Randomised Algorithms
Lecture 6: Linear Programming: Introduction

Thomas Sauerwald (tms41@cam.ac.uk)
Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms
- **linear programming** is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and **integer programming** to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)
Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms
What are Linear Programs?

Linear Programming (informal definition)

- maximise or minimise an objective, given limited resources (competing constraint)
- constraints are specified as (in)equalities
- objective function and constraints are linear
A Simple Example of a Linear Optimisation Problem

- Laptop

Laptop
selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

You have a daily supply of:

glass: 20 units

copper: 10 units

rare-earth elements: 14 units

(and enough of everything else...)

How to maximise your daily earnings?
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
(and enough of everything else...)

How to maximise your daily earnings?
A Simple Example of a Linear Optimisation Problem

- Laptop
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units

You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units

(and enough of everything else...)

How to maximise your daily earnings?
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units

(and enough of everything else...)

How to maximise your daily earnings?
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

You have a daily supply of:
- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
(and enough of everything else...)
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- You have a **daily supply of**:
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- You have a **daily supply** of:
 - glass: 20 units
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- **You have a daily supply of:**
 - glass: 20 units
 - copper: 10 units

Laptop selling price to retailer: 1,000 GBP

Glass: 4 units

Copper: 2 units

Rare-earth elements: 1 unit

Smartphone selling price to retailer: 1,000 GBP

Glass: 1 unit

Copper: 1 unit

Rare-earth elements: 2 units

You have a daily supply of:

Glass: 20 units

Copper: 10 units
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- **You have a daily supply of:**
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- **You have a daily supply of:**
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)
A Simple Example of a Linear Optimisation Problem

- **Laptop**
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

- **Smartphone**
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units

- You have a **daily supply** of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)

How to maximise your daily earnings?
The Linear Program

Linear Program for the Production Problem

maximise \[x_1 + x_2 \]
subject to
\[4x_1 + x_2 \leq 20 \]
\[2x_1 + x_2 \leq 10 \]
\[x_1 + 2x_2 \leq 14 \]
\[x_1, x_2 \geq 0 \]
The Linear Program

Linear Program for the Production Problem

maximise \(x_1 + x_2 \)
subject to
\[
4x_1 + x_2 \leq 20 \\
2x_1 + x_2 \leq 10 \\
x_1 + 2x_2 \leq 14 \\
x_1, x_2 \geq 0
\]

The solution of this linear program yields the optimal production schedule.
The Linear Program

Linear Program for the Production Problem

maximise \[x_1 + x_2 \]
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program
The Linear Program

Linear Program for the Production Problem

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$

$2x_1 + x_2 \leq 10$

$x_1 + 2x_2 \leq 14$

$x_1, x_2 \geq 0$

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program

- Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n, a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$
The Linear Program

Linear Program for the Production Problem

maximise \(x_1 + x_2 \)
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program

- Given \(a_1, a_2, \ldots, a_n \) and a set of variables \(x_1, x_2, \ldots, x_n \), a linear function \(f \) is defined by

\[
f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.
\]

- Linear Equality: \(f(x_1, x_2, \ldots, x_n) = b \)
- Linear Inequality: \(f(x_1, x_2, \ldots, x_n) \leq b \)
The Linear Program

Linear Program for the Production Problem

maximise \[x_1 + x_2 \]
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program

- Given \(a_1, a_2, \ldots, a_n \) and a set of variables \(x_1, x_2, \ldots, x_n \), a linear function \(f \) is defined by
\[
 f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.
\]

- Linear Equality: \(f(x_1, x_2, \ldots, x_n) = b \)
- Linear Inequality: \(f(x_1, x_2, \ldots, x_n) \leq b \)

Linear Constraints
The Linear Program

Linear Program for the Production Problem

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program

- Given \(a_1, a_2, \ldots, a_n \) and a set of variables \(x_1, x_2, \ldots, x_n \), a linear function \(f \) is defined by

\[
f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.
\]

- **Linear Equality**: \(f(x_1, x_2, \ldots, x_n) = b \)

- **Linear Inequality**: \(f(x_1, x_2, \ldots, x_n) \geq b \)

- **Linear Programming Problem**: either minimise or maximise a linear function subject to a set of linear constraints
Finding the Optimal Production Schedule

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$
$2x_1 + x_2 \leq 10$
$x_1 + 2x_2 \leq 14$
$x_1, x_2 \geq 0$
Finding the Optimal Production Schedule

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$

$2x_1 + x_2 \leq 10$

$x_1 + 2x_2 \leq 14$

$x_1, x_2 \geq 0$

Any setting of x_1 and x_2 satisfying all constraints is a feasible solution.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\(4x_1 + x_2 \leq 20 \)
\(2x_1 + x_2 \leq 10 \)
\(x_1 + 2x_2 \leq 14 \)
\(x_1, x_2 \geq 0 \)

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)
subject to
\[\begin{align*}
4x_1 + x_2 &\leq 20 \\
2x_1 + x_2 &\leq 10 \\
x_1 + 2x_2 &\leq 14 \\
x_1, x_2 &\geq 0
\end{align*}\]

