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Applications of Markov Chains in Computer Science

Broadcasting
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Ranking Websites
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Markov Chains

We say that (Xt )
∞
t=0 is a Markov Chain on State Space Ω with Initial Dis-

tribution µ and Transition Matrix P if:

1. For any x ∈ Ω, P [ X0 = x ] = µ(x).

2. The Markov Property holds: for all t ≥ 0 and any x0, . . . , xt+1 ∈ Ω,

P
[

Xt+1 = xt+1

∣∣∣ Xt = xt , . . . ,X0 = x0

]
= P

[
Xt+1 = xt+1

∣∣∣ Xt = xt

]
:= P(xt , xt+1).

Markov Chain (Discrete Time and State, Time Homogeneous)

From the definition one can deduce that (check!)

For all t , x0, x1, . . . , xt ∈ Ω,

P [ Xt = xt ,Xt−1 = xt−1, . . . ,X0 = x0 ]

= µ(x0) · P(x0, x1) · . . . · P(xt−2, xt−1) · P(xt−1, xt ).

For all 0 ≤ t1 < t2, x ∈ Ω,

P [ Xt2 = x ] =
∑
y∈Ω

P [ Xt2 = x | Xt1 = y ] · P [ Xt1 = y ] .
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What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.

Rice Pasta

Potato

1/2

1/2

1/4

3/4

2/5

3/5

This has transition matrix:

P =

Rice Pasta Potato 0 1/2 1/2 Rice

1/4 0 3/4 Pasta

3/5 2/5 0 Potato
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Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (µ,P) on Ω = {1, . . . n} is given by

P =

P(1, 1) . . . P(1, n)
...

. . .
...

P(n, 1) . . . P(n, n)

 .

ρt = (ρt (1), ρt (2), . . . , ρt (n)): state vector at time t (row vector).

Multiplying ρt by P corresponds to advancing the chain one step:

ρt (y) =
∑
x∈Ω

ρt−1(x) · P(x , y) and thus ρt = ρt−1 · P.

The Markov Property and line above imply that for any t ≥ 0

ρt = ρ · P t−1 and thus P t (x , y) = P [ Xt = y | X0 = x ] .

Thus ρt (x) = (µP t )(x) and so ρt = µP t = (µP t (1), µP t (2), . . . , µP t (n)).

Everything boils down to deterministic vector/matrix computations

⇒ can replace ρ by any (load) vector and view P as a balancing matrix!
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Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for (Xt )t≥0 if for
every s ≥ 0 the event {τ = s} depends only on X0, . . . ,Xs.

Example - College Carbs Stopping times:

X “We had rice yesterday”

; τ := min {t ≥ 1 : Xt−1 = “rice”}
× “We are having pasta next Thursday”

For two states x , y ∈ Ω we call h(x , y) the hitting time of y from x :

h(x , y) := Ex [τy ] = E [ τy | X0 = x ] where τy = min{t ≥ 1 : Xt = y}.

Some distinguish between τ+
y = min{t ≥ 1 : Xt = y} and τy = min{t ≥ 0 : Xt = y}

Hitting times are the solution to a set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

P(x , z) · h(z, y) ∀x 6= y ∈ Ω.

A Useful Identity
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Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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Irreducible Markov Chains

A Markov Chain is irreducible if for every pair of states x , y ∈ Ω there is an
integer k ≥ 0 such that Pk (x , y) > 0.

a b

c d

1

1/4

3/4

3/4

2/5

3/5 1/4

X irreducible

a b

c d

1

1/4

3/4
2/5

3/5 1

× not irreducible (thus reducible)

For any states x and y of a finite irreducible Markov Chain h(x , y) <∞.

