Randomised Algorithms

Lecture 8: Solving a TSP Instance using Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction

Examples of TSP Instances

Demonstration

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

$3+2+1+3=9$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!

$2+4+1+1=8$

Special Instances

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality:

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w)
$$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality: $\left\{\begin{array}{l}\text { Even this version is } \\ \text { NP hard (Ex. 35.2-2) }\end{array}\right.$

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w) .
$$

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph $G=(V, E)$ with nonnegative integer cost $c(u, v)$ for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n ! possible tours!
Actually the right number is $(n-1)!/ 2$

3
$2+4+1+1=8$

Special Instances

- Metric TSP: costs satisfy triangle inequality: $\left\{\begin{array}{l}\text { Even this version is } \\ \text { NP hard (Ex. 35.2-2) }\end{array}\right.$

$$
\forall u, v, w \in V: \quad c(u, w) \leq c(u, v)+c(v, w) .
$$

- Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

Outline

Introduction

Examples of TSP Instances

Demonstration

33 city contest (1964)

532 cities (1987 [Padberg, Rinaldi])

13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*

G. DANTZIG, R. FULKERSON, and S. JOHNSON
The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

Abstract

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

TTHE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an n by n symmetric matrix $D=\left(d_{I J}\right)$, where $d_{I J}$ represents the 'distance' from I to J, arrange the points in a cyclic order in such a way that the sum of the $d_{I J}$ between consecutive points is minimal. Since there are only a finite number of possibilities (at most $1 / 2(n-1)!$) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of n. Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, ${ }^{3,7,8}$ little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be shown that a certain arrangement of 49 cities, one in each of the 48 states and Washington, D. C., is best, the $d_{I J}$ used representing road distances as taken from an atlas.

1. Manchester, N. H.
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5. Charleston, W. Va.
6. Louisville, Ky.
7. Indianapolis, Ind.
8. Chicago, Ill.
9. Milwaukee, Wis.
10. Minneapolis, Minn.
11. Pierre, S. D.
12. Bismarck, N. D.
13. Helena, Mont.
14. Seattle, Wash.
15. Portland, Ore.
16. Boise, Idaho
17. Salt Lake City, Utah
18. Carson City, Nev.
19. Los Angeles, Calif.
20. Phoenix, Ariz.
21. Santa Fe, N. M.
22. Denver, Colo.
23. Cheyenne, Wyo.
24. Omaha, Neb.
25. Des Moines, Iowa
26. Kansas City, Mo.
27. Topeka, Kans.
28. Oklahoma City, Okla.
29. Dallas, Tex.
30. Little Rock, Ark.
31. Memphis, Tenn.
32. Jackson, Miss.
33. New Orleans, La.
34. Birmingham, Ala.
35. Atlanta, Ga.
36. Jacksonville, Fla.
37. Columbia, S. C.
38. Raleigh, N. C.
39. Richmond, Va.
40. Washington, D. C.
41. Boston, Mass.
42. Portland, Me.
A. Baltimore, Md.
B. Wilmington, Del.
C. Philadelphia, Penn.
D. Newark, N. J.
E. New York, N. Y.
F. Hartford, Conn.
G. Providence, R. I.

Combinatorial Explosion

WolframAlpha

（42－1）！／2					
清 NATURAL LANGUAGE	$\int_{20}^{\pi}{ }^{\frac{\pi}{0}}$ MATH INPUT	罳EXTENDED KEYBOARD	\＃：Examples	亘UPLOAD	24 RANDOM
Input					
$\frac{1}{2}(42-1)!$					
Result					
16726263306581903554085031026720375832576000000000					
Scientific notation					
$1.6726263306581903554085031026720375832576 \times 10^{49}$					
Number name Full name					
16 quindecillion ．．．					
Number length					
50 decimal digits					
Alternative representations More					
$\frac{1}{2}(42-1)!=\frac{\Gamma(42)}{2}$					
$\frac{1}{2}(42-1)!=\frac{\Gamma(42,0)}{2}$					
$\frac{1}{2}(42-1)!=\frac{(1)_{41}}{2}$					

Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

Road Distances

TABLE I
Road Distances between Cities in Adjusted Units
The figures in the table are mileages between the two specified numbered cities, less 11, divided by 17 , and rounded to the nearest integer.
$\begin{array}{llll} & 49 & 21 & 15\end{array}$
$\begin{array}{lllll}1 & 62 & 21 & 20 & 17\end{array}$
$\begin{array}{lllll}60 & 16 & 17 & 18 & 6\end{array}$
$\begin{array}{lllllll}9 & 60 & 15 & 20 & 26 & 17 & 10\end{array}$
$\begin{array}{llllllll}66 & 20 & 25 & 3^{1} & 22 & 15 & 5\end{array}$
$\begin{array}{llllllllll}81 & 81 & 40 & 44 & 50 & 41 & 35 & 24 & 20\end{array}$
$\begin{array}{llllllllll}103 & 107 & 62 & 67 & 7^{2} & 63 & 57 & 4^{6} & 41 & 23\end{array}$
$\begin{array}{llllllllll}18 & 117 & 66 & 71 & 77 & 68 & 61 & 51 & 46 & 26 \\ 11\end{array}$

87 191 146 150 156 I42 137 130 125 105 90 81 41
I7O 120124 I3O II 5 IIO 104105 go 726434

$\begin{array}{llllllllllllllllllll}37 & 139 & 94 & 96 & 94 & 80 & 78 & 77 & 84 & 77 & 56 & 64 & 65 & 90 & 87 & 58 & 36 & 68 & 50 & 30\end{array}$
$\begin{array}{lllllllllllllllllllll}122 & 77 & 80 & 83 & 68 & 62 & 60 & 61 & 50 & 34 & 42 & 49 & 82 & 77 & 60 & 30 & 62 & 70 & 49 & 21 \\ 118 & 73 & 78 & 84 & 69 & 63 & 57 & 59 & 48 & 28 & 36 & 43 & 77 & 72 & 45 & 27 & 59 & 69 & 55 & 27\end{array}$

$\begin{array}{rrrlllllllllllllllllllllllll}1 & 93 & 48 & 50 & 48 & 34 & 32 & 33 & 36 & 30 & 34 & 45 & 77 & 115 & 110 & 83 & 63 & 97 & 91 & 72 & 44 & 32 & 36 & 9 & 15 & 3 & \\ 5 & 106 & 62 & 63 & 64 & 47 & 46 & 49 & 54 & 48 & 46 & 59 & 85 & 119 & 115 & 88 & 66 & 98 & 79 & 59 & 31 & 36 & 42 & 28 & 33 & 21 & 20\end{array}$

Hence this is an instance of the Metric TSP, but not Euclidean TSP.

TABLE I

Road Distances between Cities in Adjusted Units
The figures in the table are mileages between the two specified numbered cities, less 11, divided by 17 , and rounded to the nearest integer.
39 9
$\begin{array}{llll}50 & 49 & 21 & 15\end{array}$ rided by 17, and rounded to
$\begin{array}{llllll}61 & 62 & 21 & 20 & 17 & \\ 58 & 60 & 16 & 17 & 18 & 6\end{array}$
$\begin{array}{rrrrrrr}58 & 60 & 16 & 17 & 18 & 6 & \\ 59 & 60 & 15 & 20 & 26 & 17 & 10\end{array}$
$\begin{array}{llllllll}62 & 66 & 20 & 25 & 31 & 22 & 15 & 5\end{array}$
$\begin{array}{lllllllll}81 & 81 & 40 & 44 & 50 & 41 & 35 & 24 & 20\end{array}$
$\begin{array}{llllllllll}103 & 107 & 62 & 67 & 72 & 63 & 57 & 46 & 41 & 23\end{array}$
$\begin{array}{lllllllllll}108 & 117 & 66 & 71 & 77 & 68 & 61 & 51 & 46 & 26 & 11\end{array}$

145	149	104	108	114	106	99	88	84

$1871911461501561421371301251059^{\circ} 8141 \quad 410$
I6I 170 120124 I 30 II 5 IIO IO4 IO5 90
$\begin{array}{llllllllllllll}142 & 146 & \text { IOI } 104 & \text { III } & 97 & 91 & 85 & 86 & 75 & 51 & 59 & 29 & 53 & 48 \\ 21\end{array}$