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution
Finding the Optimal Production Schedule

maximise \quad x_1 + x_2

subject to

4x_1 + x_2 \leq 20
2x_1 + x_2 \leq 10
x_1 + 2x_2 \leq 14
x_1, x_2 \geq 0

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 + x_2 &\leq 20 \\
2x_1 + x_2 &\leq 10 \\
x_1 + 2x_2 &\leq 14 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Any setting of \(x_1 \) and \(x_2 \) satisfying all constraints is a feasible solution.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[4x_1 + x_2 \leq 20 \]
\[2x_1 + x_2 \leq 10 \]
\[x_1 + 2x_2 \leq 14 \]
\[x_1, x_2 \geq 0 \]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$

$2x_1 + x_2 \leq 10$

$x_1 + 2x_2 \leq 14$

$x_1, x_2 \geq 0$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.
Finding the Optimal Production Schedule

maximise

\(x_1 + x_2 \)

subject to

\(4x_1 + x_2 \leq 20 \)
\(2x_1 + x_2 \leq 10 \)
\(x_1 + 2x_2 \leq 14 \)
\(x_1, x_2 \geq 0 \)

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise \[x_1 + x_2 \]
subject to
\[4x_1 + x_2 \leq 20 \]
\[2x_1 + x_2 \leq 10 \]
\[x_1 + 2x_2 \leq 14 \]
\[x_1, x_2 \geq 0 \]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise \[x_1 + x_2 \]
subject to
\[4x_1 + x_2 \leq 20 \]
\[2x_1 + x_2 \leq 10 \]
\[x_1 + 2x_2 \leq 14 \]
\[x_1, x_2 \geq 0 \]

Graphical Procedure: Move the line \[x_1 + x_2 = z \] as far up as possible.
Finding the Optimal Production Schedule

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$
$2x_1 + x_2 \leq 10$
$x_1 + 2x_2 \leq 14$

$x_1, x_2 \geq 0$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.
Finding the Optimal Production Schedule

maximise \[x_1 + x_2 \]
subject to
\[
\begin{align*}
4x_1 + x_2 &\leq 20 \\
2x_1 + x_2 &\leq 10 \\
x_1 + 2x_2 &\leq 14 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise $x_1 + x_2$

subject to

$4x_1 + x_2 \leq 20$
$2x_1 + x_2 \leq 10$
$x_1 + 2x_2 \leq 14$
$x_1, x_2 \geq 0$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.
Finding the Optimal Production Schedule

maximise \[x_1 + x_2 \]
subject to
\[
\begin{align*}
4x_1 + x_2 &\leq 20 \\
2x_1 + x_2 &\leq 10 \\
x_1 + 2x_2 &\leq 14 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Graphical Procedure: Move the line \[x_1 + x_2 = z \] as far up as possible.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)
subject to
\[
\begin{align*}
4x_1 + x_2 & \leq 20 \\
2x_1 + x_2 & \leq 10 \\
x_1 + 2x_2 & \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)

subject to

\[
\begin{align*}
4x_1 & + x_2 \leq 20 \\
2x_1 & + x_2 \leq 10 \\
x_1 & + 2x_2 \leq 14 \\
x_1, x_2 & \geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.

Question: Which aspect did we ignore in the formulation of the linear program?
Finding the Optimal Production Schedule

maximise \(x_1 + x_2 \)
subject to

\[
\begin{align*}
4x_1 + x_2 &\leq 20 \\
2x_1 + x_2 &\leq 10 \\
x_1 + 2x_2 &\leq 14 \\
x_1, x_2 &\geq 0
\end{align*}
\]

Graphical Procedure: Move the line \(x_1 + x_2 = z \) as far up as possible.

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.
Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms
Shortest Paths

Single-Pair Shortest Path Problem

- **Given:** directed graph $G = (V, E)$ with edge weights $w : E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
Shortest Paths

Single-Pair Shortest Path Problem

- **Given:** directed graph $G = (V, E)$ with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- **Goal:** Find a path of minimum weight from s to t in G
Shortest Paths

Single-Pair Shortest Path Problem

- **Given**: directed graph $G = (V, E)$ with edge weights $w : E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- **Goal**: Find a path of minimum weight from s to t in G

$p = (v_0 = s, v_1, \ldots, v_k = t)$ such that $w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k)$ is minimised.
Shortest Paths

Single-Pair Shortest Path Problem

- **Given**: directed graph \(G = (V, E) \) with edge weights \(w : E \rightarrow \mathbb{R} \), pair of vertices \(s, t \in V \)
- **Goal**: Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[p = (v_0 = s, v_1, \ldots, v_k = t) \] such that \(w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k) \) is minimised.
Shortest Paths

Single-Pair Shortest Path Problem

- **Given:** directed graph $G = (V, E)$ with edge weights $w : E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- **Goal:** Find a path of minimum weight from s to t in G

$p = (v_0 = s, v_1, \ldots, v_k = t)$ such that $w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k)$ is minimised.

