Randomised Algorithms

Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

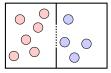
SAT and a Randomised Algorithm for 2-SAT

Ehrenfest Model ——

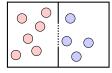
 A simple model for the exchange of molecules between two boxes

Ehrenfest Model —

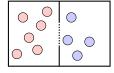
 A simple model for the exchange of molecules between two boxes



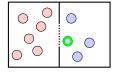
- A simple model for the exchange of molecules between two boxes
- We have d particles



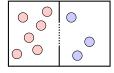
- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box



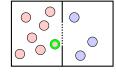
- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box



- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box

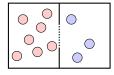


- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box



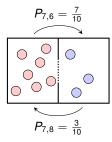
- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.



- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

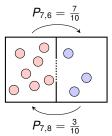
$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.



Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.

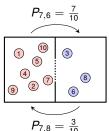


Let us now enlarge the state space by looking at each particle individually!

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled 1, 2, ..., d
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.

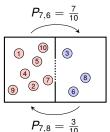


Let us now enlarge the state space by looking at each particle individually!

Ehrenfest Model -

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled 1, 2, ..., d
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.



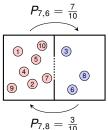
Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube ———

Ehrenfest Model -

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled 1, 2, ..., d
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.



Let us now enlarge the state space by looking at each particle individually!

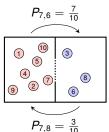
Random Walk on the Hypercube ——

• For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$

Ehrenfest Model -

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled 1, 2, ..., d
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.



Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube —

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) =

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

• At each step t = 0, 1, 2...

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]
 - With prob. 1/2 flip coordinate.

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]
 - With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]
 - With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version) -

- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]
 - Set coordinate to {0,1} uniformly.

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

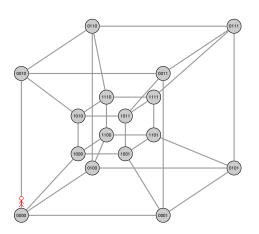
Lazy Random Walk (1st Version) -

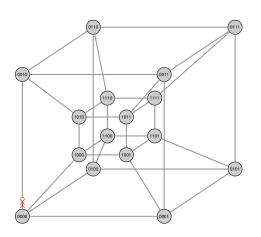
- At each step t = 0, 1, 2...
 - Pick a random coordinate in [d]
 - With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)

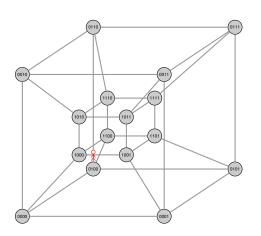
- At each step t = 0, 1, 2 . . .
 - Pick a random coordinate in [d]
 - Set coordinate to {0,1} uniformly.

These two chains are equivalent!