$\begin{array}{lllllllllllllllllll}137 & 139 & 94 & 96 & 94 & 80 & 78 & 77 & 84 & 77 & 56 & 64 & 65 & 90 & 87 & 58 & 36 & 68 & 50 \\ 30\end{array}$
$\begin{array}{lllllllllllllllllllll}17 & 122 & 77 & 80 & 83 & 68 & 62 & 60 & 61 & 50 & 34 & 42 & 49 & 82 & 77 & 60 & 30 & 62 & 70 & 49 & 21\end{array}$

$\begin{array}{llllllllllllllllllllllll}85 & 89 & 44 & 48 & 53 & 41 & 34 & 28 & 29 & 22 & 23 & 35 & 69 & 105 & 102 & 74 & 56 & 88 & 99 & 81 & 54 & 32 & 29 & 8 \\ 77 & 80 & 36 & 40 & 46 & 34 & 27 & 19 & 21 & 14 & 29 & 40 & 77 & 114 & 111 & 84 & 64 & 96 & 107 & 87 & 60 & 40 & 37 & 8\end{array}$

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{array}{rc}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i) & =2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 & \text { for each } 1 \leq j<i \leq 42
\end{array}
$$

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{array}{rc}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i)=2 & \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 & \text { for each } 1 \leq j<i \leq 42
\end{array}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{array}{rc}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i)=2 & \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 & \text { for each } 1 \leq j<i \leq 42
\end{array}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Branch \& Bound to solve an Integer Program:

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{aligned}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i) & =2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) & \leq 1 \quad \text { for each } 1 \leq j<i \leq 42
\end{aligned}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Branch \& Bound to solve an Integer Program:

- As long as solution of LP has fractional $x(i, j) \in(0,1)$:

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{aligned}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i) & =2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) & \leq 1 \quad \text { for each } 1 \leq j<i \leq 42
\end{aligned}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Branch \& Bound to solve an Integer Program:

- As long as solution of LP has fractional $x(i, j) \in(0,1)$:
- Add $x(i, j)=0$ to the LP, solve it and recurse
- Add $x(i, j)=1$ to the LP, solve it and recurse
- Return best of these two solutions

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{aligned}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i) & =2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 & \text { for each } 1 \leq j<i \leq 42
\end{aligned}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Branch \& Bound to solve an Integer Program:

- As long as solution of LP has fractional $x(i, j) \in(0,1)$:
- Add $x(i, j)=0$ to the LP, solve it and recurse
- Add $x(i, j)=1$ to the LP, solve it and recurse
- Return best of these two solutions
- If solution of LP integral, return objective value

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable $x(i, j), i>j$, which is one if the tour includes edge $\{i, j\}$ (in either direction)
minimize

$$
\sum_{i=1}^{42} \sum_{j=1}^{i-1} c(i, j) x(i, j)
$$

subject to

$$
\begin{aligned}
\sum_{j<i} x(i, j)+\sum_{j>i} x(j, i) & =2 \quad \text { for each } 1 \leq i \leq 42 \\
0 \leq x(i, j) \leq 1 & \text { for each } 1 \leq j<i \leq 42
\end{aligned}
$$

Constraints $x(i, j) \in\{0,1\}$ are not allowed in a LP!

Branch \& Bound to solve an Integer Program:

- As long as solution of LP has fractional $x(i, j) \in(0,1)$:
- Add $x(i, j)=0$ to the LP, solve it and recurse
- Add $x(i, j)=1$ to the LP, solve it and recurse
- Return best of these two solutions

Bound-Step: If the best known integral solution so far is better than the solution of a LP, no need to explore branch further!

- If solution of LP integral, return objective value

Outline

Introduction

Examples of TSP Instances

Demonstration

In the following, there are a few different runs of the demo.

Iteration 1:

Objective value: $-641.000000,861$ variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42

Objective value: -641.000000 , 861 variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42
Objective value: -641.000000 , 861 variables, 945 constraints, 1809 iterations

Iteration 1: Eliminate Subtour 1, 2, 41, 42
Objective value: -641.000000 , 861 variables, 945 constraints, 1809 iterations

Iteration 2:

Objective value: -676.000000 , 861 variables, 946 constraints, 1802 iterations

Iteration 2: Eliminate Subtour 3 - 9

Objective value: - $676.000000,861$ variables, 946 constraints, 1802 iterations

Iteration 3:

Objective value: -681.000000 , 861 variables, 947 constraints, 1984 iterations

Iteration 3: Eliminate Subtour 24, 25, 26, 27
Objective value: -681.000000 , 861 variables, 947 constraints, 1984 iterations

Iteration 4:

Objective value: -682.500000 , 861 variables, 948 constraints, 1492 iterations

Iteration 4: Eliminate Cut 11 - 23

Objective value: -682.500000 , 861 variables, 948 constraints, 1492 iterations

Iteration 4: Eliminate Cut 11 - 23

Objective value: - $682.500000,861$ variables, 948 constraints, 1492 iterations

Tour has to include at least two edges between $S=\{11,12, \ldots, 23\}$ and $V \backslash S$:

$$
\sum_{i \in S, j \in V \backslash S} x(\max (i, j), \min (i, j)) \geq 2
$$

Iteration 5:

Objective value: -686.000000 , 861 variables, 949 constraints, 2446 iterations

Iteration 5: Eliminate Subtour 13 - 23

Objective value: -686.000000 , 861 variables, 949 constraints, 2446 iterations

Iteration 6:

Objective value: -694.500000 , 861 variables, 950 constraints, 1690 iterations

Iteration 6: Eliminate Cut 13-17

Objective value: -694.500000 , 861 variables, 950 constraints, 1690 iterations

Iteration 7:

Objective value: - 697.000000, 861 variables, 951 constraints, 2212 iterations

Iteration 7: Branch 1a $x_{18,15}=0$
Objective value: - $697.000000,861$ variables, 951 constraints, 2212 iterations

Iteration 8:

Objective value: $-698.000000,861$ variables, 952 constraints, 1878 iterations

Iteration 8: Branch 2a $x_{17,13}=0$
Objective value: - $698.000000,861$ variables, 952 constraints, 1878 iterations

Iteration 9:

Objective value: -699.000000 , 861 variables, 953 constraints, 2281 iterations

Iteration 9: Branch 2b $x_{17,13}=1$
Objective value: -699.000000 , 861 variables, 953 constraints, 2281 iterations

Iteration 10:

Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations

Iteration 10:

Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations

Iteration 10: Branch 1b $x_{18,15}=1$
Objective value: -700.000000 , 861 variables, 954 constraints, 2398 iterations

Iteration 11:

Objective value: -701.000000, 861 variables, 953 constraints, 2506 iterations

Iteration 11: Branch \& Bound terminates

Objective value: -701.000000 , 861 variables, 953 constraints, 2506 iterations

Branch \& Bound Overview

1: LP solution 641

Branch \& Bound Overview

1: LP solution 641
Eliminate Subtour 1, 2, 41, 42

Branch \& Bound Overview

$$
\begin{aligned}
& \hline \text { 1: LP solution } 641 \\
& \begin{array}{l}
\text { Eliminate Subtour } 1,2,41,42 \\
\text { 2: LP solution } 676
\end{array}
\end{aligned}
$$

Branch \& Bound Overview

$$
\begin{aligned}
& \hline \text { 1: LP solution } 641 \\
& \begin{array}{|l|l|}
\hline \text { 2: LP solution } 676 \\
\hline & \text { Eliminate Subtour } 3-9
\end{array}
\end{aligned}
$$

Branch \& Bound Overview

$$
\begin{aligned}
& \hline \text { 1: LP solution } 641 \\
& \begin{array}{|l|l|}
\hline \text { 2: LP solution } 676 \\
\hline & \text { Eliminate Subtour } 3-9
\end{array} \\
& \text { 3: LP solution } 681
\end{aligned}
$$

Branch \& Bound Overview

Iteration 7: Objective 697

Iteration 7: Objective 697

Solving Progress (Alternative Branch 1)

Solving Progress (Alternative Branch 1)

Alternative Branch 1: $x_{18,15}$, Objective 697

Alternative Branch 1: $x_{18,15}$, Objective 697

Alternative Branch 1a: $x_{18,15}=1$, Objective 701 (Valid Tour)

Alternative Branch 1b: $x_{18,15}=0$, Objective 698

Solving Progress (Alternative Branch 1)

Solving Progress (Alternative Branch 2)

1: LP solution 641	
	\downarrow Eliminate Subtour 1, 2, 41, 42
2: LP solution 676	
	\downarrow Eliminate Subtour 3-9
3: LP solution 681	
	Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5	
	Eliminate Cut 13-17
5: LP solution 686	
	\downarrow Eliminate Subtour 10, 11, 12
6: LP solution 686	
	Eliminate Subtour 13-23
7: LP solution 688	
	Eliminate Subtour 11 - 23
	8: LP solution 697

Solving Progress (Alternative Branch 2)

Alternative Branch 2: $x_{27,22}$, Objective 697

Alternative Branch 2: $x_{27,22}$, Objective 697

Alternative Branch 2a: $x_{27,22}=1$, Objective 708 (Valid tour)

Alternative Branch 2b: $x_{27,22}=0$, Objective 697.75

Solving Progress (Alternative Branch 2)

Solving Progress (Alternative Branch 3)

1: LP solution 641	
	\downarrow Eliminate Subtour 1, 2, 41, 42
2: LP solution 676	
	Eliminate Subtour 3-9
3: LP solution 681	
	\downarrow Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5	
	\downarrow Eliminate Cut 13-17
5: LP solution 686	
	Eliminate Subtour 10, 11, 12
6: LP solution 686	
	\downarrow Eliminate Subtour 13-23
7: LP solution 688	
	\downarrow Eliminate Subtour 11 - 23
	8: LP solution 697

Solving Progress (Alternative Branch 3)

Alternative Branch 3: $x_{27,24}$, Objective 697

Alternative Branch 3: $x_{27,24}$, Objective 697

Alternative Branch 3a: $x_{27,24}=1$, Objective 697.75

Alternative Branch 3b: $x_{27,24}=0$, Objective 698

Solving Progress (Alternative Branch 3)

Solving Progress (Alternative Branch 3)

Conclusion (1/2)

- How can one generate these constraints automatically?

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs
- Why don't we add all possible Subtour Eliminiation constraints to the LP?

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs
- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs
- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS?

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs
- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS? BFS may be more attractive, even though it might need more memory.

Conclusion (1/2)

- How can one generate these constraints automatically? Subtour Elimination: Finding Connected Components Small Cuts: Finding the Minimum Cut in Weighted Graphs
- Why don't we add all possible Subtour Eliminiation constraints to the LP? There are exponentially many of them!
- Should the search tree be explored by BFS or DFS? BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one might pose of a theoretical nature concerning the traveling-salesman problem; however, we hope that the feasibility of attacking problems involving a moderate number of points has been successfully demonstrated, and that perhaps some of the ideas can be used in problems of similar nature.

Conclusion (2/2)

- Eliminate Subtour 1,2,41, 42
- Eliminate Subtour 3-9
- Eliminate Subtour 10,11,12
- Eliminate Subtour 11-23
- Eliminate Subtour 13-23
- Eliminate Cut 13-17
- Eliminate Subtour 24, 25, 26, 27

Conclusion (2/2)

- Eliminate Subtour 1, 2, 41, 42
- Eliminate Subtour 3-9
- Eliminate Subtour 10, 11, 12
- Eliminate Subtour 11 - 23
- Eliminate Subtour 13-23
- Eliminate Cut 13 - 17
- Eliminate Subtour 24, 25, 26, 27

