Randomised Algorithms
Lecture 1: Introduction to Course & Introduction to Chernoff Bounds

Thomas Sauerwald (tms41@cam.ac.uk)
Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!) solution or approximation to a problem that is costly (or impossible) to solve deterministically.

... If somebody would ask me, what in the last 10 years, what was the most important change in the study of algorithms I would have to say that people getting really familiar with randomised algorithms had to be the winner.

- Donald E. Knuth (in Randomization and Religion)
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!) solution or approximation to a problem that is costly (or impossible) to solve deterministically.

But often: simple algorithm at the cost of a sophisticated analysis!
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!) solution or approximation to a problem that is costly (or impossible) to solve deterministically.

“... If somebody would ask me, what in the last 10 years, what was the most important change in the study of algorithms I would have to say that people getting really familiar with randomised algorithms had to be the winner.”

- Donald E. Knuth (in Randomization and Religion)
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!) solution or approximation to a problem that is costly (or impossible) to solve deterministically.

“... If somebody would ask me, what in the last 10 years, what was the most important change in the study of algorithms I would have to say that people getting really familiar with randomised algorithms had to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory and apply this to analyse examples of randomised algorithms.
Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!) solution or approximation to a problem that is costly (or impossible) to solve deterministically.

“... If somebody would ask me, what in the last 10 years, what was the most important change in the study of algorithms I would have to say that people getting really familiar with randomised algorithms had to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms? Many of the techniques in this course (Markov Chains, Concentration of Measure, Spectral Theory) are very relevant to other popular areas of research and employment such as Data Science and Machine Learning.
In this course we will assume some basic knowledge of **probability**:

- random variable
- computing expectations and variances
- notions of independence
- “general” idea of how to compute probabilities (manipulating, counting and **estimating**)
Some stuff you should know...

In this course we will assume some basic knowledge of probability:

- random variable
- computing expectations and variances
- notions of independence
- “general” idea of how to compute probabilities (manipulating, counting and estimating)

You should also be familiar with basic computer science, mathematics knowledge such as:

- graphs
- basic algorithms (sorting, graph algorithms etc.)
- matrices, norms and vectors
Textbooks

(We will adopt some of the labels (e.g., Theorem 35.6) from this book in Lectures 6-10)
Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds
1 Introduction (Lecture)
 - Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.
1 Introduction (Lecture)
 - Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

 Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
 - Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and Applications; Extensions: Hoeffding's Inequality and Method of Bounded Differences; Applications.

4 Markov Chains and Mixing Times (Lecture)
 - Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
 - Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT Algorithm
1 Introduction (Lecture)
 - Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
 - Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences; Applications.

4 Markov Chains and Mixing Times (Lecture)
 - Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
 - Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
 - Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
 - Hardness of the general TSP problem, Formulating TSP as an integer program; Classical TSP instance from 1954; Branch & Bound Technique to solve integer programs using linear programs
We then see how we can efficiently combine linear programming with randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
- MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program, Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid Algorithm
We then see how we can efficiently combine linear programming with randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
- MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program, Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid Algorithm

Lectures 11-12 cover a more advanced topic with ML flavour:

11–12 Spectral Graph Theory and Spectral Clustering (Lectures)
- Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger's Inequality; Clustering and Examples; Analysing Mixing Times
Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds
Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from an experiment. The setting of this is the probability space \((\Omega, \Sigma, P)\).
Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from an experiment. The setting of this is the probability space \((\Omega, \Sigma, P)\).

Components of the Probability Space \((\Omega, \Sigma, P)\)

- **The Sample Space** \(\Omega\) contains all the possible outcomes \(\omega_1, \omega_2, \ldots\) of the experiment.
- **The Event Space** \(\Sigma\) is the power-set of \(\Omega\) containing events, which are combinations of outcomes (subsets of \(\Omega\) including \(\emptyset\) and \(\Omega\)).
- **The Probability Measure** \(P\) is a function from \(\Sigma\) to \(\mathbb{R}\) satisfying

 1. \(0 \leq P[\mathcal{E}] \leq 1\), for all \(\mathcal{E} \in \Sigma\)
 2. \(P[\Omega] = 1\)
 3. If \(\mathcal{E}_1, \mathcal{E}_2, \ldots \in \Sigma\) are pairwise disjoint (\(\mathcal{E}_i \cap \mathcal{E}_j = \emptyset\) for all \(i \neq j\)) then

\[
\mathbb{P} \left[\bigcup_{i=1}^{\infty} \mathcal{E}_i \right] = \sum_{i=1}^{\infty} \mathbb{P}[\mathcal{E}_i].
\]
Recap: Random Variables

A random variable X on (Ω, Σ, P) is a function $X : \Omega \rightarrow \mathbb{R}$ mapping each sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.
Recap: Random Variables

A random variable \(X \) on \((\Omega, \Sigma, P)\) is a function \(X : \Omega \rightarrow \mathbb{R} \) mapping each sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

Examples of random variables

- The number of heads in three coin flips \(X_1, X_2, X_3 \in \{0, 1\} \) is:

 \[X_1 + X_2 + X_3 \]
Recap: Random Variables

A random variable \(X \) on \((\Omega, \Sigma, P) \) is a function \(X : \Omega \rightarrow \mathbb{R} \) mapping each sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