Finite Hitting Time Theorem
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Stationary Distribution

A probability distribution π = (π(1), . . . , π(n)) is the stationary distribution of
a Markov Chain if πP = π (π is a left eigenvector with eigenvalue 1)

College carbs example:

(
4
13
,

4
13
,

5
13

)
π

·

 0 1/2 1/2
1/4 0 3/4
3/5 2/5 0


P

=

(
4

13
,

4
13
,

5
13

)
π

Rice Pasta

Potato

1/2

1/2

1/4

3/4
2/5

3/5

A Markov Chain reaches stationary distribution if ρt = π for some t .
If reached, then it persists: If ρt = π then ρt+k = π for all k ≥ 0.

Let P be finite, irreducible M.C., then there exists a unique probability
distribution π on Ω such that π = πP and π(x) = 1/h(x , x) > 0, ∀x ∈ Ω.

Existence and Uniqueness of a Positive Stationary Distribution
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Periodicity

A Markov Chain is aperiodic if for all x ∈ Ω, gcd{t ≥ 1 : P t (x , x) > 0} = 1.

Otherwise we say it is periodic.

a b

d c

1/2

1/4

1/2

1/2 1/2

1/2

1/4

1/21/2

X Aperiodic

a b

d c

1/2

1/2

1/2 1/2

1/2

1/2

1/21/2

× Periodic

Question: Which of the two chains (if any) are aperiodic?
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Convergence Theorem

Let P be any finite, irreducible, aperiodic Markov Chain with stationary
distribution π. Then for any x , y ∈ Ω,

lim
t→∞

P t (x , y) = π(y).

Convergence Theorem

Ergodic = Irreducible + Aperiodic

mentioned before: For finite irreducible M.C.’s π exists, is unique and

π(y) =
1

h(y , y)
> 0.

We will prove a simpler version of the Convergence Theorem after
introducing Spectral Graph Theory.
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Step: 0
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.500

0.250

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.250

Step: 1
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.375

0.250

0.062

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.062

0.250

Step: 2
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.312

0.234

0.094

0.016

0.000

0.000

0.000

0.000

0.000

0.016

0.094

0.234

Step: 3
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.273

0.219

0.109

0.031

0.004

0.000

0.000

0.000

0.004

0.031

0.109

0.219

Step: 4
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.246

0.205

0.117

0.044

0.010

0.001

0.000

0.001

0.010

0.044

0.117

0.205

Step: 5
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.226

0.193

0.121

0.054

0.016

0.003

0.000

0.003

0.016

0.054

0.121

0.193

Step: 6
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.209

0.183

0.122

0.061

0.022

0.006

0.002

0.006

0.022

0.061

0.122

0.183

Step: 7
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.196

0.175

0.122

0.067

0.028

0.009

0.004

0.009

0.028

0.067

0.122

0.175

Step: 8
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.185

0.167

0.121

0.071

0.033

0.012

0.006

0.012

0.033

0.071

0.121

0.167

Step: 9
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.176

0.160

0.120

0.074

0.037

0.016

0.009

0.016

0.037

0.074

0.120

0.160

Step: 10
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.168

0.154

0.119

0.076

0.041

0.020

0.013

0.020

0.041

0.076

0.119

0.154

Step: 11
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.161

0.149

0.117

0.078

0.044

0.023

0.016

0.023

0.044

0.078

0.117

0.149

Step: 12
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.155

0.144

0.115

0.079

0.048

0.027

0.020

0.027

0.048

0.079

0.115

0.144

Step: 13
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.149

0.139

0.113

0.080

0.050

0.030

0.023

0.030

0.050

0.080

0.113

0.139

Step: 14
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.144

0.135

0.112

0.081

0.053

0.033

0.027

0.033

0.053

0.081

0.112

0.135

Step: 15
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.140

0.132

0.110

0.082

0.055

0.037

0.030

0.037

0.055

0.082

0.110

0.132

Step: 16
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.136

0.128

0.108

0.082

0.057

0.040

0.033

0.040

0.057

0.082

0.108

0.128

Step: 17
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.132

0.125

0.107

0.082

0.059

0.042

0.036

0.042

0.059

0.082

0.107

0.125

Step: 18
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.129

0.122

0.105

0.083

0.061

0.045

0.039

0.045

0.061

0.083

0.105

0.122

Step: 19
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.126

0.120

0.104

0.083

0.062

0.048

0.042

0.048

0.062

0.083

0.104

0.120

Step: 20
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.123

0.117

0.103

0.083

0.064

0.050

0.045

0.050

0.064

0.083

0.103

0.117

Step: 21
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.120

0.115

0.101

0.083

0.065

0.052

0.047

0.052

0.065

0.083

0.101

0.115

Step: 22
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.117

0.113

0.100

0.083

0.066

0.054

0.050

0.054

0.066

0.083

0.100

0.113

Step: 23
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.115

0.111

0.099

0.083

0.067

0.056

0.052

0.056

0.067

0.083

0.099

0.111

Step: 24
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.113

0.109

0.098

0.083

0.069

0.058

0.054

0.058

0.069

0.083

0.098

0.109

Step: 25
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.111

0.107

0.097

0.083

0.070

0.060

0.056

0.060

0.070

0.083

0.097

0.107

Step: 26
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.109

0.106

0.096

0.083

0.070

0.061

0.058

0.061

0.070

0.083

0.096

0.106

Step: 27
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.107

0.104

0.095

0.083

0.071

0.063

0.059

0.063

0.071

0.083

0.095

0.104

Step: 28
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.106

0.103

0.094

0.083

0.072

0.064

0.061

0.064

0.072

0.083

0.094

0.103

Step: 29
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.104

0.101

0.094

0.083

0.073

0.065

0.063

0.065

0.073

0.083

0.094

0.101

Step: 30

4. Markov Chains and Mixing Times © T. Sauerwald Irreducibility, Periodicity and Convergence 13



Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.103

0.100

0.093

0.083

0.074

0.067

0.064

0.067

0.074

0.083

0.093

0.100

Step: 31
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.101

0.099

0.092

0.083

0.074

0.068

0.065

0.068

0.074

0.083

0.092

0.099

Step: 32
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.100

0.098

0.092

0.083

0.075

0.069

0.066

0.069

0.075

0.083

0.092

0.098

Step: 33
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.099

0.097

0.091

0.083

0.075

0.070

0.068

0.070

0.075

0.083

0.091

0.097

Step: 34
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.098

0.096

0.091

0.083

0.076

0.071

0.069

0.071

0.076

0.083

0.091

0.096

Step: 35
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.097

0.095

0.090

0.083

0.076

0.071

0.070

0.071

0.076

0.083

0.090

0.095

Step: 36
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.096

0.094

0.090

0.083

0.077

0.072

0.071

0.072

0.077

0.083

0.090

0.094

Step: 37
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.095

0.094

0.089

0.083

0.077

0.073

0.071

0.073

0.077

0.083

0.089

0.094

Step: 38
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Convergence to Stationarity (Example)

Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
At step t the value at vertex x ∈ {1, 2, . . . , 12} is P t (1, x).

0.094

0.093

0.089

0.083

0.078

0.074

0.072

0.074

0.078

0.083

0.089

0.093

Step: 39
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Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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How Similar are Two Probability Measures?

You are presented three loaded (unfair) dice A,B,C:
x 1 2 3 4 5 6

P [ A = x ] 1/3 1/12 1/12 1/12 1/12 1/3
P [ B = x ] 1/4 1/8 1/8 1/8 1/8 1/4
P [ C = x ] 1/6 1/6 1/8 1/8 1/8 9/24

Question 1: Which dice is the least fair?

Most choose A.
Why?

Question 2: Which dice is the most fair?

Dice B and C seem
“fairer” than A but which is fairest?

Loaded Dice

We need a formal “fairness measure” to compare probability distributions!

x

P [ · = x ]

1 2 3 4 5 6

0.16
0.33
0.5
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Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑
ω∈Ω

|µ(ω)− η(ω)|.

Loaded Dice: let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣16 − 1

3

∣∣∣∣+ 4
∣∣∣∣16 − 1

12

∣∣∣∣) =
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣16 − 1

4

∣∣∣∣+ 4
∣∣∣∣16 − 1

8

∣∣∣∣) =
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣16 − 1

8

∣∣∣∣+

∣∣∣∣16 − 9
24

∣∣∣∣) =
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − B‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair”, however B and C are equally “fair” (in TV distance).
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TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

Let µ be a prob. vector on Ω (might be just one vertex) and t ≥ 0. Then

P t
µ := P [ Xt = · | X0 ∼ µ ] ,

is a probability measure on Ω.

[Exercise 4/5.5] For any µ,∥∥∥P t
µ − π

∥∥∥
tv
≤ max

x∈Ω

∥∥∥P t
x − π

∥∥∥
tv
.

For any finite, irreducible, aperiodic Markov Chain

lim
t→∞

max
x∈Ω

∥∥∥P t
x − π

∥∥∥
tv

= 0.

Convergence Theorem (Implication for TV Distance)

We will see a similar result later after introducing spectral techniques (Lecture 12)!
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov Chains converge to stationarity.

Question: How fast do they converge?

The mixing time τx (ε) of a finite Markov Chain P with stationary distribu-
tion π is defined as

τx (ε) = min
{

t ≥ 0 :
∥∥∥P t

x − π
∥∥∥

tv
≤ ε
}
,

and,
τ(ε) = max

x
τx (ε).

Mixing Time

This is how long we need to wait until we are “ε-close” to stationarity

We often take ε = 1/4, indeed let tmix := τ(1/4)

See final slides for some comments on why we choose 1/4.
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tion π is defined as

τx (ε) = min
{

t ≥ 0 :
∥∥∥P t

x − π
∥∥∥

tv
≤ ε
}
,

and,
τ(ε) = max

x
τx (ε).

Mixing Time

This is how long we need to wait until we are “ε-close” to stationarity

We often take ε = 1/4, indeed let tmix := τ(1/4)

See final slides for some comments on why we choose 1/4.
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Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Markov Chain Monte Carlo (non-examin.)

Appendix: Remarks on Mixing Time (non-examin.)
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Experiment Gone Wrong...

 

Thanks to Krzysztof Onak (pointer) and Eric Price (graph) 
Source: Slides by Ronitt Rubinfeld

4. Markov Chains and Mixing Times © T. Sauerwald Application 1: Card Shuffling 19



What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

Persi Diaconis (Professor of Statistics and former Magician)
Source: www.soundcloud.com

One of the leading experts
in the field who has related
card shuffling to many other

mathematical problems.

Here we will focus on one shuffling scheme which is easy to analyse.

How quickly do we converge to the uniform distribution over all n! permutations?
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The Card Shuffling Markov Chain

TOPTORANDOMSHUFFLE (Input: A pile of n cards)
1: For t = 1, 2, . . .
2: Pick i ∈ {1, 2, . . . , n} uniformly at random
3: Take the top card and insert it behind the i-th card

This is a slightly informal definition, so let us look at a small example...

8
1

6
4

7
5

2
3

We will focus on this “small” set of cards (n = 8)
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8
1

6
4

7
5

2
3

8
1

6
4

7
5

2
3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

2
5

8
1

6
4

3
7

Even if we know which set of cards come after 8, every permutation is equally likely!

8
1

6
4

7
5

2
3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

5
2

8
1

6
4

3
7

; the deck of cards is perfectly mixed after the last card
“8” reaches the top and is inserted to a random position!
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1
6

4
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7
5
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5

8
1

6
4

3
7

Even if we know which set of cards come after 8, every permutation is equally likely!

8
1

6
4

7
5

2
3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

5
2

8
1

6
4

3
7

; the deck of cards is perfectly mixed after the last card
“8” reaches the top and is inserted to a random position!
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Analysing the Mixing Time (Intuition)
8

1
6

4
7

5
2

3

8
1

6
4

3
7

5
2

2
8

1
6

4
3

7
5

2
5

8
1

6
4

3
7

; deck of cards is perfectly mixed after the last card “8”
reaches the top and is inserted to a random position!