Exercise: Translate the SPSP problem into a linear program!
Shortest Paths

Single-Pair Shortest Path Problem

- **Given:** directed graph \(G = (V, E) \) with edge weights \(w : E \to \mathbb{R} \), pair of vertices \(s, t \in V \)
- **Goal:** Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[
p = (v_0 = s, v_1, \ldots, v_k = t) \text{ such that } w(p) = \sum_{i=1}^k w(v_{k-1}, v_k) \text{ is minimised.}
\]

Shortest Paths as LP

subject to
Shortest Paths

Single-Pair Shortest Path Problem

- **Given:** directed graph \(G = (V, E) \) with edge weights \(w : E \to \mathbb{R} \), pair of vertices \(s, t \in V \)
- **Goal:** Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[p = (v_0 = s, v_1, \ldots, v_k = t) \] such that \(w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k) \) is minimised.

Shortest Paths as LP

subject to

\[
\begin{align*}
d_v &\leq d_u + w(u, v) \quad \text{for each edge } (u, v) \in E, \\
d_s &= 0.
\end{align*}
\]
Shortest Paths

Single-Pair Shortest Path Problem

- **Given**: directed graph \(G = (V, E) \) with edge weights \(w : E \to \mathbb{R} \), pair of vertices \(s, t \in V \)
- **Goal**: Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[
p = (v_0 = s, v_1, \ldots, v_k = t) \quad \text{such that} \quad w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k) \quad \text{is minimised.}
\]

Shortest Paths as LP

Maximise \(d_t \)

Subject to

\[
\begin{align*}
 d_v & \leq d_u + w(u, v) \quad \text{for each edge} \ (u, v) \in E, \\
 d_s & = 0.
\end{align*}
\]
Shortest Paths

- **Single-Pair Shortest Path Problem**
 - **Given:** directed graph \(G = (V, E) \) with edge weights \(w : E \to \mathbb{R} \), pair of vertices \(s, t \in V \)
 - **Goal:** Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[
p = (v_0 = s, v_1, \ldots, v_k = t) \text{ such that } w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k) \text{ is minimised.}
\]

- **Shortest Paths as LP**

\[
\begin{align*}
\text{maximise} & \quad d_t \\
\text{subject to} & \quad d_v \leq d_u + w(u, v) \quad \text{for each edge } (u, v) \in E, \\
& \quad d_s = 0.
\end{align*}
\]

this is a maximisation problem!
Shortest Paths

- **Given:** directed graph $G = (V, E)$ with edge weights $w : E \rightarrow \mathbb{R}$, pair of vertices $s, t \in V$
- **Goal:** Find a path of minimum weight from s to t in G

$p = (v_0 = s, v_1, \ldots, v_k = t)$ such that $w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as LP

$maximise \quad d_t$

$subject to$

$\quad d_v \leq d_u + w(u, v)$ for each edge $(u, v) \in E,$

$d_s = 0.$

Recall: When **Bellman-Ford** terminates, all these inequalities are satisfied.

This is a maximisation problem!
Shortest Paths

Single-Pair Shortest Path Problem

- **Given**: directed graph \(G = (V, E) \) with edge weights \(w : E \rightarrow \mathbb{R} \), pair of vertices \(s, t \in V \)
- **Goal**: Find a path of minimum weight from \(s \) to \(t \) in \(G \)

\[p = (v_0 = s, v_1, \ldots, v_k = t) \] such that \(w(p) = \sum_{i=1}^{k} w(v_{k-1}, v_k) \) is minimised.

Shortest Paths as LP

maximise \(d_t \)

subject to

\[
\begin{align*}
 d_v &\leq d_u + w(u, v) & \text{for each edge } (u, v) \in E, \\
 d_s &= 0.
\end{align*}
\]

this is a maximisation problem!

Recall: When **Bellman-Ford** terminates, all these inequalities are satisfied.

Solution \(\bar{d} \) satisfies

\[
\bar{d}_v = \min_{u: (u, v) \in E} \{ \bar{d}_u + w(u, v) \}
\]
Maximum Flow

- **Maximum Flow Problem**

 - **Given:** directed graph $G = (V, E)$ with edge capacities $c : E \rightarrow \mathbb{R}^+$ (recall $c(u, v) = 0$ if $(u, v) \notin E$), pair of vertices $s, t \in V$
Maximum Flow

Given: directed graph $G = (V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}^+$
(recall $c(u, v) = 0$ if $(u, v) \notin E$), pair of vertices $s, t \in V$
Maximum Flow

Maximum Flow Problem

- **Given**: directed graph \(G = (V, E) \) with edge capacities \(c : E \to \mathbb{R}^+ \) (recall \(c(u, v) = 0 \) if \((u, v) \notin E\)), pair of vertices \(s, t \in V \)
- **Goal**: Find a maximum flow \(f : V \times V \to \mathbb{R} \) from \(s \) to \(t \) which satisfies the capacity constraints and flow conservation

Maximum Flow as LP

6. Linear Programming © T. Sauerwald

Formulating Problems as Linear Programs

11
Maximum Flow

- **Given**: directed graph \(G = (V, E) \) with edge capacities \(c : E \to \mathbb{R}^+ \) (recall \(c(u, v) = 0 \) if \((u, v) \notin E \)), pair of vertices \(s, t \in V \)
- **Goal**: Find a maximum flow \(f : V \times V \to \mathbb{R} \) from \(s \) to \(t \) which satisfies the capacity constraints and flow conservation

\[
\begin{align*}
\text{maximise} & \quad \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} \\
\text{subject to} & \quad f_{uv} \leq c(u, v) \quad \text{for each } u, v \in V \\
& \quad \sum_{v \in V} f_{vu} = \sum_{v \in V} f_{uv} \quad \text{for each } u \in V \setminus \{s, t\} \\
& \quad f_{uv} \geq 0 \quad \text{for each } u, v \in V.
\end{align*}
\]

Maximum Flow as LP

[Diagram of a directed graph with capacities and flows labeled, and the total flow \(|f| = 19 \).]
Maximum Flow

- **Given:** directed graph $G = (V, E)$ with edge capacities $c : E \rightarrow \mathbb{R}^+$ (recall $c(u, v) = 0$ if $(u, v) \notin E$), pair of vertices $s, t \in V$
- **Goal:** Find a maximum flow $f : V \times V \rightarrow \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow Problem

- **Objective:**
 \[
 \text{maximise} \quad \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}
 \]
- **Constraints:**
 \[
 f_{uv} \leq c(u, v) \quad \text{for each } u, v \in V,
 \]
 \[
 \sum_{v \in V} f_{vu} = \sum_{v \in V} f_{uv} \quad \text{for each } u \in V \setminus \{s, t\},
 \]
 \[
 f_{uv} \geq 0 \quad \text{for each } u, v \in V.
 \]
Minimum-Cost Flow

Given: directed graph \(G = (V, E) \) with capacities \(c : E \to \mathbb{R}^+ \), pair of vertices \(s, t \in V \), cost function \(a : E \to \mathbb{R}^+ \), flow demand of \(d \) units. Goal: Find a flow \(f : V \times V \to \mathbb{R} \) from \(s \) to \(t \) with \(|f| = d \) while minimizing the total cost \(\sum_{(u, v) \in E} a(u, v)f_{uv} \) incurred by the flow.

Minimum-Cost-Flow Problem

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by \(c \) and the costs by \(a \). Vertex \(s \) is the source and vertex \(t \) is the sink, and we wish to send 4 units of flow from \(s \) to \(t \). (b) As a solution to the minimum-cost flow problem in which 4 units of flow are sent from \(s \) to \(t \). For each edge, the flow and capacity are written as flow/capacity.

Extension of the Maximum Flow Problem

Optimal Solution with total cost:

\[
\sum_{(u, v) \in E} a(u, v)f_{uv} = (2 \cdot 2) + (5 \cdot 2) + (3 \cdot 1) + (7 \cdot 1) + (1 \cdot 3) = 27
\]
Minimum-Cost Flow

- **Given:** directed graph $G = (V, E)$ with capacities $c : E \rightarrow \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \rightarrow \mathbb{R}^+$, flow demand of d units

Optimal Solution with total cost:

$$\sum_{(u, v) \in E} a(u, v)f_{uv} = (2 \cdot 2) + (5 \cdot 2) + (3 \cdot 1) + (7 \cdot 1) + (1 \cdot 3) = 27$$
Minimum-Cost Flow

Minimum-Cost-Flow Problem

- **Given:** directed graph \(G = (V, E) \) with capacities \(c : E \rightarrow \mathbb{R}^+ \), pair of vertices \(s, t \in V \), cost function \(a : E \rightarrow \mathbb{R}^+ \), flow demand of \(d \) units

- **Goal:** Find a flow \(f : V \times V \rightarrow \mathbb{R} \) from \(s \) to \(t \) with \(|f| = d \) while minimising the total cost \(\sum_{(u,v) \in E} a(u, v)f_{uv} \) incurred by the flow.
Minimum-Cost Flow

Given: directed graph \(G = (V, E) \) with capacities \(c : E \rightarrow \mathbb{R}^+ \), pair of vertices \(s, t \in V \), cost function \(a : E \rightarrow \mathbb{R}^+ \), flow demand of \(d \) units

Goal: Find a flow \(f : V \times V \rightarrow \mathbb{R} \) from \(s \) to \(t \) with \(|f| = d \) while minimising the total cost \(\sum_{(u, v) \in E} a(u, v) f_{uv} \) incurred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by \(c \) and the costs by \(a \). Vertex \(s \) is the source and vertex \(t \) is the sink, and we wish to send 4 units of flow from \(s \) to \(t \). (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from \(s \) to \(t \). For each edge, the flow and capacity are written as flow/capacity.
Minimum-Cost Flow

Minimum-Cost-Flow Problem

- **Given:** directed graph $G = (V, E)$ with capacities $c : E \rightarrow \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \rightarrow \mathbb{R}^+$, flow demand of d units

- **Goal:** Find a flow $f : V \times V \rightarrow \mathbb{R}$ from s to t with $|f| = d$ while minimising the total cost $\sum_{(u,v) \in E} a(u, v)f_{uv}$ incurred by the flow.