Examples of random variables

- The number of heads in three coin flips \(X_1, X_2, X_3 \in \{0, 1\} \) is:

 \[
 X_1 + X_2 + X_3
 \]

- The indicator random variable \(1_\mathcal{E} \) of an event \(\mathcal{E} \in \Sigma \) given by

 \[
 1_\mathcal{E}(\omega) = \begin{cases}
 1 & \text{if } \omega \in \mathcal{E} \\
 0 & \text{otherwise}.
 \end{cases}
 \]
Recap: Random Variables

A random variable X on (Ω, Σ, P) is a function $X : \Omega \rightarrow \mathbb{R}$ mapping each sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

Examples of random variables

- The number of heads in three coin flips $X_1, X_2, X_3 \in \{0, 1\}$ is:

 $$X_1 + X_2 + X_3$$

- The indicator random variable $1_\mathcal{E}$ of an event $\mathcal{E} \in \Sigma$ given by

 $$1_\mathcal{E}(\omega) = \begin{cases} 1 & \text{if } \omega \in \mathcal{E} \\ 0 & \text{otherwise.} \end{cases}$$

 For the indicator random variable $1_\mathcal{E}$ we have $E[1_\mathcal{E}] = P[\mathcal{E}]$.
Recap: Random Variables

A random variable X on $(\Omega, \Sigma, \mathbb{P})$ is a function $X : \Omega \rightarrow \mathbb{R}$ mapping each sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

Examples of random variables

- The number of heads in three coin flips $X_1, X_2, X_3 \in \{0, 1\}$ is:

 $$X_1 + X_2 + X_3$$

- The indicator random variable 1_E of an event $E \in \Sigma$ given by

 $$1_E(\omega) = \begin{cases}
 1 & \text{if } \omega \in E \\
 0 & \text{otherwise.}
 \end{cases}$$

 For the indicator random variable 1_E we have $\mathbb{E}[1_E] = \mathbb{P}[E]$.

- The number of sixes of two dice throws $X_1, X_2 \in \{1, 2, \ldots, 6\}$ is

 $$1_{X_1=6} + 1_{X_2=6}$$
Recap: Boole’s Inequality (Union Bound)

Let E_1, \ldots, E_n be a collection of events in Σ. Then

$$P\left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} P[E_i].$$

Union Bound

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1_{E_i} be the random variable that takes value 1 if E_i holds, 0 otherwise.
2. $E[1_{E_i}] = P[E_i]$ (Check this).
3. It is clear that $1_{\bigcup_{i=1}^{n} E_i} \leq \sum_{i=1}^{n} 1_{E_i}$ (Check this).
4. Taking expectation completes the proof.
Recap: Boole’s Inequality (Union Bound)

Let E_1, \ldots, E_n be a collection of events in Σ. Then

$$P \left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} P[E_i].$$

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!
Recap: Boole’s Inequality (Union Bound)

Let E_1, \ldots, E_n be a collection of events in Σ. Then

$$P \left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} P \left[E_i \right].$$

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let $\mathbb{1}_{E_i}$ be the random variable that takes value 1 if E_i holds, 0 otherwise.
2. $E \left[\mathbb{1}_{E_i} \right] = P \left[E_i \right]$ (Check this).
3. It is clear that $\bigcup_{i=1}^{n} \mathbb{1}_{E_i} \leq \sum_{i=1}^{n} \mathbb{1}_{E_i}$ (Check this).
4. Taking expectation completes the proof.
Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!

Let E_1, \ldots, E_n be a collection of events in Σ. Then

$$P \left[\bigcup_{i=1}^{n} E_i \right] \leq \sum_{i=1}^{n} P\left[E_i \right].$$

A Proof using Indicator Random Variables:

1. Let 1_{E_i} be the random variable that takes value 1 if E_i holds, 0 otherwise
Recap: Boole’s Inequality (Union Bound)

Let $\mathcal{E}_1, \ldots, \mathcal{E}_n$ be a collection of events in Σ. Then

$$
P \left[\bigcup_{i=1}^{n} \mathcal{E}_i \right] \leq \sum_{i=1}^{n} P[\mathcal{E}_i].$$

A Proof using Indicator Random Variables:

1. Let $1_{\mathcal{E}_i}$ be the random variable that takes value 1 if \mathcal{E}_i holds, 0 otherwise
2. $E[1_{\mathcal{E}_i}] = P[\mathcal{E}_i]$ (Check this)
Recap: Boole’s Inequality (Union Bound)

Let E_1, \ldots, E_n be a collection of events in Σ. Then

$$P\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} P[E_i].$$

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1_{E_i} be the random variable that takes value 1 if E_i holds, 0 otherwise
2. $E[1_{E_i}] = P[E_i]$ (Check this)
3. It is clear that $1_{\bigcup_{i=1}^{n} E_i} \leq \sum_{i=1}^{n} 1_{E_i}$ (Check this)
Recap: Boole’s Inequality (Union Bound)

Union Bound is one of the most basic probability inequalities, yet it is extremely useful and easy to apply!

Let $\mathcal{E}_1, \ldots, \mathcal{E}_n$ be a collection of events in Σ. Then

$$P\left[\bigcup_{i=1}^{n} \mathcal{E}_i\right] \leq \sum_{i=1}^{n} P[\mathcal{E}_i].$$

A Proof using Indicator Random Variables:

1. Let $1_{\mathcal{E}_i}$ be the random variable that takes value 1 if \mathcal{E}_i holds, 0 otherwise
2. $E[1_{\mathcal{E}_i}] = P[\mathcal{E}_i]$ (Check this)
3. It is clear that $1_{\bigcup_{i=1}^{n} \mathcal{E}_i} \leq \sum_{i=1}^{n} 1_{\mathcal{E}_i}$ (Check this)
4. Taking expectation completes the proof.
Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds
$E(A, B)$: set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.
A Randomised Algorithm for MAX-CUT (1/2)

$E(A, B)$: set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.
A Randomised Algorithm for MAX-CUT (1/2)

\(E(A, B) \): set of edges with one endpoint in \(A \subseteq V \) and the other in \(B \subseteq V \).

MAX-CUT Problem

- **Given:** Undirected graph \(G = (V, E) \)
A Randomised Algorithm for MAX-CUT (1/2)

$E(\ A, \ B\)$: set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.

MAX-CUT Problem

- **Given**: Undirected graph $G = (V, E)$
- **Goal**: Find $S \subseteq V$ such that $e(S, S^c) := |E(S, S^c)|$ is maximised.

Applications:
- Network design
- VLSI design
- Clustering
- Statistical physics

Comments:
- This problem will appear again in the course.
- MAX-CUT is NP-hard.
- It is different from the clustering problem, where we want to find a sparse cut.
- Note that the MIN-CUT problem is solvable in polynomial time!
A Randomised Algorithm for MAX-CUT (1/2)

\(E(A, B) \): set of edges with one endpoint in \(A \subseteq V \) and the other in \(B \subseteq V \).

MAX-CUT Problem

- **Given**: Undirected graph \(G = (V, E) \)
- **Goal**: Find \(S \subseteq V \) such that \(e(S, S^c) := |E(S, S^c)| \) is maximised.
A Randomised Algorithm for MAX-CUT (1/2)

$E (A, B)$: set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.

MAX-CUT Problem

- **Given**: Undirected graph $G = (V, E)$
- **Goal**: Find $S \subseteq V$ such that $e(S, S^c) := |E(S, S^c)|$ is maximised.

$S = \{a, b, e\}$

$e(S, S^c) = 6$
A Randomised Algorithm for MAX-CUT (1/2)

\(E(A, B) \): set of edges with one endpoint in \(A \subseteq V \) and the other in \(B \subseteq V \).

MAX-CUT Problem

- **Given**: Undirected graph \(G = (V, E) \)
- **Goal**: Find \(S \subseteq V \) such that \(e(S, S^c) := |E(S, S^c)| \) is maximised.

![Graph with nodes a, b, c, d, e, f]

\[S = \{a, b, e\} \]

\[e(S, S^c) = 6 \]
A Randomised Algorithm for MAX-CUT (1/2)

$E(A, B)$: set of edges with one endpoint in $A \subseteq V$ and the other in $B \subseteq V$.

MAX-CUT Problem

- **Given**: Undirected graph $G = (V, E)$
- **Goal**: Find $S \subseteq V$ such that $e(S, S^c) := |E(S, S^c)|$ is maximised.

Applications:

![Graph with vertices a, b, c, d, e, f and a set S = \{a, b, e\} with edge e(S, S^c) = 6]
\(E(A, B) \): set of edges with one endpoint in \(A \subseteq V \) and the other in \(B \subseteq V \).

MAX-CUT Problem

- **Given**: Undirected graph \(G = (V, E) \)
- **Goal**: Find \(S \subseteq V \) such that \(e(S, S^c) := |E(S, S^c)| \) is maximised.

Applications:

- network design, VLSI design
- clustering, statistical physics

\[S = \{a, b, e\} \]
\[e(S, S^c) = 6 \]
A Randomised Algorithm for MAX-CUT (1/2)

\[E(A, B) \]: set of edges with one endpoint in \(A \subseteq V \) and the other in \(B \subseteq V \).

MAX-CUT Problem
- **Given:** Undirected graph \(G = (V, E) \)
- **Goal:** Find \(S \subseteq V \) such that \(e(S, S^c) := |E(S, S^c)| \) is maximised.

Applications:
- network design, VLSI design
- clustering, statistical physics

Comments:
- This problem will appear again in the course
- MAX-CUT is NP-hard
- It is different from the clustering problem, where we want to find a sparse cut
- Note that the MIN-CUT problem is solvable in polynomial time!

\[S = \{a, b, e\} \]
\[e(S, S^c) = 6 \]
A Randomised Algorithm for MAX-CUT (2/2)

\textbf{Algorithm RANDMaxCut}(G):

1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

RANDMaxCut(G) gives a 2-approximation using time $O(n)$.