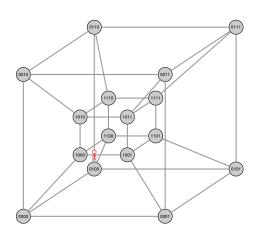




	Coord.	X_t				pord. X_t		ζ_t	
)	2	0	0	0					
		0	?	0					



t	Coord.	X_t			
0	2	0	0	0	
1		0	1	0	



t	Coord.	
)	2	0
1	3	0
2		0

0	0	0	0
0	1	0	0
0	1	?	0

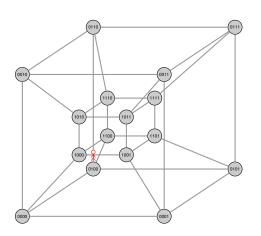
 X_t



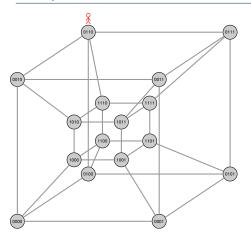
t	Coord.
)	2
1	3
2	

0	0	0	0
0	1	0	0
0	1	0	0

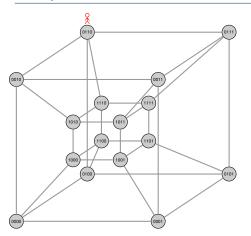
 X_t



•	Coord.	X_t			
)	2	0	0	0	0
	3	0	1	0	0
2	3	0	1	0	0
3		0	1	?	0



t	Coord.	X_t			
0	2	0	0	0	C
1	3	0	1	0	C
2	3	0	1	0	C
3		0	1	1	C

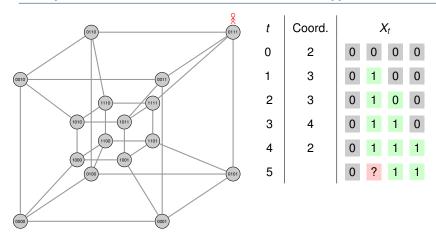


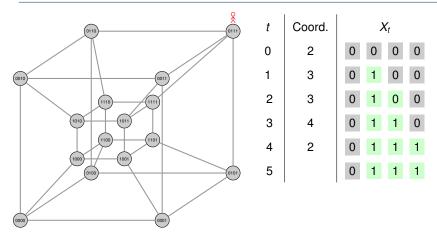
t	Coord.	X_t				
)	2	0	0	0	(
1	3	0	1	0	(
2	3	0	1	0	(
3	4	0	1	1	(
		_				

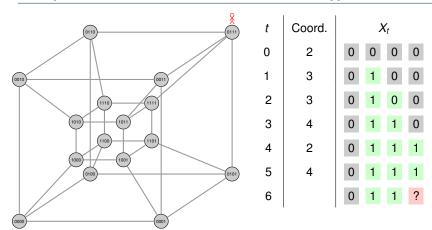


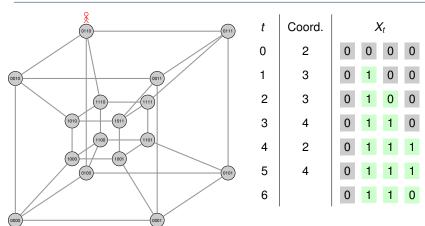
t	Coord
0	2
1	3
2	3
3	4
	1

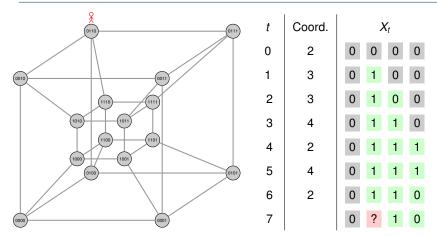
X_t						
0	0	0	0			
0	1	0	0			
0	1	0	0			
0	1	1	0			
0	1	1	1			