Optimal Solution with total cost:

$\sum_{(u,v) \in E} a(u, v)f_{uv} = (2 \cdot 2) + (5 \cdot 2) + (3 \cdot 1) + (7 \cdot 1) + (1 \cdot 3) = 27$

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.
Minimum Cost Flow as a LP

\[
\begin{align*}
\text{minimise} & \quad \sum_{(u,v) \in E} a(u, v) f_{uv} \\
\text{subject to} & \quad f_{uv} \leq c(u, v) \quad \text{for } u, v \in V, \\
& \quad \sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} = 0 \quad \text{for } u \in V \setminus \{s, t\}, \\
& \quad \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} = d, \\
& \quad f_{uv} \geq 0 \quad \text{for } u, v \in V.
\end{align*}
\]
Minimum Cost Flow as a LP

\[\text{minimise} \quad \sum_{(u,v) \in E} a(u, v) f_{uv} \]
\[\text{subject to} \]
\[f_{uv} \leq c(u, v) \quad \text{for } u, v \in V, \]
\[\sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} = 0 \quad \text{for } u \in V \setminus \{s, t\}, \]
\[\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} = d, \]
\[f_{uv} \geq 0 \quad \text{for } u, v \in V. \]

Real power of Linear Programming comes from the ability to solve new problems!
Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms
Standard and Slack Forms

Standard Form

maximise \[\sum_{j=1}^{n} c_j x_j \]

subject to \[\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad \text{for } i = 1, 2, \ldots, m \]

\[x_j \geq 0 \quad \text{for } j = 1, 2, \ldots, n \]
Standard and Slack Forms

Standard Form

maximise \[\sum_{j=1}^{n} c_j x_j \]

subject to

\[\sum_{j=1}^{n} a_{ij} x_j \leq b_i \] for \(i = 1, 2, \ldots, m \)

\[x_j \geq 0 \] for \(j = 1, 2, \ldots, n \)
Standard and Slack Forms

Standard Form

maximise \(\sum_{j=1}^{n} c_j x_j \)

subject to \(\sum_{j=1}^{n} a_{ij} x_j \leq b_i \) for \(i = 1, 2, \ldots, m \)
\(x_j \geq 0 \) for \(j = 1, 2, \ldots, n \)

Objective Function

\(n + m \) constraints
Standard and Slack Forms

Standard Form

maximise \(\sum_{j=1}^{n} c_j x_j \)

subject to

\(\sum_{j=1}^{n} a_{ij} x_j \leq b_i \) for \(i = 1, 2, \ldots, m \)

\(x_j \geq 0 \) for \(j = 1, 2, \ldots, n \)

\(n + m \) constraints

Objective Function

Non-Negativity Constraints
Standard and Slack Forms

Standard Form

maximise \(\sum_{j=1}^{n} c_j x_j \) \hspace{1cm} \text{Objective Function}

subject to

\(\sum_{j=1}^{n} a_{ij} x_j \leq b_i \) \hspace{1cm} \text{for } i = 1, 2, \ldots, m

\(x_j \geq 0 \) \hspace{1cm} \text{for } j = 1, 2, \ldots, n

\(n + m \) constraints

Standard Form (Matrix-Vector-Notation)

maximise \(c^T x \) \hspace{1cm} \text{Inner product of two vectors}

subject to

\(Ax \leq b \) \hspace{1cm} \text{Matrix-vector product}

\(x \geq 0 \)
Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).
Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \(\geq \) instead of \(\leq \)).

Goal: Convert linear program into an equivalent program which is in standard form
Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.
Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.
Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

\[
\begin{align*}
\text{minimise} & \quad -2x_1 + 3x_2 \\
\text{subject to} & \\
\quad x_1 + x_2 &= 7 \\
\quad x_1 - 2x_2 &\leq 4 \\
\quad x_1 &\geq 0
\end{align*}
\]
Reasons for a LP not being in standard form:

1. The objective might be a **minimisation** rather than **maximisation**.

```
minimise -2x_1 + 3x_2
subject to
x_1 + x_2 = 7
x_1 - 2x_2 \leq 4
x_1 \geq 0
```

Negate objective function
Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

\[
\begin{align*}
\text{minimise} & \quad -2x_1 + 3x_2 \\
\text{subject to} & \\
& x_1 + x_2 = 7 \\
& x_1 - 2x_2 \leq 4 \\
& x_1 \geq 0
\end{align*}
\]

Negate objective function

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x_2 \\
\text{subject to} & \\
& x_1 + x_2 = 7 \\
& x_1 - 2x_2 \leq 4 \\
& x_1 \geq 0
\end{align*}
\]
Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximise \[2x_1 - 3x_2 \]
subject to
\[x_1 + x_2 = 7 \]
\[x_1 - 2x_2 \leq 4 \]
\[x_1 \geq 0 \]
Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise \[2x_1 - 3x_2 \]
subject to
\[x_1 + x_2 = 7 \]
\[x_1 - 2x_2 \leq 4 \]
\[x_1 \geq 0 \]

