

3

c

3

d

2

a

b

e

d

1

fractional solution of LP
with weight = 5.5

x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = 0

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

rounded solution of LP
with weight = 10

a

4
b

3

c

3

d

1

e

2

b

d

e

optimal solution
with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

x(a) = x(b) = x(e) = 1
2 , x(d) = 1, x(c) = 0

4

3

c

3

d

2

a

b

e

d

1

fractional solution of LP
with weight = 5.5

x(a) = x(b) = x(e) = 1, x(d) = 1, x(c) = 0

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

rounded solution of LP
with weight = 10

a

4
b

3

c

3

d

1

e

2

b

d

e

optimal solution
with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem

Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑
v∈V

w(v)x(v)

≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:
Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1

⇒ at least one of x(u) and x(v) is at least 1/2⇒ C covers edge (u, v)
Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥ z∗ =
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).

4

3

c

3

d

2

a

b

e

d

1

a

4
b

3

c

3

d

1

e

2

a

b

d

e
Rounding

a

4
b

3

c

3

d

1

e

2

b

d

e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover