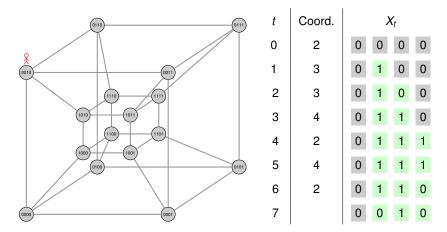


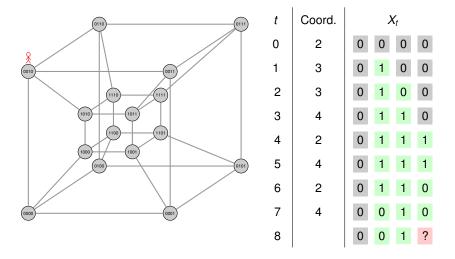


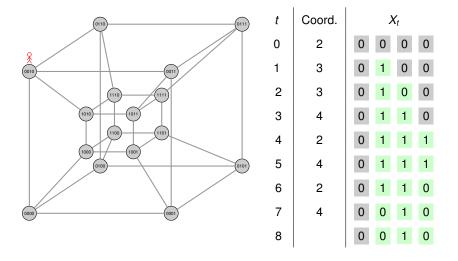


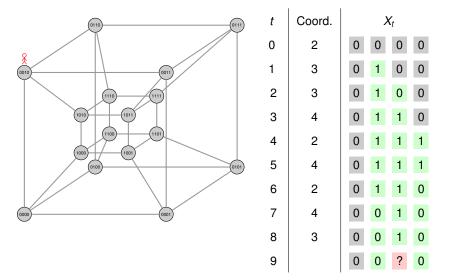


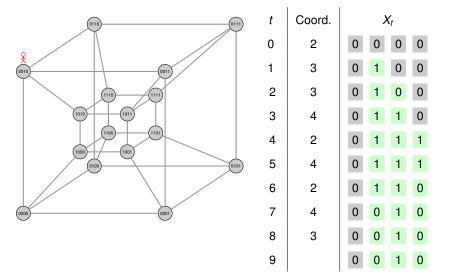


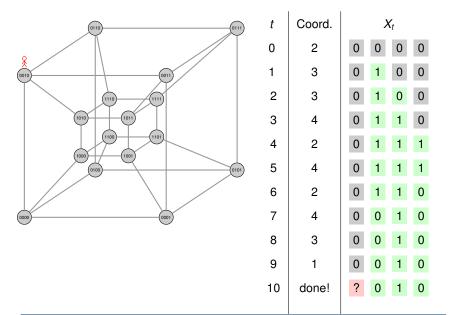


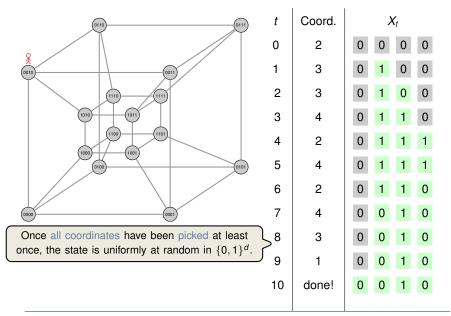


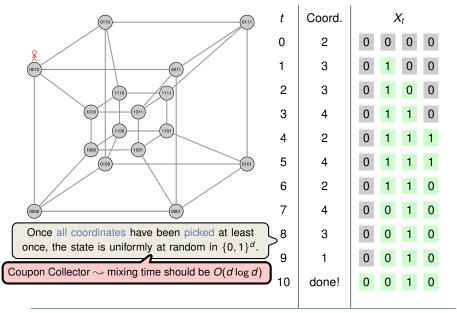


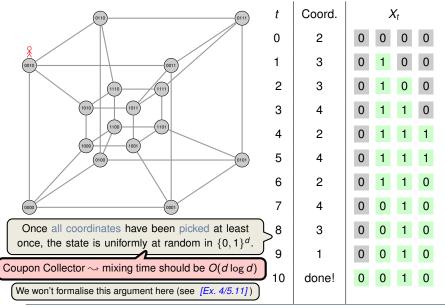




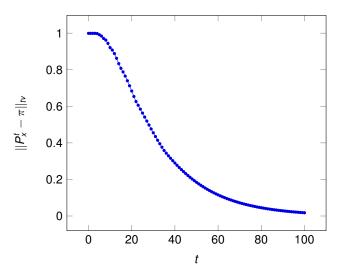




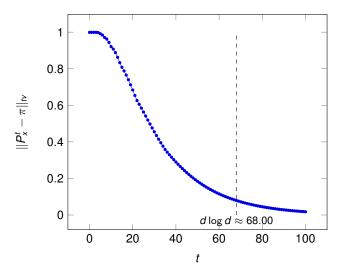




Total Variation Distance of Random Walk on Hypercube (d = 22)



Total Variation Distance of Random Walk on Hypercube (d = 22)



53

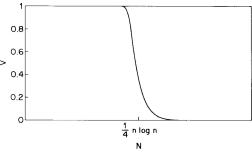


Fig. 1. The variation distance V as a function of N, for $n = 10^{12}$.

Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures & Algorithms, 1990.

53

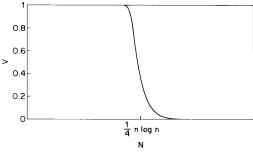


Fig. 1. The variation distance V as a function of N, for $n = 10^{12}$.

Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures & Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d = 10^{12}$ (Minor Remark: This random walk is with a loop probability of 1/(d+1))
- The variation distance exhibits a so-called cut-off phenomena:

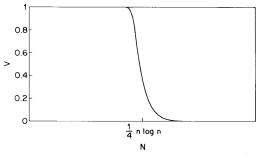


Fig. 1. The variation distance V as a function of N, for $n = 10^{12}$.

Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures & Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d = 10^{12}$ (Minor Remark: This random walk is with a loop probability of 1/(d+1))
- The variation distance exhibits a so-called cut-off phenomena:
 - Distance remains close to its maximum value 1 until step $\frac{1}{4}n \log n \Theta(n)$
 - Then distance moves close to 0 before step $\frac{1}{4}n \log n + \Theta(n)$

Outline

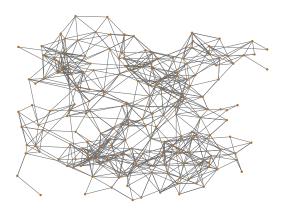
Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

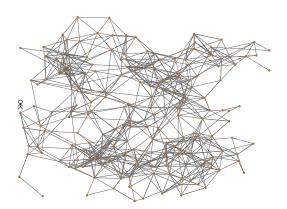
Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

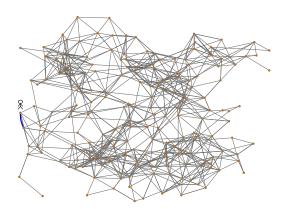
$$P(u,v) = egin{cases} rac{1}{\deg(u)} & ext{if } \{u,v\} \in E, \ 0 & ext{if } \{u,v\}
ot\in E. \end{cases}, \qquad ext{and} \qquad \pi(u) = rac{\deg(u)}{2|E|}$$



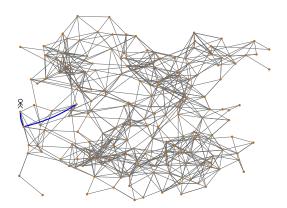
$$P(u,v) = egin{cases} rac{1}{\deg(u)} & ext{if } \{u,v\} \in E, \ 0 & ext{if } \{u,v\}
ot\in E. \end{cases}, \qquad ext{and} \qquad \pi(u) = rac{\deg(u)}{2|E|}$$



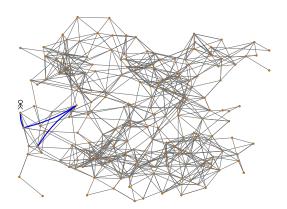
$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \not\in E. \end{cases}, \quad \text{and} \quad \pi(u) = \frac{\deg(u)}{2|E|}$$



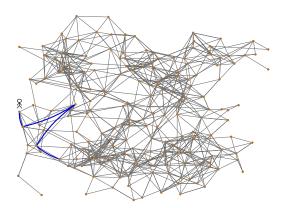
$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \not\in E. \end{cases}, \quad \text{and} \quad \pi(u) = \frac{\deg(u)}{2|E|}$$



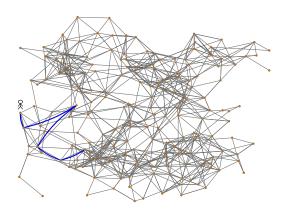
$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \not\in E. \end{cases}, \quad \text{and} \quad \pi(u) = \frac{\deg(u)}{2|E|}$$



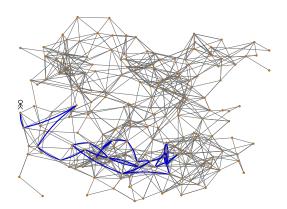
$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \not\in E. \end{cases}, \quad \text{and} \quad \pi(u) = \frac{\deg(u)}{2|E|}$$



$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \not\in E. \end{cases}, \quad \text{and} \quad \pi(u) = \frac{\deg(u)}{2|E|}$$



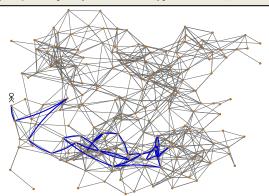
$$P(u,v) = egin{cases} rac{1}{\deg(u)} & ext{if } \{u,v\} \in E, \ 0 & ext{if } \{u,v\}
ot\in E. \end{cases}, \qquad ext{and} \qquad \pi(u) = rac{\deg(u)}{2|E|}$$



A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

$$P(u,v) = egin{cases} rac{1}{\deg(u)} & ext{if } \{u,v\} \in E, \ 0 & ext{if } \{u,v\}
ot\in E. \end{cases}$$
 and $\pi(u) = rac{\deg(u)}{2|E|}$

Recall: $h(u, v) = \mathbf{E}_u[\min\{t \ge 1 : X_t = v\}]$ is the hitting time of v from u.