Proof:

We need to analyse the expectation of $e(S, S^c)$:

$$E[e(S, S^c)] = E\left[\sum_{\{u, v\} \in E} \left\{\begin{array}{ll} 1 & \text{if } u \in S, v \in S^c \\ 1 & \text{if } u \in S^c, v \in S \end{array}\right.\right]$$

$$= \sum_{\{u, v\} \in E} P[U \in S, V \in S^c] + P[U \in S^c, V \in S]$$

$$= \sum_{\{u, v\} \in E} P[U \in S] \cdot P[V \in S^c] + P[U \in S^c] \cdot P[V \in S]$$

$$= \frac{|E|}{2}.$$

Since for any $S \subseteq V$, we have $e(S, S^c) \leq |E|$, the proof is complete.
A Randomised Algorithm for MAX-CUT (2/2)

RAND_MAXCUT(G)

1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

This kind of “random guessing” will appear often in this course!

Proposition

More details on approximation algorithms from Lecture 9 onwards!

Later: learn stronger tools that imply concentration around the expectation!

Proof:

We need to analyse the expectation of $e(S, S^c)$:

$$E[e(S, S^c)] = \sum_{\{u, v\} \in E} \mathbb{P}[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}] = 2 \sum_{\{u, v\} \in E} \mathbb{P}[u \in S] \cdot \mathbb{P}[v \in S^c] = \frac{|E|}{2}.$$
A Randomised Algorithm for MAX-CUT (2/2)

\textbf{RANDMaxCut}(G)

1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

\textbf{Proposition}

\textbf{RANDMaxCut}(G) gives a 2-approximation using time $O(n)$.
A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)

1. Start with $S \leftarrow \emptyset$
2. For each $v \in V$, add v to S with probability $1/2$
3. Return S

Proposition

RANDMAXCUT(G) gives a 2-approximation using time $O(n)$.

Question:

1. What is the sample space Ω here?
2. Which quantity do we need to analyse?
A Randomised Algorithm for MAX-CUT (2/2)

Algorithm

\[\text{RANDMAXCUT}(G) \]

1: Start with \(S \leftarrow \emptyset \)
2: For each \(v \in V \), add \(v \) to \(S \) with probability \(1/2 \)
3: Return \(S \)

Proposition

\[\text{RANDMAXCUT}(G) \text{ gives a 2-approximation using time } O(n). \]

Proof:

- We need to analyse the expectation of \(e(S, S^c) \):
A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with \(S \leftarrow \emptyset \)
2: \textbf{For} each \(v \in V \), add \(v \) to \(S \) with probability \(1/2 \)
3: \textbf{Return} \(S \)

Proposition

RANDMAXCUT(G) gives a \textbf{2-approximation} using time \(O(n) \).

Proof:

- We need to analyse the \textbf{expectation} of \(e(S, S^c) \):

\[
E[e(S, S^c)]
\]
A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)
1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

Proposition

RANDMAXCUT(G) gives a 2-approximation using time $O(n)$.

Proof:

- We need to analyse the expectation of $e(S, S^c)$:

$$E \left[e(S, S^c) \right] = E \left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]$$
A Randomised Algorithm for MAX-CUT (2/2)

\textbf{\textsc{RandMaxCut}(G)}

1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline
| Proposition | \midrule
| \textbf{RandMaxCut}(G) gives a 2-approximation using time $O(n)$. | \midrule
\hline
\end{tabular}
\end{center}
\end{figure}

Proof:

- We need to analyse the expectation of $e(S, S^c)$:

\[
\mathbb{E}[e(S, S^c)] = \mathbb{E}\left[\sum_{\{u,v\} \in E} \mathbb{1}_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u,v\} \in E} \mathbb{E}\left[\mathbb{1}_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]
A Randomised Algorithm for MAX-CUT (2/2)

\textsc{RandMaxCut}(G)

1: Start with $S \leftarrow \emptyset$
2: \textbf{For} each $v \in V$, add v to S with probability $1/2$
3: \textbf{Return} S

Proposition

\textsc{RandMaxCut}(G) gives a 2-approximation using time $O(n)$.

Proof:

- We need to analyse the expectation of $e(S, S^c)$:

\[
E\left[e(S, S^c) \right] = E\left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u,v\} \in E} E\left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u,v\} \in E} P\left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\} \right]
\]
A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT(G)

1: Start with $S \leftarrow \emptyset$

2: For each $v \in V$, add v to S with probability $1/2$

3: Return S

Proposition

`RANDMAXCUT(G)` gives a 2-approximation using time $O(n)$.

Proof:

- We need to analyse the expectation of $e(S, S^c)$:

 \[
 \mathbb{E} \left[e(S, S^c) \right] = \mathbb{E} \left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
 \]

 = \sum_{\{u,v\} \in E} \mathbb{E} \left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]

 = \sum_{\{u,v\} \in E} \mathbb{P} \left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\} \right]

 = 2 \sum_{\{u,v\} \in E} \mathbb{P} \left[u \in S, v \in S^c \right]

1. Introduction © T. Sauerwald

Basic Examples
A Randomised Algorithm for MAX-CUT (2/2)

\[\text{RANDMaxCut}(G)\]

1: Start with \(S \leftarrow \emptyset \)
2: For each \(v \in V \), add \(v \) to \(S \) with probability \(\frac{1}{2} \)
3: Return \(S \)

Proposition

\(\text{RANDMaxCut}(G) \) gives a 2-approximation using time \(O(n) \).

Proof:

- We need to analyse the expectation of \(e(S, S^c) \):

\[
\begin{align*}
\mathbb{E} \left[e \left(S, S^c \right) \right] &= \mathbb{E} \left[\sum_{\{u, v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right] \\
&= \sum_{\{u, v\} \in E} \mathbb{E} \left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right] \\
&= \sum_{\{u, v\} \in E} \mathbb{P} \left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\} \right] \\
&= 2 \sum_{\{u, v\} \in E} \mathbb{P} \left[u \in S \right] \cdot \mathbb{P} \left[v \in S^c \right] \\
&= \frac{|E|}{2}.
\end{align*}
\]

Since for any \(S \subseteq V \), we have \(e(S, S^c) \leq |E| \), the proof is complete.
A Randomised Algorithm for MAX-CUT (2/2)

\[\text{RANDMAXCUT}(G) \]

1: Start with \(S \leftarrow \emptyset \)
2: For each \(v \in V \), add \(v \) to \(S \) with probability \(\frac{1}{2} \)
3: Return \(S \)

Proposition

\(\text{RANDMAXCUT}(G) \) gives a 2-approximation using time \(O(n) \).

Proof:

- We need to analyse the expectation of \(e(S, S^c) \):

\[
\mathbb{E}[e(S, S^c)] = \mathbb{E}\left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u,v\} \in E} \mathbb{E}\left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u,v\} \in E} \mathbb{P}\left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\} \right]
\]

\[
= 2 \sum_{\{u,v\} \in E} \mathbb{P}[u \in S, v \in S^c] = 2 \sum_{\{u,v\} \in E} \mathbb{P}[u \in S] \cdot \mathbb{P}[v \in S^c] = \frac{|E|}{2}.
\]
A Randomised Algorithm for MAX-CUT (2/2)

\[\text{RANDMAXCUT}(G) \]

1: Start with \(S \leftarrow \emptyset \)
2: For each \(v \in V \), add \(v \) to \(S \) with probability \(1/2 \)
3: Return \(S \)

\[\text{RANDMAXCUT}(G) \] gives a 2-approximation using time \(O(n) \).

Proposition

Proof:

- We need to analyse the expectation of \(e(S, S^c) \):

\[
\mathbb{E} \left[e(S, S^c) \right] = \mathbb{E} \left[\sum_{\{u, v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u, v\} \in E} \mathbb{E} \left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}} \right]
\]

\[
= \sum_{\{u, v\} \in E} \mathbb{P} \left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\} \right]
\]

\[
= 2 \sum_{\{u, v\} \in E} \mathbb{P} \left[u \in S, v \in S^c \right] = 2 \sum_{\{u, v\} \in E} \mathbb{P} \left[u \in S \right] \cdot \mathbb{P} \left[v \in S^c \right] = |E|/2.
\]

- Since for any \(S \subseteq V \), we have \(e(S, S^c) \leq |E| \), the proof is complete.
A Randomised Algorithm for MAX-CUT (2/2)

\textbf{R} \textbf{a} \textbf{n} \textbf{d} \textbf{M} \textbf{a} \textbf{x} \textbf{C} \textbf{u} \textbf{t}(G)

1: Start with $S \leftarrow \emptyset$
2: \textbf{F}or each $v \in V$, add v to S with probability $1/2$
3: \textbf{R}eturn S

\begin{align*}
\textbf{Proposition} \\
\textbf{R} \textbf{a} \textbf{n} \textbf{d} \textbf{M} \textbf{a} \textbf{x} \textbf{C} \textbf{u} \textbf{t}(G) \text{ gives a } 2\text{-approximation using time } O(n). \\
\end{align*}

\textbf{Proof:}

- We need to analyse the expectation of $e(S, S^c)$:

\begin{align*}
E\left[e(S, S^c)\right] &= E\left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}}\right] \\
&= \sum_{\{u,v\} \in E} E\left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}}\right] \\
&= \sum_{\{u,v\} \in E} P\left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}\right] \\
&= 2 \sum_{\{u,v\} \in E} P\left[u \in S, v \in S^c\right] = 2 \sum_{\{u,v\} \in E} P\left[u \in S\right] \cdot P\left[v \in S^c\right] = |E|/2.
\end{align*}

- Since for any $S \subseteq V$, we have $e(S, S^c) \leq |E|$, the proof is complete.
A Randomised Algorithm for MAX-CUT (2/2)

RandomMaxCut(G)
1: Start with $S \leftarrow \emptyset$
2: For each $v \in V$, add v to S with probability $1/2$
3: Return S

Proposition

RandomMaxCut(G) gives a 2-approximation using time $O(n)$.

Proof:

- We need to analyse the expectation of $e(S, S^c)$:

\[
E\left[e(S, S^c)\right] = E\left[\sum_{\{u,v\} \in E} 1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}}\right]
\]

\[
= \sum_{\{u,v\} \in E} E\left[1_{\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}}\right]
\]

\[
= \sum_{\{u,v\} \in E} P\left[\{u \in S, v \in S^c\} \cup \{u \in S^c, v \in S\}\right]
\]

\[
= 2 \sum_{\{u,v\} \in E} P\left[u \in S, v \in S^c\right] = 2 \sum_{\{u,v\} \in E} P\left[u \in S\right] \cdot P\left[v \in S^c\right] = \frac{|E|}{2}.
\]

- Since for any $S \subseteq V$, we have $e(S, S^c) \leq |E|$, the proof is complete.

More details on approximation algorithms from Lecture 9 onwards!

Later: learn stronger tools that imply concentration around the expectation!
Example: Coupon Collector

Suppose that there are \(n \) coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum
Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

This is a very important example in the design and analysis of randomised algorithms.

Coupon Collector Problem

Suppose that there are \(n \) coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

1. Exercise (Ex. 1.11)

1. Prove it takes \(n \sum_{k=1}^{n} k \approx n \log n \) expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than \(n \log n + cn \) boxes to collect all \(n \) coupons is \(\leq e^{-c} \).

Hint: It is useful to remember that \(1 - x \leq e^{-x} \) for all \(x \).
Example: Coupon Collector

Suppose that there are \(n \) coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for \(n = 8 \): 7, 6, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 ✓

This is a very important example in the design and analysis of randomised algorithms.

Coupon Collector Problem

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum
Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

This is a very important example in the design and analysis of randomised algorithms.

Coupon Collector Problem

Suppose that there are \(n \) coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for \(n = 8 \):

7, 6, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 ✓

Exercise ([Ex. 1.11])
Example: Coupon Collector

This is a very important example in the design and analysis of randomised algorithms.

Coupon Collector Problem

Suppose that there are n coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for $n = 8$: 7, 6, 3, 3, 2, 5, 4, 8

Exercise ([Ex. 1.11])

1. Prove it takes $n \sum_{k=1}^{n} \frac{1}{k} \approx n \log n$ expected boxes to collect all coupons.
Example: Coupon Collector

This is a very important example in the design and analysis of randomised algorithms.

Suppose that there are \(n \) coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for \(n = 8 \): 7, 6, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 √

Exercise ([Ex. 1.11])
1. Prove it takes \(n \sum_{k=1}^{n} \frac{1}{k} \approx n \log n \) expected boxes to collect all coupons
Example: Coupon Collector

Suppose that there are n coupons to be collected from the cereal box. Every morning you open a new cereal box and get one coupon. We assume that each coupon appears with the same probability in the box.

Example Sequence for $n = 8$: 7, 6, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8

Exercise (Ex. 1.11)

1. Prove it takes $n \sum_{k=1}^{n} \frac{1}{k} \approx n \log n$ expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than $n \log n + cn$ boxes to collect all n coupons is $\leq e^{-c}$.

Hint: It is useful to remember that $1 - x \leq e^{-x}$ for all x
Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory

Basic Examples

Introduction to Chernoff Bounds
Concentration Inequalities

- **Concentration** refers to the phenomena where random variables are very close to their mean.
- This is very useful in randomised algorithms as it ensures an *almost* deterministic behaviour.
Concentration Inequalities

- **Concentration** refers to the phenomena where random variables are very close to their mean.
- This is very useful in randomised algorithms as it ensures an *almost* deterministic behaviour.
- It gives us the best of two worlds:
 1. **Randomised Algorithms**: Easy to Design and Implement
 2. **Deterministic Algorithms**: They do what they claim
Chernoff Bounds: A Tool for Concentration (1952)

- Chernoff’s bounds are “strong” bounds on the tail probabilities of sums of independent random variables
- Random variables can be discrete (or continuous)
- Usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov’s or Chebyshev’s inequality (see example)

Hermann Chernoff (1923-)

\[
(1 + \delta)\mu \quad \mu \quad (1 - \delta)\mu
\]
Chernoff Bounds: A Tool for Concentration (1952)

- Chernoff’s bounds are “strong” bounds on the tail probabilities of sums of independent random variables.
- Random variables can be discrete (or continuous).
- Usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov’s or Chebyshev’s inequality (see example).
- Easy to apply, but requires independence.
- Have found various applications in:
 - Randomised Algorithms
 - Statistics
 - Random Projections and Dimensionality Reduction
 - Learning Theory (e.g., PAC-learning)

\[(1 + \delta)\mu\]
Chernoff Bounds: A Tool for Concentration (1952)

- Chernoffs bounds are “strong” bounds on the tail probabilities of sums of independent random variables
- random variables can be discrete (or continuous)
- usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov’s or Chebyshev’s inequality (see example)
- easy to apply, but requires independence
- have found various applications in:
 - Randomised Algorithms
 - Statistics
 - Random Projections and Dimensionality Reduction
 - Learning Theory (e.g., PAC-learning)
 - ...
Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any $a > 0$,

$$
P \left[X \geq a \right] \leq \frac{E \left[X \right]}{a}.
$$

Chebyshev’s Inequality

If X is a random variable, then for any $a > 0$,

$$
P \left[|X - E \left[X \right]| \geq a \right] \leq \frac{V \left[X \right]}{a^2}.
$$
Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any $a > 0$,

$$P[X \geq a] \leq \frac{E[X]}{a}.$$

Chebyshev’s Inequality

If X is a random variable, then for any $a > 0$,

$$P[|X - E[X]| \geq a] \leq \frac{V[X]}{a^2}.$$

- Let $f : \mathbb{R} \to [0, \infty)$ and increasing, then $f(X) \geq 0$, and thus

$$P[X \geq a] \leq P[f(X) \geq f(a)] \leq \frac{E[f(X)]}{f(a)}.$$
Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any $a > 0$,
\[
P[X \geq a] \leq \frac{E[X]}{a}.
\]

Chebyshev’s Inequality

If X is a random variable, then for any $a > 0$,
\[
P[|X - E[X]| \geq a] \leq \frac{V[X]}{a^2}.
\]

- Let $f : \mathbb{R} \rightarrow [0, \infty)$ and increasing, then $f(X) \geq 0$, and thus
 \[
P[X \geq a] \leq P[f(X) \geq f(a)] \leq \frac{E[f(X)]}{f(a)}.
 \]

- Similarly, if $g : \mathbb{R} \rightarrow [0, \infty)$ and decreasing, then $g(X) \geq 0$, and thus
 \[
P[X \leq a] \leq P[g(X) \geq g(a)] \leq \frac{E[g(X)]}{g(a)}.
 \]
Recap: Markov and Chebyshev

Markov's Inequality

If X is a non-negative random variable, then for any $a > 0$,

$$
P[X \geq a] \leq \frac{E[X]}{a}.
$$

Chebyshev's Inequality

If X is a random variable, then for any $a > 0$,

$$
P[|X - E[X]| \geq a] \leq \frac{V[X]}{a^2}.
$$

- Let $f : \mathbb{R} \to [0, \infty)$ and increasing, then $f(X) \geq 0$, and thus

 $$
P[X \geq a] \leq P[f(X) \geq f(a)] \leq E[f(X)] / f(a).
$$

- Similarly, if $g : \mathbb{R} \to [0, \infty)$ and decreasing, then $g(X) \geq 0$, and thus

 $$
P[X \leq a] \leq P[g(X) \geq g(a)] \leq E[g(X)] / g(a).
$$

Chebyshev's inequality (or Markov) can be obtained by choosing $f(X) := (X - \mu)^2$ (or $f(X) := X$, respectively).
Markov and Chebyshev use the first and second moment of the random variable. Can we keep going?
Markov and Chebyshev use the first and second moment of the random variable. Can we keep going?

- Yes!
Markov and Chebyshev use the first and second moment of the random variable. Can we keep going?

- Yes!

We can consider the first, second, third and more moments! That is the basic idea behind the Chernoff Bounds.
Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose X_1, \ldots, X_n are independent Bernoulli random variables with parameter p_i. Let $X = X_1 + \ldots + X_n$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, for any $\delta > 0$ it holds that

$$
P[X \geq (1 + \delta)\mu] \leq \left[\frac{e^{\delta}}{(1 + \delta)^{(1+\delta)}}\right]^{\mu}.
\quad (\star)
$$
Our First Chernoff Bound

Suppose \(X_1, \ldots, X_n \) are independent Bernoulli random variables with parameter \(p_i \). Let \(X = X_1 + \ldots + X_n \) and \(\mu = \mathbb{E}[X] = \sum_{i=1}^{n} p_i \). Then, for any \(\delta > 0 \) it holds that

\[
\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^{\delta}}{(1 + \delta)^{1+\delta}}\right)^{\mu}.
\]

(★)

Chernoff Bounds (General Form, Upper Tail)

While (★) is one of the easiest (and most generic) Chernoff bounds to derive, the bound is complicated and hard to apply...
Suppose X_1, \ldots, X_n are independent Bernoulli random variables with parameter p_i. Let $X = X_1 + \ldots + X_n$ and $\mu = E[X] = \sum_{i=1}^{n} p_i$. Then, for any $\delta > 0$ it holds that

$$P[X \geq (1 + \delta)\mu] \leq \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}}\right]^\mu. \quad (\star)$$

This implies that for any $t > \mu$,

$$P[X \geq t] \leq e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$
Example: Coin Flips (1/3)

- Consider throwing a fair coin n times and count the total number of heads.
Example: Coin Flips (1/3)

- Consider throwing a fair coin n times and count the total number of heads
- $X_i \in \{0, 1\}$, $X = \sum_{i=1}^{n} X_i$ and $E [X] = n \cdot 1/2 = n/2$
Consider throwing a fair coin \(n \) times and count the total number of heads

- \(X_i \in \{0, 1\}, \ X = \sum_{i=1}^{n} X_i \) and \(\mathbb{E}[X] = n \cdot 1/2 = n/2 \)

The Chernoff Bound gives for any \(\delta > 0 \),

\[
P[X \geq (1 + \delta)(n/2)] \leq \left[\frac{e^\delta}{(1 + \delta)(1+\delta)} \right]^{n/2}.
\]
Example: Coin Flips (1/3)

- Consider throwing a fair coin \(n \) times and count the total number of heads
- \(X_i \in \{0, 1\}, \ X = \sum_{i=1}^{n} X_i \) and \(\mathbb{E}[X] = n \cdot 1/2 = n/2 \)
- The Chernoff Bound gives for any \(\delta > 0 \),
 \[
 \Pr[X \geq (1 + \delta)(n/2)] \leq \left[\frac{e^{\delta}}{(1 + \delta)^{1+\delta}} \right]^{n/2}.
 \]
- The above expression equals 1 only for \(\delta = 0 \), and then it gives a value strictly less than 1 (check this!)
- The inequality is exponential in \(n \), (for fixed \(\delta \)) which is much better than Chebyshev’s inequality.
Consider throwing a fair coin \(n \) times and count the total number of heads

- \(X_i \in \{0, 1\}, \ X = \sum_{i=1}^{n} X_i \) and \(E[X] = n \cdot 1/2 = n/2 \)
- The Chernoff Bound gives for any \(\delta > 0 \),

\[
P[X \geq (1 + \delta)(n/2)] \leq \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right]^{n/2}.
\]

- The above expression equals 1 only for \(\delta = 0 \), and then it gives a value strictly less than 1 (check this!)

⇒ The inequality is exponential in \(n \), (for fixed \(\delta \)) which is much better than Chebyshev’s inequality.

What about a concrete value of \(n \), say \(n = 100 \)?
Example: Coin Flips (2/3)

\[P[\text{Bin}(100, 1/2) = x] \]
Consider \(n = 100 \) independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75.
Example: Coin Flips (3/3)

Consider $n = 100$ independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75.

- **Markov’s inequality**: $E[X] = 100/2 = 50$.

 $$P[X \geq 3/2 \cdot E[X]] \leq 2/3 = 0.666.$$
Example: Coin Flips (3/3)

Consider \(n = 100 \) independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75.

- **Markov’s inequality:**
 \[
 \mathbb{E}[X] = 100/2 = 50.
 \]
 \[
 \mathbb{P}[X \geq 3/2 \cdot \mathbb{E}[X]] \leq 2/3 = 0.666.
 \]

- **Chebyshev’s inequality:**
 \[
 \mathbb{V}[X] = \sum_{i=1}^{100} \mathbb{V}[X_i] = 100 \cdot (1/2)^2 = 25.
 \]
 \[
 \mathbb{P}[|X - \mu| \geq t] \leq \frac{\mathbb{V}[X]}{t^2},
 \]
 and plugging in \(t = 25 \) gives an upper bound of \(25/25^2 = 1/25 = 0.04 \), much better than what we obtained by Markov’s inequality.

1. Introduction © T. Sauerwald

Introduction to Chernoff Bounds

25
Consider $n = 100$ independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75.

- **Markov’s inequality**: $E[X] = 100/2 = 50$.
 \[
P[X \geq 3/2 \cdot E[X]] \leq 2/3 = 0.666.
 \]

- **Chebyshev’s inequality**: $V[X] = \sum_{i=1}^{100} V[X_i] = 100 \cdot (1/2)^2 = 25$.
 \[
P[|X - \mu| \geq t] \leq \frac{V[X]}{t^2},
 \]
 and plugging in $t = 25$ gives an upper bound of $25/25^2 = 1/25 = 0.04$, much better than what we obtained by Markov’s inequality.

- **Chernoff bound**: setting $\delta = 1/2$ gives
 \[
P[X \geq 3/2 \cdot E[X]] \leq \left(\frac{e^{1/2}}{(3/2)^{3/2}}\right)^{50} = 0.004472.
 \]
Example: Coin Flips (3/3)

Consider \(n = 100 \) independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75.

- **Markov’s inequality**: \(\mathbb{E}[X] = 100/2 = 50 \).

\[
P[X \geq 3/2 \cdot \mathbb{E}[X]] \leq \frac{2}{3} = 0.666.
\]

- **Chebyshev’s inequality**: \(\mathbb{V}[X] = \sum_{i=1}^{100} \mathbb{V}[X_i] = 100 \cdot (1/2)^2 = 25 \).

\[
P[|X - \mu| \geq t] \leq \frac{\mathbb{V}[X]}{t^2},
\]

and plugging in \(t = 25 \) gives an upper bound of \(25/25^2 = 1/25 = 0.04 \), much better than what we obtained by Markov’s inequality.

- **Chernoff bound**: setting \(\delta = 1/2 \) gives

\[
P[X \geq 3/2 \cdot \mathbb{E}[X]] \leq \left(\frac{e^{1/2}}{(3/2)^{3/2}} \right)^{50} = 0.004472.
\]

- **Remark**: The exact probability is 0.00000028 \ldots
Consider \(n = 100 \) independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal to 75.

- **Markov’s inequality:** \(\mathbb{E}[X] = 100/2 = 50. \)

 \[

 P[X \geq 3/2 \cdot \mathbb{E}[X]] \leq 2/3 = 0.666.

 \]

- **Chebyshev’s inequality:** \(\mathbb{V}[X] = \sum_{i=1}^{100} \mathbb{V}[X_i] = 100 \cdot (1/2)^2 = 25. \)

 \[

 P[|X - \mu| \geq t] \leq \frac{\mathbb{V}[X]}{t^2},

 \]

 and plugging in \(t = 25 \) gives an upper bound of \(25/25^2 = 1/25 = 0.04 \), much better than what we obtained by Markov’s inequality.

- **Chernoff bound:** setting \(\delta = 1/2 \) gives

 \[

 P[X \geq 3/2 \cdot \mathbb{E}[X]] \leq \left(\frac{e^{1/2}}{(3/2)^{3/2}} \right)^{50} = 0.004472.

 \]

- **Remark:** The exact probability is \(0.00000028 \ldots \)

 Chernoff bound yields a much better result (but needs independence!)