THE 49-CITY PROBLEM*

The optimal tour \bar{x} is shown in Fig. 16. The proof that it is optimal is given in Fig. 17. To make the correspondence between the latter and its programming problem clear, we will write down in addition to 42 relations in non-negative variables (2), a set of 25 relations which suffice to prove that $D(x)$ is a minimum for \bar{x}. We distinguish the following subsets of the 42 cities:

$$
\begin{aligned}
& S_{1}=\{1,2,41,42\} \\
& S_{2}=\{3,4, \cdots, 9\} \\
& S_{3}=\{1,2, \cdots, 9,29,30, \cdots, 42\} \\
& S_{4}=\{11,12, \cdots, 23\}
\end{aligned}
$$

$$
\begin{aligned}
& S_{5}=\{13,14, \cdots, 23\} \\
& S_{6}=\{13,14,15,16,17\} \\
& S_{7}=\{24,25,26,27\} .
\end{aligned}
$$

CPLEX

$\leftarrow \rightarrow$ C en.wikiped			t
WIKIPEDIA The Free Encyclopedia	CPLEX		
Main page Contents Featured content Current events	From Wikipedia, the free encyclopedia		
Random article Donate to Wikipedia Wikipedia store	IBM ILOG CPLEX Optimization Studio (often informally referred to simply as CPLEX) is an optimization software package. In 2004, the work on CPLEX earned the first INFORMS Impact Prize.	Developer(s) Stable release Development s	$\begin{aligned} & \text { IBM } \\ & 12.6 \end{aligned}$ Active
Interaction Help About Wikipedia Community portal Recent changes Contact page	The CPLEX Optimizer was named for the simplex method as implemented in the C programming language, although today it also supports other types of mathematical optimization and offers interfaces other than just C. It was originally developed by Robert E. Bixby and was offered commercially starting in 1988 by	Type License Website	Technical computing Proprietary ibm.com/software /products /ibmilogcpleoptistud/
Tools What links here Related changes Upload file Special pages	CPLEX Optimization Inc., which was acquired by ILOG in IBM in January 2009. ${ }^{[1]}$ CPLEX continues to be actively de The IBM ILOG CPLEX Optimizer solves integer programm programming problems using either primal or dual variants	997; ILOG wa veloped under ing problems, of the simplex	sequently acquired by rge ${ }^{[2]}$ linear od or the barrier interior

```
Welcome to IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0
    with Simplex, Mixed Integer & Barrier Optimizers
5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55 5655-Y21
Copyright IBM Corp. 1988, 2014. All Rights Reserved.
Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.
CPLEX> read tsp.lp
Problem 'tsp.lp' read.
Read time = 0.00 sec. (0.06 ticks)
CPLEX> primopt
Tried aggregator 1 time.
LP Presolve eliminated 1 rows and 1 columns.
Reduced LP has 49 rows, }860\mathrm{ columns, and }2483\mathrm{ nonzeros.
Presolve time = 0.00 sec. (0.36 ticks)
Iteration log . . .
Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 1510.000000
Iteration: 90 Objective = 923.000000
Iteration: 155 Objective = 711.000000
Primal simplex - Optimal: Objective = 6.9900000000e+02
Solution time = 0.00 sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)
CPLEX>
```

CPLEX> display solution variables -
Variable Name Solution Value
x_2_1 1.000000
$\times _42$ _1 1.000000
x_3_2 1.000000
x_4_3 1.000000
x_5_4 1.000000
$\times _6$ _5 1.000000
x_7_6
1.000000
\times ․ 1.71 .000000
x_9_8
x_10_9
x_11_10
x_12_11
x_13_12
x_14_13
x_15_14
x_16_15
x_17_16
x_18_17
x_19_18
x_20_19
x_21_20
x_22_21
x_23_22
x_24_23
x_25_24
x_26_25
x_27_26
x_28_27
x_29_28
x_30_29
x_31_30
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
x_32_31
1.000000
$\begin{array}{ll}\times \text { x_33_32 } & 1.000000 \\ \times _34 _33 & 1.000000\end{array}$
x_35_34
1.000000
x_36_35
1.000000
x_37_36
1.000000
$\begin{array}{ll}\mathrm{x}-38 \text { _37 } & 1.000000\end{array}$
x_39_38
1.000000
x_40_39
1.000000
x_41_40
1.000000
x_42_41
1.000000

All other variables in the range $1-861$ are 0.