The Lazy Random Walk (LRW) on G given by $\widetilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = egin{cases} rac{1}{2\deg(u)} & ext{if } \{u,v\} \in \mathcal{E}, \\ rac{1}{2} & ext{if } u = v, \\ 0 & ext{otherwise}. \end{cases}$$

The Lazy Random Walk (LRW) on G given by $\widetilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2\deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

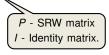
The Lazy Random Walk (LRW) on G given by $\widetilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

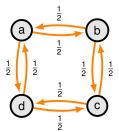
Fact: For any graph *G* the LRW on *G* is aperiodic.

The Lazy Random Walk (LRW) on G given by $\widetilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$



Fact: For any graph *G* the LRW on *G* is aperiodic.

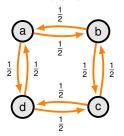


SRW on C₄, Periodic

The Lazy Random Walk (LRW) on G given by $\widetilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

Fact: For any graph *G* the LRW on *G* is aperiodic.



SRW on C4, Periodic



LRW on C₄, Aperiodic

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

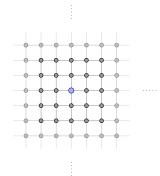
1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

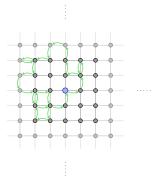
Will a random walk always return to the origin?

Infinite 2D Grid

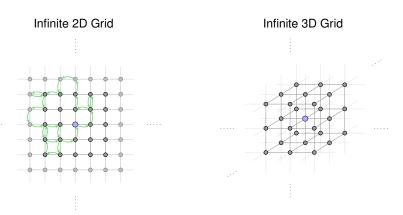


Will a random walk always return to the origin?

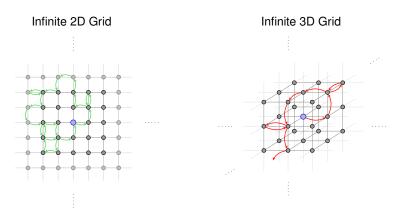
Infinite 2D Grid



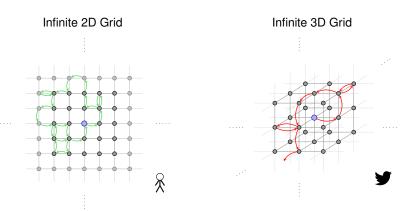
Will a random walk always return to the origin?



Will a random walk always return to the origin?

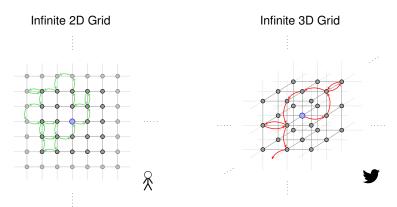


Will a random walk always return to the origin?



"A drunk man will find his way home, but a drunk bird may get lost forever."

Will a random walk always return to the origin?



"A drunk man will find his way home, but a drunk bird may get lost forever."

But for any regular (finite) graph, the expected return time to u is $1/\pi(u) = n$

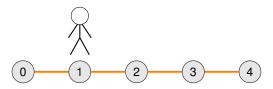
SRW Random Walk on Two-Dimensional Grids: Animation

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$

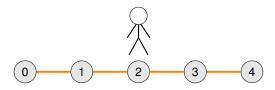
Proposition -

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



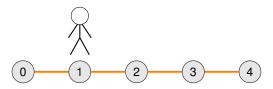
- Proposition

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



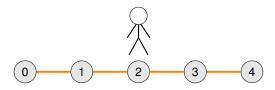
- Proposition

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



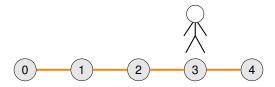
- Proposition

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



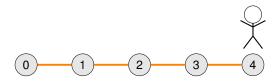
- Proposition

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



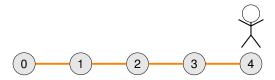
Proposition

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



Proposition -

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Exercise: [Exercise 4/5.15] What happens for the LRW on P_n ?