Replace \(x_2 \) by two non-negative variables \(x_2' \) and \(x_2'' \)
Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x_2 \\
\text{subject to} & \quad \begin{align*}
x_1 + x_2 &= 7 \\
x_1 - 2x_2 &\leq 4 \\
x_1 &\geq 0
\end{align*}
\end{align*}
\]

Replace \(x_2 \) by two non-negative variables \(x'_2 \) and \(x''_2 \)

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
\text{subject to} & \quad \begin{align*}
x_1 + x'_2 - x''_2 &= 7 \\
x_1 - 2x'_2 + 2x''_2 &\leq 4 \\
x_1, x'_2, x''_2 &\geq 0
\end{align*}
\end{align*}
\]
Reasons for a LP not being in standard form:
3. There might be equality constraints.
Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise \(2x_1 - 3x_2' + 3x_2''\)

subject to

\[\begin{align*}
 x_1 + x_2' - x_2'' &= 7 \\
 x_1 - 2x_2' + 2x_2'' &\leq 4 \\
 x_1, x_2', x_2'' &\geq 0
\end{align*}\]
Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise \[2x_1 - 3x_2 + 3x_2'' \]
subject to
\[x_1 + x_2' - x_2'' = 7 \]
\[x_1 - 2x_2' + 2x_2'' \leq 4 \]
\[x_1, x_2', x_2'' \geq 0 \]

Replace each equality by two inequalities.
Reasons for a LP not being in standard form:

3. There might be equality constraints.

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x_2' + 3x_2'' \\
\text{subject to} & \\
& x_1 + x_2' - x_2'' = 7 \\
& x_1 - 2x_2' + 2x_2'' \leq 4 \\
& x_1, x_2', x_2'' \geq 0 \\
\end{align*}
\]

Replace each equality by two inequalities.
Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).
Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximise $2x_1 - 3x'_2 + 3x''_2$

subject to

- $x_1 + x'_2 - x''_2 \leq 7$
- $x_1 + x'_2 - x''_2 \geq 7$
- $x_1 - 2x'_2 + 2x''_2 \leq 4$
- $x_1, x'_2, x''_2 \geq 0$
Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximise $2x_1 - 3x'_2 + 3x''_2$

subject to

$x_1 + x'_2 - x''_2 \leq 7$
$x_1 + x'_2 - x''_2 \geq 7$
$x_1 - 2x'_2 + 2x''_2 \leq 4$
$x_1, x'_2, x''_2 \geq 0$

Negate respective inequalities.
Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
\text{subject to} & \quad x_1 + x'_2 - x''_2 \leq 7 \\
& \quad x_1 + x'_2 - x''_2 \geq 7 \\
& \quad x_1 - 2x'_2 + 2x''_2 \leq 4 \\
& \quad x_1, x'_2, x''_2 \geq 0
\end{align*}
\]

Negate respective inequalities.

\[
\begin{align*}
\text{maximise} & \quad 2x_1 - 3x'_2 + 3x''_2 \\
\text{subject to} & \quad x_1 + x'_2 - x''_2 \leq 7 \\
& \quad -x_1 - x'_2 + x''_2 \leq -7 \\
& \quad x_1 - 2x'_2 + 2x''_2 \leq 4 \\
& \quad x_1, x'_2, x''_2 \geq 0
\end{align*}
\]
Converting into Standard Form (5/5)

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_1 + x_2 - x_3 & \leq 7 \\
-x_1 - x_2 + x_3 & \leq -7 \\
x_1 - 2x_2 + 2x_3 & \leq 4 \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]
Rename variable names (for consistency).

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[x_1 + x_2 - x_3 \leq 7 \]
\[-x_1 - x_2 + x_3 \leq -7 \]
\[x_1 - 2x_2 + 2x_3 \leq 4 \]
\[x_1, x_2, x_3 \geq 0 \]
Convert into Standard Form (5/5)

maximise \(2x_1 - 3x_2 + 3x_3 \)
subject to

- \(x_1 + x_2 - x_3 \leq 7 \)
- \(-x_1 - x_2 + x_3 \leq -7 \)
- \(x_1 - 2x_2 + 2x_3 \leq 4 \)
- \(x_1, x_2, x_3 \geq 0 \)

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables
Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ be an inequality constraint
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$ be an inequality constraint
- Introduce a slack variable s by
Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$ be an inequality constraint
- Introduce a slack variable s by

\[
s = b_i - \sum_{j=1}^{n} a_{ij}x_j
\]
Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$ be an inequality constraint
- Introduce a slack variable s by

\[
s = b_i - \sum_{j=1}^{n} a_{ij}x_j
\]

$s \geq 0$.
Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^{n} a_{ij} x_j$$

s measures the slack between the two sides of the inequality.