How long does it take for the last card “n” to become top card?

At the last position, card “n” moves up with probability 1
n at each step

At the second last position, card “n” moves up with probability 2
n

...

At the second position, card “n” moves up with probability n−1
n

One final step to randomise card “n”

(with probability 1)

This is a “reversed” coupon collector process
with n cards, which takes n log n in expectation.

Using the so-called coupling method, one could prove tmix ≤ n log n.
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Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion
will be Binomial)

2. Riffle the cards together so that the card drops from the left (or right)
pile with probability proportional to the number of remaining cards

Riffle Shuffle

t 1 2 3 4 5 6 7 8 9 10
‖P t − π‖tv 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Figure: Total Variation Distance for t riffle shuffles of 52 cards.
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Markov Chain for Sampling Independent Sets (1/2) (non-examin.)

1

2
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7
8

Given an undirected graph G = (V ,E), an independent set is a subset
S ⊆ V such that there are no two vertices u, v ∈ S with {u, v} ∈ E(G).

Independent Set

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!
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Markov Chain for Sampling Independent Sets (2/2) (non-examin.)

INDEPENDENTSETSAMPLER

1: Let X0 be an arbitrary independent set in G
2: For t = 0, 1, 2, . . .:
3: Pick a vertex v ∈ V (G) uniformly at random
4: If v ∈ Xt then Xt+1 ← Xt \ {v}
5: elif v 6∈ Xt and Xt ∪ {v} is an independent set then Xt+1 ← Xt ∪ {v}
6: else Xt+1 ← Xt

Key Question: What is the mixing time of this Markov Chain?

not covered here, see the textbook by Mitzenmacher and Upfal
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Further Remarks on the Mixing Time (non-examin.)
One can prove maxx

∥∥P t
x − π

∥∥
tv is non-increasing in t (this means if the chain is

“ε-mixed” at step t , then this also holds in future steps) [Mitzenmacher, Upfal,
12.3]

We chose tmix := τ(1/4), but other choices of ε are perfectly fine too (e.g,
tmix := τ(1/e) is often used); in fact, any constant ε ∈ (0, 1/2) is possible.

Remark: This freedom on how to pick ε relies on the sub-multiplicative property of a (version) of the
variation distance. First, let

d(t) := max
x

∥∥∥P t
x − π

∥∥∥
tv

be the variation distance after t steps when starting from the worst state. Further, define

d(t) := max
µ,ν

∥∥∥P t
µ − P t

ν

∥∥∥
tv
.

These quantities are related by the following double inequality

d(t) ≤ d(t) ≤ 2d(t).

Further, d(t) is sub-multiplicative, that is for any s, t ≥ 1,

d(s + t) ≤ d(s) · d(t).

Hence for any fixed 0 < ε < δ < 1/2 it follows from the above that

τ(ε) ≤
⌈

ln ε

ln(2δ)

⌉
τ(δ).

In particular, for any ε < 1/4
τ(ε) ≤

⌈
log2 ε

−1
⌉
τ(1/4).

This 2 is the reason why we ultimately
need ε < 1/2 in this derivation. On

the other hand, see [Exercise (4/5).8]
why ε < 1/2 is also necessary.

Hence smaller constants ε < 1/4 only increase the mixing time by some constant factor.
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Hence for any fixed 0 < ε < δ < 1/2 it follows from the above that
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τ(δ).

In particular, for any ε < 1/4
τ(ε) ≤

⌈
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−1
⌉
τ(1/4).

This 2 is the reason why we ultimately
need ε < 1/2 in this derivation. On

the other hand, see [Exercise (4/5).8]
why ε < 1/2 is also necessary.

Hence smaller constants ε < 1/4 only increase the mixing time by some constant factor.
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