Proposition ———

Proposition -

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0.

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0)=1+f(1)$$

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above.

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2,$$

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2$$

and for any $1 \le k \le n-1$ we have,

$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

$$\mathsf{SAT} \colon \left(x_1 \vee \overline{x_2} \vee \overline{x_3} \right) \wedge \left(\overline{x_1} \vee \overline{x_3} \right) \wedge \left(x_1 \vee x_2 \vee x_4 \right) \wedge \left(x_4 \vee \overline{x_3} \right) \wedge \left(x_4 \vee \overline{x_1} \right)$$

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

SAT:
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.$

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

SAT:
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

SAT:
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 - → Model checking and hardware/software verification
 - → Design of experiments
 - → Classical planning
 - $\rightarrow \dots$

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: **If** formula is satisfied **then return** "Satisfiable"
- 6: return "Unsatisfiable"

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

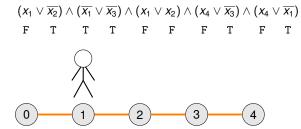
- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

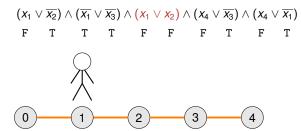


$\alpha = 0$	(T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

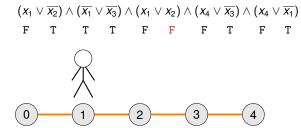


$\alpha = 0$	T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.



$\alpha = 0$	(Т,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

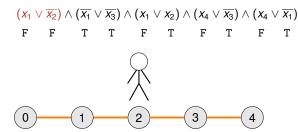
$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1})$$
F F T T F T F T F T
$$0$$

α	= ((T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.



$\alpha =$	(T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1})$$

$$F \quad F \quad T \quad F \quad T \quad F \quad T$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

$\alpha =$	(T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_{1} \vee \overline{x_{2}}) \wedge (\overline{x_{1}} \vee \overline{x_{3}}) \wedge (x_{1} \vee x_{2}) \wedge (x_{4} \vee \overline{x_{3}}) \wedge (x_{4} \vee \overline{x_{1}})$$

$$T \quad F \quad F \quad T \quad T \quad T \quad F \quad T \quad F \quad F$$

α	= ((T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F
2	T	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_{1} \vee \overline{x_{2}}) \wedge (\overline{x_{1}} \vee \overline{x_{3}}) \wedge (x_{1} \vee x_{2}) \wedge (x_{4} \vee \overline{x_{3}}) \wedge (x_{4} \vee \overline{x_{1}})$$

$$T \quad F \quad F \quad T \quad T \quad T \quad F \quad F$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

$\alpha =$	(T,	Т,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F
2	T	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1})$$
T F F T T T F F
$$(x_1 \vee \overline{x_2}) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1})$$

$\alpha =$	(T,	Т,	F,	T)	١.
-	(-)	-,	- ,	- /	

t	<i>X</i> ₁	X 2	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F
2	T	Т	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$\alpha =$	(Т.	Т.	F.	T)	١.
$\alpha -$	ι.,	Ι,	٠,		١.

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	T	F	F
2	Т	T	F	F
3	Т	T	F	Т

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

Example 1 : Solution Found

$$(x_{1} \vee \overline{x_{2}}) \wedge (\overline{x_{1}} \vee \overline{x_{3}}) \wedge (x_{1} \vee x_{2}) \wedge (x_{4} \vee \overline{x_{3}}) \wedge (x_{4} \vee \overline{x_{1}})$$

$$T \quad F \quad F \quad T \quad T \quad T \quad T \quad T \quad F$$

$\alpha =$	(T,	Т,	F,	T)	١.

t	<i>X</i> ₁	X 2	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F
2	Т	Т	F	F
3	Т	Т	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$
F T T F F F F T

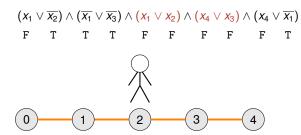
$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$
F T T T T F F F F T

α	= ((T,	F,	F,	T)).