$s \geq 0$.
Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{j=1}^{n} a_{ij}x_j \leq b_i$ be an inequality constraint
- Introduce a slack variable s by

\[
s = b_i - \sum_{j=1}^{n} a_{ij}x_j
\]

$s \geq 0$.

- Denote slack variable of the i-th inequality by x_{n+i}

s measures the slack between the two sides of the inequality.
Converting Standard Form into Slack Form (2/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[x_1 + x_2 - x_3 \leq 7 \]
\[-x_1 - x_2 + x_3 \leq -7 \]
\[x_1 - 2x_2 + 2x_3 \leq 4 \]
\[x_1, x_2, x_3 \geq 0 \]
Converting Standard Form into Slack Form (2/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_1 + x_2 - x_3 & \leq 7 \\
-x_1 - x_2 + x_3 & \leq -7 \\
x_1 - 2x_2 + 2x_3 & \leq 4 \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]

Introduce slack variables
Converting Standard Form into Slack Form (2/3)

maximise \(2x_1 - 3x_2 + 3x_3 \)

subject to

\[
\begin{align*}
 & x_1 + x_2 - x_3 \leq 7 \\
 & -x_1 - x_2 + x_3 \leq -7 \\
 & x_1 - 2x_2 + 2x_3 \leq 4 \\
 & x_1, x_2, x_3 \geq 0
\end{align*}
\]

Introduce slack variables

subject to

\[
\begin{align*}
 & x_4 = 7 - x_1 - x_2 + x_3
\end{align*}
\]
Converting Standard Form into Slack Form (2/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]

subject to
\[x_1 + x_2 - x_3 \leq 7 \]
\[-x_1 - x_2 + x_3 \leq -7 \]
\[x_1 - 2x_2 + 2x_3 \leq 4 \]
\[x_1, x_2, x_3 \geq 0 \]

Introduce slack variables

subject to
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
Converting Standard Form into Slack Form (2/3)

maximise \(2x_1 - 3x_2 + 3x_3\)
subject to
\[
\begin{align*}
 x_1 + x_2 - x_3 & \leq 7 \\
-x_1 - x_2 + x_3 & \leq -7 \\
 x_1 - 2x_2 + 2x_3 & \leq 4 \\
 x_1, x_2, x_3 & \geq 0
\end{align*}
\]

Introduce slack variables

subject to
\[
\begin{align*}
 x_4 & = 7 - x_1 - x_2 + x_3 \\
 x_5 & = -7 + x_1 + x_2 - x_3 \\
 x_6 & = 4 - x_1 + 2x_2 - 2x_3
\end{align*}
\]
Converting Standard Form into Slack Form (2/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[
\begin{align*}
 x_1 + x_2 - x_3 & \leq 7 \\
-x_1 - x_2 + x_3 & \leq -7 \\
 x_1 - 2x_2 + 2x_3 & \leq 4 \\
 x_1, x_2, x_3 & \geq 0
\end{align*}
\]

Introduce slack variables

subject to
\[
\begin{align*}
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
 x_1, x_2, x_3, x_4, x_5, x_6 & \geq 0
\end{align*}
\]
Converting Standard Form into Slack Form (2/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_1 + x_2 - x_3 & \leq 7 \\
-x_1 - x_2 + x_3 & \leq -7 \\
x_1 - 2x_2 + 2x_3 & \leq 4 \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]

Introduce slack variables

maximise \[2x_1 - 3x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_4 &= 7 - x_1 - x_2 + x_3 \\
x_5 &= -7 + x_1 + x_2 - x_3 \\
x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
x_1, x_2, x_3, x_4, x_5, x_6 & \geq 0
\end{align*}
\]
Converting Standard Form into Slack Form (3/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]

subject to

\[\begin{align*}
x_4 &= 7 - x_1 - x_2 + x_3 \\
x_5 &= -7 + x_1 + x_2 - x_3 \\
x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
x_1, x_2, x_3, x_4, x_5, x_6 &\geq 0
\end{align*} \]

Use variable \(z \) to denote objective function and omit the nonnegativity constraints. This is called slack form.
Converting Standard Form into Slack Form (3/3)

maximise \[2x_1 - 3x_2 + 3x_3 \]

subject to

\[
\begin{align*}
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
\end{align*}
\]

\[x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \]

Use variable \(z \) to denote objective function and omit the nonnegativity constraints.
Converting Standard Form into Slack Form (3/3)

maximise $2x_1 - 3x_2 + 3x_3$

subject to

\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
\[x_6 = 4 - x_1 + 2x_2 - 2x_3 \]

$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$

Use variable z to denote objective function and omit the nonnegativity constraints.

\[z = 2x_1 - 3x_2 + 3x_3 \]
Converting Standard Form into Slack Form (3/3)

maximise \(2x_1 - 3x_2 + 3x_3 \)

subject to

\[
\begin{align*}
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
\end{align*}
\]

\(x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \)

Use variable \(z \) to denote objective function and omit the nonnegativity constraints.

\[
\begin{align*}
 z &= 2x_1 - 3x_2 + 3x_3 \\
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3 \\
\end{align*}
\]