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.



α	= (T,	F.	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$
F T T F F F F T

$$0$$

$$1$$

$$2$$

$$3$$

$\alpha = 0$	(Τ,	F.	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

a	(T	17	77	т)	
$\alpha = 0$	ι,	г,	г,	1)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	Т

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

α	= ((T,	F,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$\alpha = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	$\alpha =$	(T,	F,	F,	T)	١.
--	------------	-----	----	----	----	----

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	Т

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor x_{3}) \land (x_{4} \lor \overline{x_{1}})$$

$$F \quad F \quad T \quad T \quad F \quad T \quad T \quad T$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

$\alpha = 0$	Έ.	F.	F.	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T
2	F	Т	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$\alpha = 0$	Έ.	F.	F.	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T
2	F	Т	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$

$$F \quad F \quad T \quad T \quad F \quad T \quad T \quad T$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T
2	F	Т	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$

$$T \quad F \quad F \quad T \quad T \quad T \quad F \quad T \quad F$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4$$

$\alpha = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	$\alpha =$	(T,	F,	F,	T)	١.
--	------------	-----	----	----	----	----

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T
2	F	T	F	T
3	Т	T	F	T

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n2 times
- 3: Pick an arbitrary unsatisfied clause
- Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

Example 2: (Another) Solution Found

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$
T F F T T T T F T F
$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee x_3) \wedge (x_4 \vee \overline{x_1})$$

$\alpha =$	(T,	F,	F,	T)	١.
$\alpha -$	ι,	т,	т,	1	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	Т
2	F	Т	F	Т
3	Т	Т	F	Т

Expected iterations of (2) in RANDOMISED-2-SAT =

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Expected iterations of (2) in RANDOMISED-2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Expected iterations of (2) in RANDOMISED-2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

(i)
$$P[X_{i+1} = 1 \mid X_i = 0] = 1$$

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] > 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the n-path from 0).

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] > 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives (see also [Ex 4/5.16])

$$\mathbf{E}[\text{time to find sol}] \leq \mathbf{E}_0[\min\{t : X_t = n\}] \leq \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2.$$

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives (see also [Ex 4/5.16])

$$\mathbf{E}[\text{time to find sol}] \le \mathbf{E}_0[\min\{t : X_t = n\}] \le \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2.$$

Running for $2n^2$ steps and using Markov's inequality yields:

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] > 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2.$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

$$\mathbf{E}[\text{time to find sol}] \le \mathbf{E}_0[\min\{t : X_t = n\}] \le \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2.$$

Running for 2n² steps and using Markov's inequality yields:

Proposition

Provided a solution exists, RANDOMISED-2-SAT will return a valid solution in $O(n^2)$ steps with probability at least 1/2.

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol]
$$\leq$$
 E₀[min{ $t: X_t = n$ }] \leq **E**₀[min{ $t: Y_t = n$ }] = $h(0, n) = n^2$.

Exercise: (difficult, beyond this course) What happens to the above analysis if we apply the same algorithm to 3-SAT?

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real p. Let $t = \lceil \frac{C}{p} \log n \rceil$ and observe

$$\begin{aligned} \mathbf{P} [t \text{ runs all fail}] &\leq (1-p)^t \\ &\leq e^{-pt} \\ &\leq n^{-C}, \end{aligned}$$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real p. Let $t = \lceil \frac{C}{p} \log n \rceil$ and observe

$$\begin{aligned} \mathbf{P} [t \text{ runs all fail}] &\leq (1-p)^t \\ &\leq e^{-pt} \\ &\leq n^{-C}, \end{aligned}$$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

- RANDOMISED-2-SAT

There is a $O(n^2 \log n)$ -step algorithm for 2-SAT which succeeds w.h.p.