This is called slack form.
Basic and Non-Basic Variables

\[
\begin{align*}
 z &= 2x_1 - 3x_2 + 3x_3 \\
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3
\end{align*}
\]
Basic and Non-Basic Variables

\[z = 2x_1 - 3x_2 + 3x_3 \]
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
\[x_6 = 4 - x_1 + 2x_2 - 2x_3 \]

Basic Variables: \(B = \{4, 5, 6\} \)
Basic and Non-Basic Variables

\[
\begin{align*}
 z &= 2x_1 - 3x_2 + 3x_3 \\
 x_4 &= 7 - x_1 - x_2 + x_3 \\
 x_5 &= -7 + x_1 + x_2 - x_3 \\
 x_6 &= 4 - x_1 + 2x_2 - 2x_3
\end{align*}
\]

Basic Variables: \(B = \{4, 5, 6\} \)

Non-Basic Variables: \(N = \{1, 2, 3\} \)
Basic and Non-Basic Variables

\[z = 2x_1 - 3x_2 + 3x_3 \]
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
\[x_6 = 4 - x_1 + 2x_2 - 2x_3 \]

Basic Variables: \(B = \{4, 5, 6\} \)

Non-Basic Variables: \(N = \{1, 2, 3\} \)

Slack Form (Formal Definition)

Slack form is given by a tuple \((N, B, A, b, c, v)\) so that

\[z = v + \sum_{j \in N} c_j x_j \]

\[x_i = b_i - \sum_{j \in N} a_{ij} x_j \quad \text{for } i \in B, \]

and all variables are non-negative.
Basic and Non-Basic Variables

\[z = 2x_1 - 3x_2 + 3x_3 \]
\[x_4 = 7 - x_1 - x_2 + x_3 \]
\[x_5 = -7 + x_1 + x_2 - x_3 \]
\[x_6 = 4 - x_1 + 2x_2 - 2x_3 \]

Basic Variables: \(B = \{4, 5, 6\} \)

Non-Basic Variables: \(N = \{1, 2, 3\} \)

Slack Form (Formal Definition)

Slack form is given by a tuple \((N, B, A, b, c, v)\) so that

\[z = v + \sum_{j \in N} c_j x_j \]
\[x_i = b_i - \sum_{j \in N} a_{ij} x_j \quad \text{for } i \in B, \]

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by \(B \) and \(N \).
Slack Form (Example)

\[z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \]
\[x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \]
\[x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \]
\[x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2} \]
Slack Form (Example)

\[
\begin{align*}
 z &= 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \\
 x_1 &= 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \\
 x_2 &= 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \\
 x_4 &= 18 - \frac{x_3}{2} + \frac{x_5}{2}
\end{align*}
\]
Slack Form (Example)

\[
\begin{align*}
 z &= 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \\
 x_1 &= 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \\
 x_2 &= 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \\
 x_4 &= 18 - \frac{x_3}{2} + \frac{x_5}{2}
\end{align*}
\]

Slack Form Notation

- \(B = \{1, 2, 4\} \), \(N = \{3, 5, 6\} \)
Slack Form (Example)

\[
\begin{align*}
z &= 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \\
x_1 &= 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \\
x_2 &= 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \\
x_4 &= 18 - \frac{x_3}{2} + \frac{x_5}{2}
\end{align*}
\]

Slack Form Notation

- \(B = \{1, 2, 4\}, \ N = \{3, 5, 6\} \)
- \[
A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}
\]
Slack Form (Example)

\[
\begin{align*}
z &= 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \\
x_1 &= 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \\
x_2 &= 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \\
x_4 &= 18 - \frac{x_3}{2} + \frac{x_5}{2}
\end{align*}
\]

Slack Form Notation

- \(B = \{1, 2, 4\}, \; N = \{3, 5, 6\} \)

- \[
A = \begin{pmatrix}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{pmatrix} = \begin{pmatrix}
-1/6 & -1/6 & 1/3 \\
8/3 & 2/3 & -1/3 \\
1/2 & -1/2 & 0
\end{pmatrix}
\]

- \[
b = \begin{pmatrix}
b_1 \\
b_2 \\
b_4
\end{pmatrix} = \begin{pmatrix}
8 \\
4 \\
18
\end{pmatrix},
\]
Slack Form (Example)

\[
\begin{align*}
 z &= 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \\
 x_1 &= 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \\
 x_2 &= 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \\
 x_4 &= 18 - \frac{x_3}{2} + \frac{x_5}{2}
\end{align*}
\]

Slack Form Notation

- \(B = \{1, 2, 4\}, \; N = \{3, 5, 6\} \)
- \(A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix} \)
- \(b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \; c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix} \)
Slack Form (Example)

\[z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \]
\[x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3} \]
\[x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3} \]
\[x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2} \]

Slack Form Notation

- \(B = \{1, 2, 4\}, \ N = \{3, 5, 6\} \)
- \(A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix} \)
- \(b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix} \)
- \(v = 28 \)